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Preface

The Ensemble Verification System (EVS) is a Java-based software tool developed by
the Hydrological Ensemble Prediction (HEP) group of the US National Weather
Service’s Office of Hydrologic Development (OHD). It is designed to verify
ensemble forecasts of hydrologic and hydrometeorological variables, such as
temperature, precipitation, streamflow and river stage. The EVS is intended to be
flexible, modular and open to accommodate enhancements and additions, not only by
its developers but also by its users. As such, we welcome your participation in the
continuing development of the EVS toward a versatile and standardized tool for

ensemble verification.

' EVS Primary Point of Contact, James.D.Brown@noaa.gov, 301-713-0640 ext 224
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Disclaimer

This software and related documentation was developed by the National Weather
Service (NWS). Pursuant to title 17, Section 105 of the United States Code this
software is not subject to copyright protection and may be used, copied, modified, and
distributed without fee or cost. Parties who develop software incorporating
predominantly NWS developed software must include notice, as required by Title 17,
Section 403 of the United States Code. NWS provides no warranty, expressed or
implied, as to the correctness of the furnished software or its suitability for any
purpose. NWS assumes no responsibility, whatsoever, for its use by other parties,
about its quality, reliability, or any other characteristic. The NWS may change this
software to meet its mission needs or discontinue its use without prior notice. The
NWS cannot assist non-NWS users and is not obligated to fix reported problems;
however, the NWS will make an attempt to fix reported problems where possible.
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1. INTRODUCTION

Ensemble forecasting is widely used in meteorology and, increasingly, in hydrology
to quantify and propagate modeling uncertainty (Stensrud et al., 1999; Brown and
Heuvelink, 2007; Park and Xu, 2009). Uncertainties in model predictions originate
from the inputs, structure and parameters of a model, among other things (Brown
and Heuvelink, 2005; Gupta et al., 2005). In practice, ensemble forecasts cannot
account for all of these uncertainties, and some uncertainties are difficult to quantify
accurately (NRC, 2006). Thus, ensemble forecasts are subject to errors. These
errors are manifest as differences between the forecast probabilities and the
corresponding observed probabilities over a large sample of forecasts and verifying
observations (subject to sampling and observational uncertainty; Jolliffe and
Stephenson, 2003; Hashino et al., 2006; Wilks, 2006). Unlike single-valued forecasts,
ensemble forecasts cannot be verified with deterministic measures, such as the
mean error or the root mean square error (RMSE). Rather, each ensemble member,
and thus each error, is associated with only a partial probability of occurrence. Many
of the techniques used to verify ensemble forecasts were pioneered in meteorology
(Wilks, 2006). For example, the Brier Score (BS; Brier, 1950) was developed to verify
probability forecasts of discrete weather events, such as tornados. The BS measures
the average squared difference between the forecast probability of an event and its
observed probability (which is 1 if the event occurred and O otherwise). With the
growth of probabilistic forecasting, ensemble verification is increasingly used in other
disciplines, such as hydrology (Bradley et al., 2004), oceanography (Park and Xu,
2009), ecology (Araudjo and New, 2007) and volcanology (Bonadonna et al., 2005).

The basic attributes of ensemble forecast quality are broadly applicable, since they
are concerned with probability distributions or measures on probability distributions.
However, the specific approach to verification will depend on the forecast variables
and their temporal and spatial scales, as well as the intended applications and users
of the forecasts (e.g. research versus operational forecasting). In order to support
ensemble verification for a wide range of applications in hydrology and beyond,
flexible and user-friendly software is required. This is illustrated with an example from
the National Weather Service (NWS). The River Forecast Centers (RFCs) of the
NWS produce ensemble forecasts of temperature, precipitation and streamflow at a
variety of lead times (Schaake et al., 2007; Demargne et al., 2007; Demargne et al.,

2009, Wu et al.,, 2010). In one experimental operation, ensemble traces of



precipitation and temperature are generated from single-valued forecasts using an
Ensemble Pre-Processor (EPP; Schaake et al., 2007, Wu et al., 2010). These traces
are input into the Ensemble Streamflow Prediction (ESP) subsystem of the NWS
River Forecast System (NWSRFS; NWS, 2005), from which ensemble traces of
streamflow are output. There is a need to verify these forecasts and to identify the
factors responsible for model error and skill in different situations. Verification is
required at multiple temporal and spatial scales, ranging from minutes and kilometers
(e.g. for flash flood guidance) to years and entire regions (e.g. for water resource
planning and national verification). Furthermore, there is a need to support both
operational forecasting within the RFCs and hydrologic research and development
within the NWS. In order to meet these needs, work on ensemble verification is
separated into two themes (see Demargne et al., 2009 for further details); 1)
verification and bias-correction of real-time ensemble forecasts, which should directly
improve decisions that rely on forecast probabilities (“real-time verification”;, see
Brown and Seo, 2010a); and 2) verification of archived operational forecasts and
hindcasts, which should indirectly improve decision making via enhanced technigues

for generating ensemble forecasts (“diagnostic verification”).

The Ensemble Verification System (EVS) is a flexible, user-friendly, software tool that
is designed to verify ensemble forecasts of continuous numeric variables, such as
temperature, precipitation and streamflow (Brown et al., 2010b). The EVS can be
applied to forecasts from any number of geographic locations (points or areas) and
issued with any frequency and lead time. It can also aggregate forecasts in time,
such as daily precipitation totals based on hourly forecasts, and can aggregate
verification statistics across several discrete locations. However, it does not support
the verification of uncertain spatial fields, such as gridded atmospheric pressure, or

uncertain spatial objects, such as storm cells.

A verification study with the EVS is separated into three stages (Brown et al., 2010Db),
namely: 1) Verification; 2) Aggregation; and 3) Output. In the Verification stage, one
or more Verification Units (VUs) are defined. Each VU comprises a set of forecasts
and verifying observations for one environmental variable at one geographic location.
The ensemble forecasts and observations are provided in an XML or ASCII format.
The Verification stage also requires one or more verification metrics to be selected.
The forecasts and observations are then paired by forecast lead time and the
verification metrics computed. The results are written to the Output dialog, where the

metrics can be plotted in an internal viewer or written to file in a variety of graphical



formats or in XML. The Aggregation stage allows for the averaging of verification

statistics across multiple VUs.

The verification metrics in the EVS comprise both deterministic metrics, which verify
the ensemble mean forecast, and probabilistic metrics, which verify the forecast
probabilities. The probabilistic metrics comprise distribution-oriented metrics, which
verify the joint probability distribution of the forecasts and observations (or its
factors), and measure-oriented statistics, which summarize the forecast quality in a
score. Their combination allow for specific attributes of forecast quality, such as
reliability and discrimination, to be examined in varying levels of detail. This is
important, as the EVS is intended for a wide range of applications and users,
including both scientific researchers and operational forecasters in the National
Weather Service (NWS). In addition to implementing standard measures of forecast
quality, the EVS provides a platform for testing new verification metrics.

The EVS is currently being used by operational forecasters at several of the NWS
RFCs. It is also used routinely to support scientific research and development within
the NWS (e.g. Demargne et al., 2007; Wu et al., 2010; Brown et al., 2010b). In future,
the EVS will be expanded to allow for the verification of both single-valued and
probabilistic forecasts issued by the RFCs. Such verification is needed to identify the
nature and sources of forecasting error, document forecast performance as a
function of changing practices, and to support targeted improvements in forecast
models and field data collection. These topics are being pursued by the NWS in
collaboration with Environment Canada, the European Center for Medium Range
Weather Forecasting (ECMWEF), the Verification Testbed of the Hydrologic Ensemble
Prediction Experiment (HEPEX), and with several universities. It is hoped that the
introduction of verification standards, supported by a common verification tool, will
allow for inter-comparisons of forecasting models and methods in different regions
and over extended periods of time, contributing to the better use of uncertain weather

and water forecasts, as outlined in NRC (2006).

The EVS is free to use, distribute, and modify, but is provided without technical

support.



2. INSTALLATION INSTRUCTIONS AND START-UP
2.1 Contents of the full distribution

Currently, the full distribution of the EVS can be downloaded from:

http://www.nws.noaa.gov/oh/evs.html

The full distribution comprises (** are required to run the EVS):

Iltem Description
EVS.jart* The main executable and associated libraries
EVS.bat Example Windows batch file and command to use more RAM

EVS_4.0_TEST_DATA.zip

An example dataset for running the EVS

[reporting

Contains a template to report bugs or suggest enhancements

/userdoc

A directory containing the user documentation

EVS_4.0_MANUAL.pdf

This manual

EVS_4.0_INSTALL_RELEASE.pdf

The installation and release notes

EVS_4.0_SOURCE.zip

A directory containing the Java source-code for the EVS

/javadoc

A directory containing “Javadoc” source code documentation

evs/resources/rscripts/

A series of scripts for generating custom verification plots in R

evs/resources/statsexplained/

Html guides to particular metrics available in the EVS.

2.2 Requirements

No formal installation of the EVS is required. However, in order to run the EVS you

will need:

1. The Java™ Runtime Environment (JRE) version 6.0 (1.6) or higher. You can
check your current version of Java by opening a command prompt and
typing java —version. If the command is not recognized, you do not have a
version of the JRE installed. If the installed version is older than 1.6, you
should update the JRE. The JRE is free software and may be downloaded

from the Sun website:


http://www.nws.noaa.gov/oh/evs.html

http://java.sun.com/javase/downloads/index.jsp

2. The EVS executable, EVS. jar, and associated resources in EVS 4.0.zip;
3. Microsoft Windows (98/2000/NT/XP/Vista/7) or Linux Operating System
(OS). In addition, you will need:

— A minimum of 256MB of Random-Access Memory (RAM) and ~50MB of
hard-disk space free (not including the associated datasets).

— For many applications of the EVS, involving verification of large datasets
more RAM and disk space will be required. A minimum of 1GB of RAM

and 2GB of disk space is recommended (see Section 2.7).
2.3 Unpacking and running the EVS
Once you have obtained the EVS software, unpack the zipped archive to any
directory of your computer (e.g. C:/Program Files/EVS 4.0/) using, for
example, WinZip™ on Windows or the unzip command in Linux/Unix:
unzip EVS 4.0.zip
There are two possible ways of running the EVS, namely: 1) by executing the
Graphical User Interface (GUI); and 2) by executing the EVS from the command line
with a pre-defined project file.
Executing the EVS with the GUI:
Once you have unpacked the software, you may run the EVS by double-clicking on
‘EVS.jar” in Windows or by opening a command prompt, navigating to the root

directory, and typing a java command that references the EVS jar file, such as:

java —-jar EVS.jar.


http://java.sun.com/javase/downloads/index.jsp

Executing the EVS without the GUI:

In order to execute the EVS without the GUI, you must have one or more pre-defined
EVS projects available. The EVS projects are specified in XML (see Appendix A2)
and may be created with or without the GUI. For example, a base project may be
created with the GUI and then altered manually or with a script outside of the GUI
(e.g. changing the input and output data sources). One or more EVS projects may be
invoked from a command prompt by typing a java command with the paths to the
project(s) listed afterwards, for example:

java —Jjar EVS.Jjar project 1l.evs

where project 1.evs is an EVS project (the project need not be located in the
root directory, but should be referenced by its full path otherwise). By default, the
graphical and numerical results are written to the output directories specified in the
projects.

2.4 Troubleshooting the installation

List of typical problems and actions:

“Nothing happens when executing EVS.jar”

Ensure that the Java Runtime Environment (JRE) is installed on your machine and is
in your PATH. The JRE should be version 6.0 (1.6) or higher. To check that a
suitable version of the JRE is installed and in your PATH, open a command prompt

and type:

java -version

If the command is not recognized, the JRE is not installed and in your PATH. If the

version is below 6.0 (1.6), update the JRE (see above).
If this does not help, check the root directory of your installation for a log file named

evs.log. Send the error message to the authors for advice on how to proceed

(James.D.Brown@noaa.gov).
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“An error message is thrown when executing EVS.jar”

If an error message is thrown by the JRE (i.e. a java error appears in the message),

the error may be caused by the local installation of Java.

2.5 Altering memory settings

By default, the amount of RAM memory available to the EVS is restricted by the Java
Virtual Machine. In order to perform ensemble verification with large datasets, it may
be necessary to change this default and increase the amount of memory available.
This is achieved by executing the EVS on the command line, whether invoking the
GUI or running a project without the GUI. To execute the GUI with altered memory

settings, navigate to the installation directory of the EVS, and type:

java —-Xmx1l000m -jar EVS.jar

where 1000 is the maximum amount of memory (in megabytes) allocated to the EVS
in this example. The maximum memory allocation should be significantly lower than
the total amount of RAM available on your machine, as other programs, including the
OS, will require memory to run. For example, on a 32-bit Windows OS with 4000
megabtyes of memory, around 1200 megabytes of memory will typically be available
for the EVS. The EVS will only start with an increased memory setting if the Java

Virtual Machine can actually allocate the desired amount of memory.

2.6 Source code and documentation

The Java source code for the EVS can be found in the src.zip archive in the root
directory of your installation. The Application Programming Interface (API) is

described in the html documentation, which accompanies the software (in the

/javadoc directory).

2.7 Computer resource considerations

The time required to execute an EVS project, as well as the amount of RAM and

hard-disk space required, will depend on a wide range of factors, including:
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The number of forecast locations;

The number of paired forecasts and observations for each location, which itself
depends on the forecast frequency, the forecast horizon or number of “lead
times”, the number of ensemble members etc;

The verification metrics required and the number of thresholds at which they are
computed;

Whether the forecasts and observations are already paired (quicker) or need to
be paired and written to an associated paired file (slower);

When performing conditional verification (i.e. with a subset of the overall pairs),
whether those pairs should also be written to file (slower, and the default) or not
written (quicker);

When aggregating verification results across several locations, whether the
verification metrics should be computed by averaging the values of the
verification metrics at the individual locations (quicker, and the default) or by
pooling the pairs and then computing the metrics for the pooled pairs (much
slower);

The requirements for computing confidence intervals via bootstrap resampling,
including the number and types of metrics for which confidence intervals are
required and the number of samples requested. When several processors/cores
are directly available to the EVS, the bootstrap samples will be distributed across
the available processors/cores (the bootstrap algorithm is multi-threaded); and
Whether the EVS is executed from the command line or via the GUI (in terms of
RAM consumed). When executing from the command line, each VU and AU is
executed sequentially and the numerical and/or graphical outputs are written
sequentially. When executing from the GUI, all of the verification results (not the
verification pairs, unless pooling pairs with aggregation) are stored in memory,
until a decision is made about what outputs to generate.

The computer resources available.

All floating point numbers stored and manipulated by the EVS are double-precision

(64-bit) numbers. Thus, a single observed or forecast (ensemble member) value will

consume 8 bytes of RAM. The EVS requires more RAM than implied by the data, as

some duplication of data is necessary, and the EVS itself has an overhead of ~15

megabytes. In the absence of sufficient memory to complete a calculation, an

OutOfMemoryError will be thrown. To save disk space, the default maximum

precision for writing floating point numbers (the forecasts and observations) to the

12



EVS paired file is five decimal places, with fewer decimal places written as required.
The maximum precision may be controlled via the GUI (see Section 4) or directly via
the <paired write precision> tag within the EVS project file (see Appendix

A2, but note that calculations are always performed in double-precision).
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3. OVERVIEW OF FUNCTIONALITY

3.1 Summary of functionality in the EVS Version 4.0

A complete list of the enhancements, changes in default behavior, and bug fixes

between successive versions of the EVS can be found in the release notes that

accompany this distribution (EVS 4.0 RELEASE NOTES.pdf).

The functionality currently supported by the EVS includes:

e Pairing of observed and ensemble forecast values, which may be provided in a

variety of file formats, to perform verification for a given forecast point or area.

The observed and forecast values may be in different time systems or at different

temporal scales, the times and scales being defined by the user;

e Computation of multiple verification metrics for arbitrary numeric forecast

variables (e.g. precipitation, temperature, streamflow, river stage) at a single

forecast point or area. The verification metrics are computed for each of the

forecast lead times available. The available metrics include:

- For verification of the ensemble average forecast (mean, median, mode):

the correlation coefficient;

the mean error,

the root mean square error;

the mean absolute error; and

the relative mean error (the mean error as a fraction of the mean

observation).

- For verification of the ensemble-derived forecast probabilities:

the Brier Score, including its calibration-refinement factors (“reliability”,
‘resolution” and “uncertainty”) and likelihood-base-rate factors (“Type-
Il conditional bias”, “discrimination” and “sharpness”);

the Brier Skill Score and its calibration-refinement and likelihood-base-
rate factors;

the Continuous Ranked Probability Score and its calibration-
refinement factors;

the Continuous Ranked Probability Skill Score and its calibration-

refinement factors;

14



» the Relative Operating Characteristic, including the fitting of a smooth
curve (bivariate normal model);

» the Relative Operating Characteristic Score, including the integration
of a fitted curve (bivariate normal model);

= the reliability diagram; and

= several newly-developed metrics (see Section 6.2).

Conditional verification. Two forms of conditional verification are supported by the
EVS, namely 1) the identification of logical “pre-conditions” to sub-select pairs;
and 2) verification with respect to thresholds (for metrics that verify discrete
events, such as flooding, these thresholds are necessary, as they define the
events). The pre-conditions include: 1) a restricted set of dates (e.g. months,
days, weeks, hours of the day, or some combination of these); 2) a restricted set
of observed or forecast values (e.g. ensemble mean exceeding some threshold,
maximum observed values within a 90 day window, forecast probability of
exceeding some threshold greater than 0.95, observed values of another variable
not exceeding some threshold). When verifying the remaining pairs against
particular thresholds, the thresholds may be defined with respect to the
climatological probability distribution (based on a specified sample of observed

data), such as the g5" percentile flow, or in real values, such as flood stage;

Aggregation of verification results across a group of forecast locations, either by
averaging the verification metrics from the individual locations (possibly weighed)
or by pooling the pairs and computing the verification metrics for the pooled pairs.
When aggregating in space, the individual locations must have common

properties (e.g. common variables, units and scales); and

Generation of graphical and numerical products, which may be written to file in
various formats (e.g. png, jpeg, svg files) or plotted within EVS. In addition,
several R scripts are provided in the /resources/rscripts directory for
importing and plotting data in the R statistical environment (R Development Core
Team, 2008).

The ability to compute verification results for each of m bootstrap re-samples of
the (possibly conditional) verification pairs and to generate associated measures
of sampling uncertainty, such as one or more confidence intervals (of which one

can be displayed for each metric). The bootstrap resampling procedure can

15



account for space-time dependence in the verification pairs across multiple lead
times and locations and the computational load is distributed across the available

processors/cores.

3.2 Planned functionality

The additional functionalities planned for future versions of the EVS includes, in no

particular order:

e The addition of options for combining several metrics into one plot and for
increasing the flexibility of plotting more generally;

e Functionality for verifying joint distributions; that is, the statistical dependencies in
space and time, as well as the marginal distributions (e.qg. to verify the reliability of

the correlations associated with forecast values across several lead times);

e The ability to compute forecast skill for several reference forecasts at once, such
as climatology, persistence or raw model output (e.g. before data assimilation or
manual adjustment). Currently, only one reference forecast may be defined for

each combination of forecast point and skill score;

e The development of a batch language to support generation of verification
products without running the GUI. For example, it should be possible to create a
template point and apply this to a wider group of forecast points, changing only

the observed and forecast data sources via a batch processor; and

e The ability to separate errors in hydrologic forecasts into phase (timing) and

amplitude errors.
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4. GETTING STARTED

As indicated above, there are two possible ways to use the EVS, namely: 1) with the
Graphical User Interface (GUI); and 2) from the command line with a pre-defined
project. The GUI provides a structured interface for defining an ensemble verification
study and is considered in some detail below. Once familiar with the software, or
when conducting verification at a large number of forecast points, execution via the

command line, with a pre-defined project, may be preferred.

4.1 Structure of the GUI

A verification study with the EVS is separated into three stages:

1. Verification: identification of one or more Verification Units (VUSs), pairing of
forecasts and observations, and computation of verification metrics. Each VU
comprises a set of forecasts and verifying observations for one environmental
variable at one geographic location, together with a list of verification metrics to

be computed,;

2. Aggregation: identification of one or more Aggregation Units (AUs). Each
aggregation unit comprises two or more VUs and is used to measure the

average performance across these VUs. This is an optional stage;

3. Output: production of graphical and numerical outputs of the verification

statistics for one or more previously defined VUs and AUs.

These stages are separated into “tabbed panes” in the GUI, which also contains a
taskbar for administrative operations, such as creating, opening, and saving projects
(Fig. 1). Initially, a verification study may involve linearly navigating through these
tabbed panes until one or more VUs and AUs have been defined, the verification
statistics generated, and the results written to file. However, once a VU has been
defined and saved, the point of entry into the software may vary. For example, an
existing project may be modified, a new AU identified from a set of pre-existing VUSs,
or new graphical outputs generated. Project files, which are written in an XML format
(see Section 4.4 for the file data formats), can be created or edited manually and

then executed from a command prompt (e.g. Microsoft DOS, Cygwin, Linux) rather

17



than from the GUI, thereby allowing simple batch processing of VUs and AUs
through shell scripting.

Each tabbed pane within the GUI comprises one or more panels, which correspond
to intermediate steps within the verification stage, such as the specification of data
sources (one panel in Stage 1) and the selection of verification statistics to compute
(another panel in Stage 1). At each stage, “basic options”, such as the identification
of observed and forecast data, are separated from more “advanced options”, such as
the selection of specific months over which to verify the forecasts. The latter are
accessible via pop-up dialogs.

4.2 Stage 1: Verification

The first stage of a verification study in the EVS involves the identification of a VU,
followed by the selection and computation of verification metrics (Fig. 1). The basic

attributes of a VU are:

- a unique identifier, which is built from a ‘location identifier’, an ‘environmental
variable identifier’ and, optionally, an ‘additional identifier’, which can be used to
distinguish between forecasts from several modeling systems, among other
things;

- the paths to the observed and forecast data;

- the file formats in which the forecasts and observations are stored (Section 4.4)

- the time systems in which the forecasts and observations are stored (e.g. UTC);

- the temporal and spatial ‘support’ of the forecasts and observations (i.e. space-
time scale) and their associated measurement units;

- the period for which verification statistics should be computed,;

- the forecast lead times for which verification statistics should be computed; and

- the location where verification outputs should be written.
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Fig. 1: The opening panel in the “Verification” stage
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In addition to the basic attributes of a VU, several refinements are possible. For
example, the verification period may be refined to include only winter months or
specific days of the week. Similarly, the analysis may be restricted to a subset of the
observed and forecast values, such as temperature forecasts whose ensemble mean
is below freezing. Collectively, these “pre-conditions” lead to some of the pairs being
ignored when computing the verification results. Another common requirement is to
verify the forecasts at aggregated temporal scales. For example, six-hourly
precipitation totals may be aggregated to daily totals before conducting verification.
Temporal aggregation is achieved by applying an aggregation function (e.g. the sum)
to each ensemble trace within the period of aggregation, and then collating the traces
into an aggregated ensemble forecast. This ensures that any statistical
dependencies between forecast lead times are preserved in the aggregated traces.

Temporal disaggregation is not supported by the EVS.
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Fig. 2: The second panel in the “Verification” stage
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Once a VU has been defined, one or more verification metrics are selected from a
tabular display for calculation (Fig. 2). The metrics are grouped into ‘deterministic
metrics’, which evaluate the quality of the ensemble average forecast (e.g. mean,
median or mode), ‘probabilistic metrics’, which measure errors in the forecast
probabilities, and ‘skill scores’, which measure the relative performance of two
forecasting systems in terms of a given, probabilistic, metric. When selecting a
particular metric (Fig. 2), a description of that metric, including links to further reading
(online and offline), appear in the adjacent dialog (Fig. 2). Many of the probabilistic
metrics are formulated for discrete events, such as the occurrence of precipitation or
flooding, rather than the forecast probability distribution as a whole, which comprises
an infinite number of possible events. Here, the forecast events are verified after
applying any pre-conditions to remove pairs (see above). Thus, in designing a
verification study, the identification of discrete events should be considered jointly
with the specification of any pre-conditions to remove pairs (e.g. selecting particular

months or verification pairs whose observation exceeds a threshold).
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The metrics may be computed for several discrete events (conditions), for which the
event thresholds and associated logical conditions must be defined (e.g. <, >). The
event thresholds may be given in real units, such as flow in m® s?, or in observed
climatological probabilities. Real units are useful when an event threshold is
physically meaningful, such as exceedence of a flood threshold. Climatological
probabilities are useful when the aim is to verify the full range of forecast conditions
or when the verification results will be averaged across several locations with
different observed climatologies. However, the climatological probabilities are
computed from a limited sample of observations and are, therefore, subject to
sampling uncertainty. For convenience, the option to verify against thresholds is also
provided for the deterministic metrics and for those probabilistic metrics that do not
require discrete events. While these metrics depend continuously on the data, they
may be computed for subsets of the overall dataset (selected by thresholds) in order
to evaluate the ensemble forecast quality in a conditional sense. The thresholds may
be input manually or generated semi-automatically using a combination of: 1) the
number of thresholds; 2) the first threshold; and 3) a constant increment between
thresholds, which may be positive (increasing from the first threshold) or negative
(decreasing). Optionally, the thresholds identified for one metric can be applied to all
other metrics for the selected VU (the “Do all” button in Fig. 2). The thresholds may
be identified as “main” thresholds or “auxiliary” thresholds. Currently, this distinction
affects plotting only; the verification results for “main” thresholds are plotted within the
EVS and the results for both “main” and “auxiliary” thresholds are written to file,
allowing more complex plots to be generated outside of the EVS (e.g. plots of

verification scores as a “continuous” function of threshold value).

Depending on the chosen verification metric, other parameters may be modified (see
Section 5.3 also). For example, the reliability of the forecast probabilities may be
computed by grouping the forecast probabilities into smaller bins (with finer
resolution, but fewer samples per bin) or larger bins (coarser resolution, but more

samples per bin).

On executing a VU for the first time, the forecasts and observations are paired
together by forecast valid time and lead time. Verification is conducted separately for
each forecast lead time, as forecasting errors depend strongly on lead time. The
paired data are then written to file (Section 4.4), both to enable quality control and to
improve the speed of execution when modifying and re-running VUs. Since all of the

outputs from the EVS are based on the paired data, they should be checked to
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ensure that the forecasts and observations were read and interpreted correctly (e.qg.

that the time systems were correctly specified).

4.3 Stage 2: Aggregation

In order to evaluate the aggregate performance of a forecasting system across a
range of forecast locations, two or more VUs may be aggregated. This is conducted
in the Aggregation panel of the EVS, where an Aggregation Unit (AU) is defined (Fig.
3). The potential AUs are determined automatically by the GUI upon adding or editing
VUs. A potential AU is added to the Aggregation panel for each set of VUs that are
completely defined and comparable. Two VUs are comparable if they share forecast
variables with common temporal support (after temporal aggregation), common

measurement units, and verification statistics with common parameter values.

Fig. 3: The only panel in the “Aggregation” stage
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By default, the verification results for an AU comprise a weighed average of the
verification results from the component VUs. Optionally (under the advanced options

accessed via the “More” button in Fig. 3), the verification metrics may be derived by
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pooled the pairs from several locations, rather than averaging the verification results
(this is rarely feasible for large datasets). Once a potential AU has been determined
in the GUI, four attributes are user-defined (Fig. 3): 1) a unique identifier for the AU;
2) the component VUs, which are selected from a list of candidates; 3) the weight
associated with each VU in the aggregation (which is ignored when pooling pairs);
and 4) the output directory for the aggregated statistics. On executing an AU, the
verification metrics from the component VUs are collated and their weighed averages
determined. For verification metrics that comprise binned statistics (e.g. the reliability
diagram; see below), the sample means are computed for each bin in turn. For
verification statistics that are conditional upon one or more event thresholds, the
statistics are averaged across the same thresholds at each location. In order to have
a meaningful spatial aggregation, the threshold must have a consistent physical
interpretation in space and time, such as the exceedence of a local flood threshold
rather than a fixed river stage. The weights assigned to each VU must be within [0,1]
and the sum of all weights must be equal to 1. By default, equal weights are assigned
to each VU, but unequal weights may be input manually or the character ‘S’ specified
to weigh by the relative sample size at the first forecast lead time (maintaining

constant weights across lead times).

4.4 Stage 3: Output

The Output panel of the EVS stores the verification results for each of the VUs and
AUs in the current project. The results are organized by the unique identifier of the
VU or AU, the name of the verification metric, and by forecast lead time (Fig. 4). The
VUs and AUs available for plotting are shown in the top left table and are colored
blue and red, respectively (Fig. 4). On selecting a particular VU or AU, a list of
metrics with available results appears in the right-hand table. On selecting a
particular metric, the bottom left table displays a list of lead times (in hours) for which
the metric results are available. The basic options for plotting and writing metrics are
shown in the bottom-right dialog. Options are provided on the tables for selecting
particular combinations of metric and lead time. The options are provided in menus,
which are displayed by right-clicking on one of the tables. For example, by right-
clicking on the table of metrics (top right in Fig. 4), an option appears for selecting all
metrics and lead times. The metrics can be plotted in an internal graphing tool, which
includes basic functionality for animating metrics across a sequence of lead times, or

written to file in a variety of graphical formats (Section 4.4). Also, the underlying
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statistics can be written to file in an XML format and viewed in a text editor or web

browser.

Fig. 4: The only panel in the “Output” stage
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4.5 File data formats supported by the EVS

The file data formats supported by the EVS are summarized in Table 1. Further
details can be found in Appendix A2. They are separated into: 1) input data,
comprising the ensemble forecasts and verifying observations for each VU; 2) paired
data, comprising the paired forecasts and observations for a specific VU; 3) output
data, comprising the verification statistics for a particular VU or AU in a graphical or
numerical format; and 4) a project file, containing the parameter values of one or

more VUs and AUSs.

As indicated above, a VU is defined for each forecast variable and location. The input
data for a single VU comprises the ensemble forecasts, which may be provided in
one or multiple files, and the single-valued observations, which are provided in a
single file.
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Table 1: main file formats supported by the EVS

Data store Format Extension | Description
Project data XML evs Stores VUs and AUs and their parameters
Paired data XML xml Stores paired forecasts and observations
ASCII fest Stores ensemble forecasts
ASCII obs Stores observed data
Input data
XML xml Stores observed data (PI-XML format)
XML xml Stores forecast data (PI-XML format)
JPEG iPg Plots of verification metrics in raster format
Graphical output PNG png Plots of verification metrics in raster format
SVG svg Plots of verification metrics in vector format
Numerical output XML xml Numerical output of verification metrics

The forecasts and observations can be provided in XML or ASCII formats. Various
internal formats are used by the NWS for storing and exchanging ensemble forecasts
and observations. These can also be read by the EVS, but are not described here.
The ASCII format for storing the ensemble forecasts comprises one forecast per line
(Fig. 5a shows sixteen forecasts). Each forecast requires the forecast valid date and
time, the forecast lead time, and the forecast ensemble members in trace-order (this
is important to preserve any temporal statistical dependencies when aggregating
forecasts in time). The default format for dates and times is mm/dd/yyyy hh, but other
formats can be defined manually (see Section 5.2). The forecast lead times are
always given in hours. Adjacent entries are separated by whitespace or a comma.
The ASCII format for storing the single-valued observations also comprises one
instance per line, and includes the date and time of the observation, together with the
observed value (Fig. 5b). Again, adjacent entries can be separated by whitespace or
a comma. The XML format for storing the observed and forecast data (as opposed to
paired data: see below) follows the Published-Interface (PI-) XML format used in the
Flood Early Warning System (FEWS). The XML format is described in detail here:

http://public.deltares.nl/display/FEWSDOC/The+Delft-Fews+Published+interface+(PI)

Several NWS formats are also supported by the EVS, including the “NWS Card
format” and the “NWS CS binary” format. The NWS Card format is described here:
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http://www.nws.noaa.gov/ohd/hrl/nwsrfs/users manual/part7/ pdf/72datacard.pdf

Fig. 5: The ASCII format for ensemble forecasts (upper) and observations (lower)

i/1/2000 12 1z.0 0.0 0.0 0.0 O.0 0.0 O.0 0.0 0.0 0.0 0.0 0.0

1/2/z0 0 z4.0 0.0 0.0040 0.028 O0.02 0.016 0.0080 0.024 0.028 0.024 0.031 0.024
1/ 2 ~, 0.0 0.047 0.024 0.035 0.031 0.031 0.016 0.028 0.043 0.063

. .0 0.0080 0.0040 0.0040 0.0080 0.0080 0.0 0.012 0.0040 0.02
1,4 Forecastvalid date .0 0.0 0.0040 0.0080 0.0040 0.0 0.0 0.0 0.0 0.0
171 andfime (UTC). E.ano 0.01z 0.0 0.051 o4 ™0 0.058 0.012
1/ 4, .0 D0.0080 0.0 0.02 0.02 Ensemble member & 0.0
1/5/2000 O 96.0 0.05 0.0 0.00&0 0.0 0.24 0. valuas. S 0.0
1/5/z000 1z 108.0 0.0 0.0 0.0080 0.0 0.055 0.0 0.09¢ 0.0
1/6/2000 0O 1z0.d 0.0 ™ 0.031 0.0080 0.0040 0.012 0.063 0.02 0.02
1/6/z000 1z 132.0 O Forecast lead time 0.02z& 0.0080 0.028 0.031 0.031 0.0 0.02
1/7/2000 0 144.0 (hours) 0z 0.024 0.039 0.0Z 0.043 0.0040 0.024
1/7/2000 12 156.0 0.k z4 0.035 0.055 0.012 0.0040 0.028 0.028

1/8/2000 0O 168.0 0.0 0.02 0.012 0.01s 0O.016 0.043 0.051 0.0 0.059 0.031 0.059
i/8/2000 12 180.0 0.0 0.0 0.0 0.02Z 0.0080 0O.012 0.012 0.0 0.083 0.028 0.063
i/8/2000 0O 192.0 0.0 0.0 0.0 0.016 oO.016 0.0 O0.0080 0.0 0.03% 0.0 O.016

1/1/z000 12 0.0

1/2/20 o 0.0

1/ 2 . Y
v Forecast valid date

and time (UTC).

1/
1/ 5,
1/5/2000 0 0.05

1/5/2000 12 0.0

1/6/2000 0O 0.0

1/6/2000 1z 0.0 Observed
1/7/2000 0 0.0 values.
1/7/2000 12 0.0

i/8/2000 0 0.0

1/8/2000 12z 0.0

1/9/z000 0 0.0

Once a VU has been executed in the EVS, the forecasts and observations are written
to a paired file in an XML format. The paired file stores each ensemble forecast
together with its verifying observation. Each pair contains the date and time in
Coordinated Universal Time (UTC), the forecast lead time, the observed value and
the ensemble members, in trace-order, separated by commas (Fig. 6). The pairs are
organized by forecast valid time, from the earliest forecast to the latest, and by
forecast lead time, from the shortest lead time to the longest. The decimal precision

with which to write pairs can be controlled (see Section 5.2).
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Fig. 6: The paired file format

<!--

- <pairs= % Total pairs in file. )
<pair_count>448 </pair_count:
- <prs Explanation of file
- «dt> contents.
<y>1980</y>

<m>=1l</m> -
«d>1</d> ===} [Date and time (UTC). ]
<h>18.0</h>
</dt= ~
<ld_h=6.0</1d_h= Lead time (hours).
<ob>0.0</ob>
<fc .»9/]768, 5.776, 4.01, 6.331, -9.657, -9.458, 1.036, -0.9, 4.846, 1.075, -2.918, 4.4, 0.438, -7.681, 1.788, -4.665,
38, 0.784, 1.903, 1.903, 1.903, 1.903, 1.903, 1.903, 1.903, 1.903, 1.903, 1.903, 1.903, 1.903, 1.903,
,1.003, 1.903, 1.903, 1.903, 1.003, 1.903, 1.903, 1.903, 1.903, 1.903, 1.903 </fc>
</in_h>

Observed
1 wvalue.

<P<dt\, J Ensemble
<y>1980</y> ﬁ Second mermbers.
<m>=>1</m> pair.
<d>2</d>
<h>0.0</h>
</dt>

<ld_h>12.0</Id_h=
<ob=0.0</cb>
<fc>5.944, 8.705, 8.689, 11.596, -4.421, -5.36, 4.965, 2.633, 8.159, 4.382, 0.213, 8.413, 4.487, -4.377, 7.068,
0.193, -1.029, 4.304, 5.552, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83,
4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83, 4.83</fc>
<in_h=87672.0</in_h>
</pr>

The output files from the EVS comprise the verification statistics for a specific VU or
AU in one of several graphical formats, and corresponding numerical results in an
XML format (see Appendix A2). The supported graphical formats include two raster
formats: the Portable Network Graphic (PNG) format (a lossless format) and the Joint
Photographic Experts Group (JPEG) format (a lossy format). The Scalable Vector
Graphics (SVG) format is also supported by the EVS, as this allows for verification
plots to be rescaled without loss of quality. Scripts are also available to import and
plot the numerical results in R (R Development Core Team, 2008), where many more
output formats and plotting options are available. Example scripts are provided in the

evs\resources\rscripts directory of the installation.

Finally, the parameters of each VU and AU are saved in a project file in an XML
format. The project files are ordinarily written by the EVS, but may be produced or
edited outside of the EVS (e.g. with a script, to enable batch processing). The XML is
organized by VU and AU, with entries for each input required in the GUI (Fig. 7).
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Fig. 7: The project file format

=2zml varsion="1.0" standalona="yas" 7=

e ‘/:
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- <idantifiers=
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cervironmentz|_wvariable_id=MAT </ errviranmental_variable_id=
<additional_id /=
<fidentifierss
- «input_data=
- cfarecast_data_location=
=file=S: Y OHD- 1\ HEP\ Ens_\JW\ CHPS-
XEFS_Tests\Exported_ensemble_files\ Exported_forcing}198001011200_NFDC1_ESPForcng_Clim XML</file=
<file=SNOHD- L\HEP\ENS_VVY\CHPS-
XEFS_Tests\Exported_ensemble_files\ Exported_forcingy, 198001021 200_NFDCI1_ESPForcing_Clim. XML </ filz=
<fle>S:YOHD-1\HEP\Ens_WV\CHPS-
XEFS_Tests\Exported_ensemble_files\Exported_forcingy 193001021200 _NFDC1_ESPForcing_Clim. XML/ fila>
=file~5:YOHD-1\HEP\Ens_VV\CHPS-
XEFS_ Tests\Exported ensemble_files\ Exported forcingy 193001041200 NFDC1_ ESPForcing Clim.XML</file=
=fAles5:YOHD- 1\HEP\Ens_\W\CHPS-
XEFS_Tests\Exported_ensemble_filas\Exported_torcingy 198001051 200_NFDC1_ESPForcing_Clim XML/ fle=
<fle=SYOHD-1\HEP\Ens_VWVY\CHPS-
XEFS_Tests\Exported_ensemble_files\ Exported_forcing} 198001061 200_NFDC1_ESPForcing_Clim. XML </ flz
<fle>S:YOHD-1\HEP\ENs_VWVY\CHPS-
XEFS_Tests\Exported_ensemble_files\ Exported_forcingy 198001071200 _NFDC1_ESPForcing_Clim. XML/ fila>
=file>%:YOHD- L\HEP\Ens_VV\CHPS-
XEFS_ Testsh\Exported ensemble files\Exported forcingy 198001081200 NFDC1 ESPForcing Clim.XML</file>
</torecast_data_|ocabons

cobserved_data_location>F:ANOAA_work\NOAA_DYHEP_projects’ Ensemble_verification\ Test_data \NFDC1_EPP_
Wnfdoclhlf MAPDGE. OBS ZT.101960-092003 «/abzerved_data_locations

<farscast_time_system=Coordinated Universal Time (UTC)</forecast_time_system >

<nbserved_time_system »~Coordinated Universal Time (UTC)</observed_time_system:

<forecast_support =
<STANSHC »INSTANTANEQUS </ Staristic =

<existing_atoribute_units =DEGREE (FAHRENHEIT) </ existing_atrribute_unitss

<notaes /= -~ Some ofthe
<fforacast_supports parametars of the
anbaerved_supports first %I

<statsic > INSTANTANEOQUS </ stanstic =
<ewisting_attribute_units =DEGREE (CELSIUS) </existing_attibuta_units:
<rarget_atrribure_units >-DEGREE (FAHRENHEIT) </ targat_atmibuta_units>
<notes /=
<fobserved_supports
<use_all_observations_for_climatology >false</use_all_observations_for_climatology =
<finput_data>
<verification_window =

4.6 Command line options

Alongside the Java command line options (e.g. for allocating memory), the EVS
provides several command line options for running an existing project file, together
with utilities for converting between input data formats, which are summarized in
Table 2.

Table 2: command line options in the EVS

Option Example Description

-p -p in.xml out.asc Converts a paired file, in.xml, to ASCII, out.asc
-aggOnly -aggOnly Executes the aggregation units only

-g -g Suppress the writing of graphics

-n -n Suppress the writing of numerics
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. Convert an NWS Card forecast file, in.fsct, to
-fcardtoasc -fcardtoasc in.fsct out.fcst
ASCII, out.fcst
. Convert an NWS Card observed file, in.obs, to
-ocard2asc -ocardtoasc in.obs out.obs
ASCII, out.obs
-bin2asc -obintoasc in.CS out fost Convert an NWS CS binary forecast file, in.CS, to
ASCII, out.fcst

4.7 Creating custom plots of the EVS outputs in R

The numerical outputs from the EVS can be read into the R environment for

statistical computing (www.R-project.org). A utilities script is provided in the

/evs/resources/rscripts directory at the root of the installation. There are
three methods for reading the different EVS outputs, namely readEVSScores,
which reads the deterministic measures (e.g. mean error of the ensemble mean) and
probabilistic verification scores (e.g. Brier score), readEVSDiagrams, which reads
the verification diagrams (e.g. reliability diagram) and readEvSBoxPlots, which
reads the EVS box plots. In addition to the utilities script, example scripts are
provided in /evs/resources/rscripts/example scripts for plotting specific
(sets of) EVS metrics in R, including the plotting of sampling uncertainties (via

confidence intervals).
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5. A DETAILED GUIDE TO THE OPTIONS IN EACH WINDOW OF THE GUI

This section provides a guide to the options available in each window of the GUI.

5.1 Administrative functions in the main window

The opening window of the GUI, together with the Taskbar, is shown in Fig 1. The
opening window displays the verification units loaded into the software. The Taskbar
is visible throughout the operation of the GUI and is used for administrative tasks,
such as creating, opening, closing and saving a project. The Taskbar options are
explained in table 3. Shortcuts are provided on the Taskbar for some common

operations, but all operations are otherwise accessible through the dropdown lists.

Table 3: Menu items

Menu Function Use
New project Creates a new project
Open project Opens a project file (*.evs)
Close project Closes a project

File
Save project Updates or creates a project file (*.evs)
Save project as Updates or creates a named project file (*.evs)
Exit Exits EVS
Messages on/off Displays/hides tool tips

Help | Console Shows the details of errors thrown
About Credits

All work within the EVS can be saved to a project file with the .evs extension. A new
project is created with the New project option under the File dialog. An existing
project is saved using the Save or Save As... options. These options are also
available on the Taskbar. Project files are stored in an XML format and may be

opened in a web browser or text editor. An example is given in Fig. 7.

5.2 The first window in the Verification stage

The first stage of an ensemble verification study requires one or more Verification
Units (VUSs) to be defined (Fig. 1). In this context, a VU comprises a time-series of a
single variable at one location. The spatial scale or support of the variable is not

identified in the EVS, but is assumed to be consistent for the observed and forecast
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data. For example, observations from a rain gauge should not, in general, be
compared with precipitation forecasts averaged over a large grid cell. The actual
spatial support may be arbitrarily small or large, but should be comparable for the
forecasts and observations. A VU is uniquely identified by a location ID and a
variable ID. These IDs must be entered in the first window, and are then displayed in
the table and identifiers panel. A new VU may be added to the current project by
clicking “Add” in the bottom left corner of the window (Fig 1.). This adds a VU with
some default values for the identifiers. On entering multiple VUs, the basic properties
of the selected VU (i.e. the item highlighted in the table) will be shown in the panels
on the right. Existing units may be deleted or copied by selecting an existing unit in
the table and clicking “delete” or “copy”, respectively. On copying a unit, all of the
properties of the unit are copied except the identifiers, which must be unique. This
provides a convenient way to specify multiple units with the same verification
properties (multiple segments to be verified for the same variable with the same

temporal parameters).

The VU is defined by four different dialogs: Identifiers, Input data, Verification

window, and Output data.

Identifiers dialog:

- Location ID: an identifier denoting the location of the forecast point;

- Environmental variable identifier: an identifier denoting the environmental

variable to be verified,;
- Additional identifier: arbitrary additional ID. For example, this may be used to

distinguish between forecasts from different models for a common variable

and location.

The names of the location and environmental variable are unrestricted (aside from a

blank name or a name containing the character ‘.’, which is used to separate the

identifiers). Several default names for environmental variables are provided by right-
clicking on the variable identifier box (Fig. 1).

Input data dialog:

- Files or folder containing forecast data: path to the folder containing the

ensemble forecast files (and no other file types), or a file array chosen
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through the associated file dialog. If possible, when the ensemble
forecasts are distributed across multiple files, only those files that
contain relevant forecasts should be selected, as all files must be
processed before being checked against verification conditions (e.g. if
the files are separated by date, and a limited set of dates is subsequently
defined);

- File containing observed data: path to concurrent observations of the forecast

variable, which are used to verify the forecasts;

- File type: The file types for the ensemble forecasts and observations;

- Time zones: the time zones for the forecasts and observations. The time
zones are required for pairing (on the basis of date and time);

The paths to the observed and forecast data may be entered manually or by clicking
on the adjacent button, which opens a file dialog.

When conducting verification for the first time, the observations and forecasts are
paired. These pairs are used to compute the differences between the observed and
forecast values (i.e. the forecast ‘errors’) at concurrent times, i.e. the valid times. For
subsequent work with the same VU, no pairing is necessary unless some of the input
parameters that affect the pairs have changed (at which point, the pairs are deleted).
The paired data are stored in an XML format, which may be opened in a web
browser or text editor. Each forecast-observation pair is stored with a date in UTC
(year, month, day, and hour of day), the forecast lead time in hours, the observed
value, and the corresponding forecast ensemble members. A detailed explanation is
also provided in the paired file header. An example of a paired file is given in Fig. 6.
One paired file is always written by the EVS, namely a file containing the “raw pairs”
(with extension pairs raw.xml), and one file is written optionally, namely a file
containing the “conditional pairs” (with extension pairs cond.xml). The raw
pairs comprise the paired forecasts and observations after any required change of
support but before any changes in measurement units, temporal aggregation (of the
pairs), or any other conditioning. The values should match those contained in the
original observed and forecast files (after any change of support). The conditional
pairs comprise the paired forecasts and observations from which the verification
metrics will be computed. By default, the conditional pairs are also written to file, but
this may be time-consuming (especially if few or no conditions were defined), and

can be switched off (see the Output data options below).
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In the EVS GUI, basic verification options are separated from more ‘advanced’
options, which are accessible through pop-up windows. For example, the “More”
button within the Input data dialog opens a window for entering information about the
scales at which the forecasts and observations are defined, among other things (Fig.
8a and Fig 8b). Scale information includes the units of measurement (e.g. cubic
feet/second) and temporal support at which the forecasts and observations are
recorded (e.g. instantaneous vs. time-averaged). The forecasts and observations
must be defined at equivalent temporal (and spatial) scales for a meaningful
comparison between them. In the absence of user-defined information on the
temporal scales, a warning message will be presented on conducting verification.
This warning message is avoided if the temporal scale information is entered
explicitly.

Fig. 8a: The Additional options dialog, accessed from the input data dialog

Additional options X |
Forecast scale , Observed scale Other options
Enter scale information for the forecasts
Variable | Value
Temporal statistic INSTANTANEOUS
Period of aggregation NOT REQUIRED
Temporal units MOT REQUIRED
Aftribute units FEET CUBEDVSECOMD
Target atfribute units (optional unit conversion) METRE CUBED/SECOND
Multiplier for target units (for conversions not in library)
MNotes
| Reset | Cancel e |

In most cases, changes of scale should be conducted before using the EVS, but
some options are provided internally. In particular, the measurement or “attribute”

units of the forecasts or observations may be changed with some restrictions:
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¢ Changes in attribute units are achieved by either: 1) specifying a named change
from the current “Attribute units” to the “Target attribute units”
(Fig. 8a); or 2) specifying a factor by which to multiply the current “Attribute
units”, in order to arrive at the “Target attribute units”. Named changes

of units (without specifying a multiplier) are currently limited to:

"= DEGREES (CELCIUS) <--> DEGREES (FAHRENHEIT);
= MILLIMETRE <--> INCH

= METRE <--> FEET

= METRE CUBED/SECOND <--> FEET CUBED/SECOND

In addition to changes in attribute units, there is some flexibility for verifying forecasts
and observations with different temporal support when the verification is desired at
an aggregated level of support (see the discussion below on temporal aggregation,
and Fig. 9¢). This is only possible under the following conditions:

1. The temporal support is INSTANTANEOUS, and the desired temporal aggregation
involves a supported function (e.g. mean) over a period that is exactly divisible by
the frequency of the data;

2. The temporal support is the TOTAL over a specified period and the desired level
of aggregation is a total over a longer period that is an exact multiple of the
shorter period and the frequency of the data (e.g. verifying at a daily timestep

when the observations are six-hourly totals, available every six hours).

The “Other options” tab of the “Additional options” dialog (Fig. 8b) contains further

options for interpreting the input data, namely:

— Global no-data value: the global identifier for ‘null’ or missing values (i.e.

values ignored throughout a verification study including metric calculation; by
default, the null value is -999.000);

— Omit no-data values from paired file: the omission of null values from the

paired files (default is true);

— Number of decimal places for writing pairs: the number of decimal places for

writing pairs (default is 5);

— Date format used in ASCII forecast/observed data files: the date formats used

for observations and forecasts in ASCII format (ignored for other file types).
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The dates are formed from the elements yyyy (year), MM (calendar month),
dd (day of month), HH (hour of day in the 24-hour clock), mm (minute of hour)
and ss (second of minute) using appropriate, single-character, separators or
whitespace (e.g. MM/dd/yyyy HH) or no separators (e.g. yyyyMMddHH). The
default date format is MM/dd/yyyy HH; and

Use all observations for climatology: this controls how the “observed

climatology” is determined from the observed data, specifically for deriving
real-valued thresholds from the climatological probability distribution (an
option described later; see Fig. 10). By default, the climatological distribution
is determined from the paired observations (i.e. the conditional pairs).
Optionally, it may be determined from the full period of observations (again,
after applying any changes in attribute units, temporal aggregation and pre-

conditions except for a limited verification period; see below).

Fig. 8b: Other options (Additional options), accessed from the input data dialog

Additional options td
Forecast scale Observed scale Other options ‘
Edit other options
Variable Yalue
Global no-data value -999.0
Omit no-data values fram paired file
Use all observations for climatology (hot just paired ohservations) O
Mumber of decimal places far writing pairs 5
Date format used in ASCII forecast data files Mt diney HH
Date format used in ASCII observed data file Mhdiddiney HH
‘ Reset ‘ ‘ Cancel | ‘ Back | | OK ‘

Verification window:

Start of verification period: the start date for verification purposes. This may

occur before or after the period for which data are available. Missing periods
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will be ignored. The verification period is defined in UTC hours from 00 UTC
on the input start date. The start date may be entered manually or via a
calendar utility accessed through the adjacent button;

- End of verification period: as above, but defines the last date to consider. The

end date is also defined as 00 UTC on the specified date (i.e. add one day if
the input date should be included in the verification window);
- Forecast lead time horizon: at each forecast time, a prediction is made for a

period into the future. This duration is referred to as the lead time horizon or
lead period. For example, if the forecasts are issued every 6 hours and
extend 14 days into the future, the lead time horizon is 14 days. The lead
time horizon may comprise several different lead times (14*6=84 in this
example) and may be shorter than the period covered by the input data;

- Adqgagregation period: when evaluating long-term ensemble forecasts (e.g. with

a one-year forecast horizon), verification results may be confused by short-
term variability, which is not relevant for the types of decisions that inform
long-term forecasting, such as water supply forecasting. Aggregation of the
forecasts and observations allows short-term variability to be removed by
averaging over the period that does matter for decision making purposes. For
example, daily forecasts may be aggregated into ninety-day averages

(assuming that the forecast time horizon is at least ninety days). When the

temporal support of the forecasts and observations is different, verification

may still be possible at an aggregated temporal support (see above).

The verification window may be refined using various “pre-conditions” on the dates
considered, as well as the size of the observed and forecast values included in the
verification study. These options are accessed via the “More” button in the
Verification window. For example, verification may be restricted to ‘winter months’
within the overall verification period, or may be limited to forecasts whose ensemble
mean is below a given threshold (e.g. zero degrees for temperature forecasts). When
conditioning on variable value, conditions may be built for the current unit (selected in
the main verification window) using the values of another unit (e.g. select streamflow
when precipitation is non-zero), providing the variables have the same prediction
dates and intervals. Such conditioning may be relatively simple or arbitrarily complex
depending on how many conditions are imposed simultaneously. However, there is a
trade-off between the specificity of a verification study, which is increased by
conditioning, and the number of samples available to compute the verification

statistics, which is reduced by conditioning (i.e. sampling uncertainty is increased).
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The dialog for conditioning on date and variable value is shown in Fig. 9a and 9b,
respectively. The conditions on dates or variable values entered in the verification
window apply to all verification metrics computed for that VU. Alongside these pre-
conditions, the individual metrics may be computed with respect to one or more
threshold values, such as flows exceeding flood stage (see below). When designing
a verification study, the pre-conditions used to sub-select pairs should be compatible
with any discrete events that might be verified later. For example, it would not make
sense to assess the quality of Probability of Precipitation (PoP) forecasts (using a
discrete threshold for PoP) after removing all (non-) precipitation events via pre-
conditions on the pairs. In contrast, it may make sense to eliminate “blown” forecasts
(identified by conditions on variable values) before computing any verification

metrics, including those for particular events.

Fig. 9a: Dialog for refining verification window: conditioning with dates

Categories for refining dates considered Consider only specific months
Refine verification window Ll
Date condition balue condition | Other options |
Select a category Ho refine Refine selected category
Clate category | | Date element | Include?
Year January L
Months of year L4 .Februarv ® O
Weeks of year IMarch O
Days of week ‘April |
Hours of day (UTC) My 4]
Liune ]
I.July =]
.August |
ISeptemher ]
.Octuber ]
.Nnvemher
IDecember ]
Reset || Delete | | cancel || met || ok |
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Fig. 9b: Dialog for refining verification window: conditioning with variable value

Variables available for conditioning Forecast ensemble mean >0
Date condition vapie condition | Other options |
1. Select a dataset to| condition on 2. Specify the condition for|selecting pairs
[dentifier [ Twpe | a. Apply a condition to!
NFDC1HUF_MAT Forecast
ENSEMBLE MEAN b |
NFDCTHUF MAT Dhsarved
® c. Time windaw (leave blank fof individual times)
MNOMNE E”
d. Statistic for time window {select 'NONE' for individual times)
NOME h. 4
e. Apply logical condition ("AMND| applies to multiple selections).
O Less than ®
O Less than or equal to
@ Greater than 0.0
) Greater than or equal to
Reset || Detete | | concel || Back || wext || ok |

Additional refinement options are available in the “Other options” section of the

refinement dialog (Fig. 9¢). These include:

— Temporal aggregation function: this allows for a temporal aggregation function

to be defined. By default, aggregations requested in the main verification
window involve a mean average over the specified period. This may be
changed to a total (i.e. accumulation), minimum or maximum value, among
others;

— Minimum_sample fraction: this allows for the specification of a minimum

sample size per forecast lead time for computing verification results. The
sample size constraint is set by a fraction in the range [0,1]. The fraction is
multiplied by the average number of pairs across all lead times to determine
the minimum sample size as a numbers of pairs. For example, a fraction of
0.5 implies that verification results will not be computed for any lead time with

fewer than 50% of the average number of pairs across all lead times.
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— Aqggregation start hour: the time of day in hours UTC [0,23] at which temporal
aggregation begins. By default, aggregation begins at the first available
verification pair (i.e. the start of the time-series of forecasts and observations

that cover a given forecast ensemble trace).

Fig. 9c: Dialog for refining the verification window: other options

Refine verification window X |

Date condition Yalue condition Other options

1. Other options

Termporal agaregation function:
lMEF\N v ‘

Minimum sarmple fraction [0,1]:

bs |

Aggregation start hour in UTC [0,23]:

| Cancel H Back H OK ‘

Output data dialog:

- Folder for output statistics: path to the folder for writing the paired files and

the verification output data generated by the system, if written output is
requested (see below).
- A “More” button, which opens an advanced options dialog. The dialog

contains an option to write the conditional pairs (true, by default).

5.3 The second window in the Verification stage

The second window in the Verification stage is shown in Fig. 2 and is accessed by
clicking “Next” from the first window (Fig. 1). The second window shows the

verification metrics available for the VU selected in the first window.
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The EVS includes deterministic measures, which can be used to verify the ensemble
average forecast (mean, median or mode), and statistics that measure the quality of
the forecast probabilities. While deterministic metrics cannot verify the forecast
probabilities, they are useful for evaluating the “best estimate” from the ensemble
forecast. Currently, the deterministic measures available in the EVS include the
mean error, the RMSE, the mean absolute error, the relative mean error, and the
coefficient of correlation between the ensemble mean forecast and observed values.
Table 4 lists the metrics available in the EVS, which contain varying levels of detail
about forecast quality. Some of the ensemble verification metrics verify discrete
events, such as the (non-)exceedence of a particular threshold (e.g. flood stage),
whereas other metrics evaluate the forecasting errors across all possible thresholds.
Further information about the metrics available in the EVS can be found in Section 6
and Appendix Al. Examples of their interpretation can be found in Section 7.

Table 4: summary of the verification metrics available in the EVS

Metric name Quality attribute tested Discrete events? | Detail
Sample size None N/A N/A
Mean error Ensemble average (deterministic) No Lowest
Relative mean error Ensemble average (deterministic) No Lowest
RMSE Ensemble average (deterministic) No Lowest
Mean absolute error Ensemble average (deterministic) No Lowest
Correlation coefficient Ensemble average (deterministic) No Lowest
Brier Score Lumped error score Yes Low
Brier Skill Score Lumped error score vs. reference Yes Low
Mean CRPS Lumped error score No Low
Mean CRPS reliability Lumped reliability score No Low
Mean CRPS resolution Lumped resolution score No Low
CRPSS Lumped error score vs. reference No Low
ROC score Lumped discrimination score Yes Low
Mean error of prob. Reliability (unconditional bias) No Low
MCRD Probability of real-valued error No High
Spread-bias diagram Reliability (conditional bias) No High
Reliability diagram Reliability (conditional bias) Yes High
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ROC diagram Discrimination

Yes High

Error visualization

Modified box plots

No

Highest

On selecting a given metric in the table, information about that metric is provided in

the top right dialog,

and the parameters of the metric are displayed for

entering/editing in the bottom-left panel. A metric is included, and its parameter

values are enabled for editing, by checking the box adjacent to the metric in the top

left table. The parameters of each metric are listed in Table 5. After modifying the

verification statistics and their parameters, the new information is saved to the

current unit by clicking “Save”.

Table 5: Parameters for each verification metric

Metric Parameter (and type)

Meaning

Thresholds (basic)

Produces the metric for each subset of data
specified by the threshold. The thresholds may
be defined in real units or in probabilities. By
default, they refer to non-exceedence
probabilities from the observed climatology.

Ignore conditions on
variable value (advanced)

Any conditions on the observed or forecast
values used to subset pairs (an advanced option
in the verification window) will be ignored for this
metric.

Average of ensemble
members (advanced)

Select the desired average of the ensemble
member values to verify. Options include the
ensemble mean, median and mode values. By
default, the ensemble mean is verified.

Mean Error

Threshold values are
observed probabilities
(advanced)

If this parameter is true (checked; the default
option), the threshold parameter (above) will
refer to probabilities in the observed probability
distribution. For example, a threshold value of
0.2 would select pairs in relation to the real value
corresponding to probability 0.2 in the observed
probability distribution. The form of the
relationship will depend on the logical condition
for the threshold (below).

If this parameter is false (unchecked), the
thresholds are interpreted as real-values in
observed units (e.g. cubic feet per second).

Logical condition for event
threshold (advanced)

Changes the logical condition for any thresholds
used to subset data. For example, if the logical
condition is “greater than”, only those forecast -
observation pairs whose observed values are
greater than the threshold will be used.
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Root Mean Square
Error

Same as mean error

Same as mean error

Relative mean error

Same as mean error

Same as mean error

Mean Absolute
Error

Same as mean error

Same as mean error

Correlation Same as mean error Same as mean error
Coefficient
Same as mean error Same as mean error
Allows for the calibration-refinement (CR) and/or
. the likelihood-base-rate (LBR) decompositions of
Brier score

Select score
decomposition
(advanced)

the Brier Skill Score. In terms of the CR, the
overall score comprises reliability - resolution +
uncertainty. In terms of the LBR, it comprises
Type-Il conditional bias — discrimination +
sharpness.

Brier Skill Score

Same as Brier Score

Same as Brier Score

Reference forecast for
skill (advanced)

Allows a reference forecast to be selected for
use in the skill calculation. The reference
forecast must be loaded into the EVS as another
VU. By default, the reference forecast is sample
climatology.

Mean Continuous
Ranked Probability
Score

Same as mean error

Same as mean error

Select score
decomposition
(advanced)

Allows for the calibration-refinement
decomposition of the overall score into
contributions due to (lack of) reliability, resolution
and uncertainty (climatological variability). The
overall score comprises reliability - resolution +
uncertainty.

Mean Continuous
Ranked Probability
Skill Score

Same as Mean
Continuous Ranked
Probability Score

Same as Mean Continuous Ranked Probability
Score

Reference forecast for
skill (advanced)

Same as parameter for Brier Skill Score

Mean Error of
Probability diagram

Same as mean error

Same as mean error

Number of points in
diagram (advanced)

Sets the number of equally-spaced probability
values (from 0-1) for which the metric will be
computed and plotted.

Mean Capture Rate
Diagram

Same as Mean Error of
Probability diagram

Same as Mean Error of Probability diagram

Modified box plot
pooled by lead time

Ignore conditions on
variable value (advanced)

Same as parameter for mean error
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Number of points in
diagram (advanced)

Sets the number of equally-spaced probability
values (from 0-1) at which the boxes will be
computed and plotted. The middle thresholds
form the boxes and outer thresholds form the
whiskers.

Modified box plot
per lead time by
observed value

Same as modified box plot
pooled by lead time

Same as modified box plot pooled by lead time

Relative Operating
Characteristic

Same as Mean Error of
Probability diagram

Same as Mean Error of Probability diagram

Fit a smooth function to
empirical ROC
(advanced)

If this parameter is true (checked; not the default
option), the binormal approximation will be used
to model the bivariate distribution of the
Probability of Detection (PoD) and Probability of
False Detection (PoFD). The empirical pairs of
PoD and PoFD are provided alongside the
binormal fit.

If this parameter is false, only the empirical pairs
of PoD and PoFD will be provided.

Relative Operating
Characteristic
Score

Same as Mean Error of
Probability diagram

Same as Mean Error of Probability diagram

Reference forecast for
skill (advanced)

Same as parameter for Brier Skill Score

Fit a smooth function to
empirical ROC
(advanced)

Same as parameter for Relative Operating
Characteristic

Method for computing
AUC (advanced)

Sets the method for computing the Area Under
the Curve (AUC). By default, the score is
computed using the algorithm described in
Mason and Graham (2000).

Alternatively, the trapezoid rule may be used to
integrate the Relative Operating Characteristic
curve based on the specified number of points.

Reliability Diagram

Ignore conditions on
variable value (advanced)

Same as parameter for mean error

Use a constant sample
count in each bin
(advanced)

If this parameter is false (unchecked; the default
option), the forecasts probability bins for which
the reliability values are computed will take a
fixed width in the range 0-1 depending on the
number of points requested for the diagram
(below).

If this parameter is true (checked), the forecast
probability bins for which the reliability values are
computed will vary in width such that each bin
captures the same number of forecasts.

Threshold values are
observed probabilities
(advanced)

Same as parameter for mean error
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Logical condition for event
threshold (advanced)

Same as parameter for mean error

Number of points in
diagram (advanced)

Sets the number of probability bins (from 0-1) for
which the metric will be computed and plotted.
These bins may capture an equal sample count
(see above) or may be equally spaced.

Ignore conditions on
variable value (advanced)

Same as parameter for mean error

Threshold values are
observed probabilities
(advanced)

Same as parameter for mean error

Center windows around
forecast median
(advanced).

Spread-Bias
Diagram

If this parameter is false (unchecked; the default
option), the probability of an observation falling
within a forecast bin is determined for bins
separated by probabilities within the forecast
distribution. For example, if the parameter for the
‘Number of points in the diagram’ (see below) is
10, probabilities will be determined for bins
representing deciles of the forecast.

If this parameter is true (checked), probabilities
of the observation falling within a forecast bin will
be determined for symmetric forecast bins
defined with respect to the forecast median.

Logical condition for event

threshold (advanced). Same as parameter for mean error

Defines the number of forecast bins for which
the probability of an observation falling within
that bin is determined.

Number of points in
diagram (advanced).

Most of the ensemble verification metrics compare the observed and forecast values
at specific thresholds. In some cases, these thresholds define a subset of data from
which the metric is calculated. Most of the metrics can be computed from all data, as
well as subsets of data defined by the thresholds. Other metrics verify only discrete
events within the continuous forecast distributions. For example, the reliability
diagram, relative operating characteristic and the Brier score, require one or more
thresholds to be defined, and cannot be computed from all data. For these metrics,
the thresholds represent cutoff values from which discrete events are computed. By
default, the thresholds refer to non-exceedence probabilities within the climatological
probability distribution and must, therefore, cover an interval of [0,1]. For example, a
threshold of 0.2 would refer to all pairs whose observed values have an eighty
percent chance of being exceeded, on average. The climatological probability
distribution is computed from the observed (sample) data provided in the first

verification window and is, therefore, subject to sampling uncertainty. The thresholds
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can be edited and added or deleted manually, via the table of thresholds, or semi-
automatically by specifying a positive number of thresholds, the first threshold, and a
non-zero increment between thresholds (positive to increase from the first threshold,
negative to decrease). The types of thresholds may be modified via the “More”
button, which displays an advanced options dialog. For example, the thresholds may
be changed to real-values, rather than probabilities (e.g. flood stage) and the logical
condition can be changed to non-exceedence, among others (see below also).

Depending on the selected verification metric, there are additional, advanced,
parameters that can be altered. These parameters are available through the “More”
button when a particular metric is selected. The parameter options comprise two
tabbed panes (Fig. 10a), one comprising the “main options” for a particular metric
and one comprising the options for computing confidence intervals (Fig 10b). For
example, when computing ensemble metrics using thresholds, the thresholds may be
treated as non-exceedence (<, <=) or exceedence (>, >=) thresholds, which may be
useful for exploring low- versus high-flow conditions, respectively (Fig. 10a). The
parameter options for each metric are summarized in table 3. A ‘basic’ parameter is
accessed through the main window in EVS, while an ‘advanced’ parameter is

accessed through the “More” button (as in Fig. 10a).

Fig. 10a: Advanced parameter options for a selected metric (ROC in this case)

Options for Relative operating characteristic Ll

‘ Main options Corfidence intervals

[l 1gnore all conditions on variable values of this metric.
[l Threshold values are non-exceedence climatological probabilities.
] Fit a smooth function to empirical ROC.

Logical condition for event threshold; Nurnber of points in diagram:

Greater than (=) |z” 10

Cancel | Next || OK |
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Confidence intervals can be computed for any of the verification metrics within the
EVS, except for the box plots. In future, knowledge of the sampling distributions of
particular verification metrics may be incorporated into the EVS. Currently, however,
confidence intervals are derived numerically using a common algorithm for all
metrics, namely the stationary block bootstrap (Fig 10b). The parameters for deriving
the confidence intervals are:

Techniqgue: select “none” (default) to omit confidence intervals from the
verification results and “Stationary block bootstrap” to use the stationary block
bootstrap (Politis and Romano, 1994).

Sample size: The number of bootstrap samples to use in computing the
confidence intervals. Each sample represents one bootstrap configuration of
the verification pairs and associated metric calculation. Using more samples
implies a better estimate of the confidence interval, but (potentially much)
greater computational time. Also, bootstrapping is a resampling procedure
and thus inherently constrained by the available verification pairs (sample
size/diversity). In general, somewhere between 1000 and 10000 bootstrap
samples may be appropriate (which implies between 1000 and 10000
computations of the chosen metric at all required thresholds).

Minimum sample size: the minimum number of samples required in order to

compute confidence intervals. If fewer than the required number of samples
are found, the intervals will be omitted. The sample size constraint applies to
a specific metric and (un)conditional sample. For example, when computing
the unconditional mean error (mean error for “All data”) at a particular forecast
lead time, the minimum sample size should exceed the total number of
verification pairs available (after applying any pre-conditions). When
computing the reliability diagram for a particular forecast lead time and
threshold, the confidence intervals will be computed for each forecast
probability bin in which the minimum sample size was exceeded. Thus,
depending on the minimum sample size and metric, confidence intervals may
be displayed for none, some, or all of the metric results at a given forecast
lead time. Also, depending on the bootstrap samples generated, the actual
number of samples that meet the minimum requirements (and hence the
presence and appearance of the confidence intervals) will vary each time the
bootstrapping is repeated. In general, a minimum sample size of 50 is

reasonable.
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Average block size: the stationary block bootstrap attempts to account for

temporal statistical dependence by randomly sampling contiguous ‘blocks’ of
verification pairs that may be assumed statistically independent given the
average block length. The blocks are sampled from a geometric probability
distribution, which is completely defined by its mean (the average block
length). The central time index of each block is sampled from a discrete
uniform distribution whereby each time in the paired sample is equally
probable. A single bootstrap sample comprises a resampled paired dataset
with an equal number of pairs to the original dataset. When computing
confidence intervals for several VUs, the component VUs may be assumed
statistically dependent or statistically independent (see Section 5.4).

Units for block size: the time units for the average block size.

Interval specification: confidence intervals are computed from the bootstrap

sample of metric values. One or more intervals may be defined by their lower
and upper limits (e.g. [0.05,0.95]). Optionally, one interval can be selected for
display in the graphical outputs by denoting that interval a “main” interval. All

intervals are written to the numerical outputs (XML).

Fig. 10b: Confidence intervals for a selected metric (ROC in this case)

Options for Relative operating characteristic Ll

] Main options | Confidence intervals
Technique:
‘Statlonary block bootstrap | hd ”
Sample size: Minimum sample size:
‘10000 ‘ |50 |
Average block size: Units for block size:
‘100 ‘ ||:m~r A4 ‘
Interval specification:

Lawer | Upper [ Main? |
0.05 0.95 [2)
0.m 0.99 |

[~]

| add || Delete |

Cancel || Back || OK |
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All of the information necessary to verify the ensemble forecasts is now available,
and verification may be performed by clicking “Run” for the current VU or “All” to
execute all VUs in the current project. A progress dialog is then displayed. The
progress dialog provides options to cancel processing, to minimize (iconify) the GUI,
and to show further details of any errors thrown during processing. Processing may
take several minutes or longer (i.e. hours or even days), depending on the size of the
project. If not already available, the paired files are created (see above) and the
selected metrics are then computed for each unit. No products are displayed or
written at this stage; instead the numerical results are stored in memory, in

preparation for generating these products in the Output window (see Section 5.5).

54 The Aggregation window

Alongside verification of ensemble forecasts from a single point or area, it is possible
to aggregate verification statistics across multiple locations (e.g. for precipitation
across multiple river basins). This is achieved in the aggregation window (Fig. 3).
Only those points for which aggregation is possible will be displayed in the
aggregation window. If no aggregation units (AUs) are displayed, no comparable VUs
have been defined. Two VUs are comparable if they share the same variable,
temporal support (after any requested aggregation), and forecast time horizon.

The properties of an AU may be viewed or edited by selecting an AU in the table.
Each AU is given a default identifier, which may be altered by the user. Multiple AUs
may be defined in one project to generate aggregate statistics from various groups of
VUs with common verification parameters (see below). On selecting a particular AU,
a list of candidate VUs appears under “Verification units to include in aggregation”
and the common properties of those VUs appear under “Common parameter values”.
Two or more VUs must be selected to perform aggregation. The output folder in
which the aggregated statistics will be written appears under “Output data”. After

defining one or more AUs, aggregation is performed by clicking “Run.”
Editing of the VUs upon which one or more AUs is based will result in a warning

message and the option to either remove the edited VU from each of the AUs to

which it belongs or to cancel the edits.
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Aggregation is achieved by either: 1) averaging the verification results from the input
metrics or: 2) by pooling the verification pairs. Averaging of the outputs is preferred
over pooling of the input pairs for reasons of computational efficiency (especially
when pooling across many VUs), but pooling of pairs is preferred when the
verification metrics are not a simple (linear) function of the data (e.g. the correlation
coefficient and most other metrics in the EVS). Pooling of pairs is required when
computing confidence intervals for an AU (in general, this is extremely time-
consuming). Averaging comprises a weighed sum of the input metrics from the
individual VUs, with user-defined weights that sum to 1.0. For verification metrics that
comprise binned statistics (e.g. the reliability diagram; see below), the sample means
are computed for each bin in turn. For verification statistics that are conditional upon
one or more event thresholds, the statistics are averaged across the same thresholds
at each location. The weights assigned to each VU must be within [0,1] and the sum
of all weights must be equal to 1. By default, equal weights are assigned to each VU,
but unequal weights may be input manually or a value of ‘S’ defined to weigh by the
relative sample size at the first forecast lead time (maintaining constant weights
across lead times). The default approach to spatial aggregation adopted in the EVS
is somewhat pragmatic. In general, computing the average of a set of metrics
(outputs) will not produce the same results as computing the metric from the pooled
inputs, i.e. the pooled pairs. The option to pool pairs, rather than average metrics, is
available in the advanced options dialog, which is accessed by the “More” button in
the aggregation window (Fig. 3). The advanced options are shown in Fig. 11 and

comprise:

- Pool pairs: if selected (default is not selected), the verification metrics will be
computed from the pooled pairs, otherwise they will be computed from the
pooled verification results (i.e. a weighed averaged). When pooling pairs, the
weights associated with the VUs in the main aggregation window (Fig. 3) will
be ignored.

- Compute confidence intervals: by default, confidence intervals are not

computed for any AUs. When selected, confidence intervals will be computed,
providing they are also chosen for the component VUs (and are consistent
across the VUs).

- Verification units are statistically dependent in space: when computing

confidence intervals, the stationary block bootstrap can account for spatial
dependence between the component VUs by fixing (in absolute time) the

sampled block of pairs across the component VUs, i.e. by sampling within the
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same window for the component VUs. Otherwise (by default), no spatial
dependence is assumed, and the bootstrap samples are derived separately
for each VU.

Fig. 11: advanced aggregation options

Options for Mults L4

¥ Pool pairs (will ignore weight parameters),
¥ Compute confidence intervals (if bootstrap set for component units).

V] verification units are statistically dependent in space (for confidence intervals),

Cancel | OK ‘

5.5 The Output window

The Output window of the EVS allows for plotting of the verification results from one
or more VUs or AUs. The units available for plotting are shown in the top left table,
with VUs colored blue and AUs colored red (see Fig. 4). On selecting a particular unit
under “Units with results”, a list of metrics with available results appears in the right-
hand table. On selecting a particular metric, the bottom left table displays a list of

lead times (in hours) for which the metric results are available.

When verifying or aggregating the paired data, the sample from which verification
metrics are computed is generated by pooling pairs from equivalent lead times.
Products may be generated for some or all of these lead times, and will vary with the
metric selected. For example, in selecting ten lead times for the modified box plot, it

is possible to produce one graphic with ten boxes showing the (pooled) errors across
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those ten lead times. In contrast, for the reliability diagram, one graphic is produced
for each lead time, with reliability curves for all thresholds specified in each graphic.
The units, products, and lead times and are selected by checking the adjacent boxes
in the last column of each table. In addition, when the product and lead time tables
are populated, right clicking on these tables will provide additional options for

selecting multiple products and lead times. The additional options comprise:

Right-click on the units table (1a):

- Select all products for all units: selects all verification metrics at all forecast

lead times across all units. This is the “select all” option.

- Clear selection: this is the “select none” option.

Right-click on the products table (1b):

- Select all times and products: selects all verification metrics and associated

forecast lead times for the unit selected in the units table (above).

- Select all times for the highlighted products: selects the highlighted products

and associated forecast lead times for the unit selected in the units table
(multiple rows may be highlighted).

- Select all times for the highlighted products across all units: selects the

highlighted products and associated forecast lead times across all units in the
units table (if they exist for other units).

- Clear selection: clears the selection for the current unit.

Right-click on the lead times table (1c):

- Select all times: selects all forecast lead times for the verification metric

selected in the products table (above). If multiple verification metrics are
selected in the products table, the lead times will be displayed and selected
for the metric that was chosen first, i.e. for the metric at the anchor selection
index.

- Select highlighted times: selects the highlighted forecast lead times.

- Clear selection: clears the selection of forecast lead times.

Products are generated with default options by clicking “Run”. The default options

are to write the numerical results in an XML format and the corresponding graphics in

51



png format to the predefined output folder. The file naming convention is
unit identifiers.metric name.lead time for plots that comprise a single
lead time and unit identifiers.metric name for the plots that comprise

multiple lead times and for the numerical results.

As indicated above, the default output options are defined for each project, and
comprise writing of numerical results to an XML file and writing of graphical results to
a PNG file. These options are displayed in the bottom right dialog of the main Output
window (Fig 4.). Fig. 12a and Fig. 12b show the writing and display options in more
detail. The image parameters and formats for writing image files may be modified,
and include the PNG and JPEG raster formats and the SVG vector format (which
writes much larger files, but maintains line quality with re-scaling). The graphical
result may be plotted, edited (re-titled etc.) and saved using an internal viewer, and
the numerical results can be shown within the default web-browser. When plotting
results for multiple graphics in the internal viewer, a warning is given when more than
five graphics will be plotted. A tabbed pane is used to collect plots together for
metrics that have one plot for each lead time (Fig. 13). For rapid viewing, these plots

may be animated by pressing the “Animate” button.

Fig. 12a: product writing options

Product generation options Ed
Wirite Display
Options for writing output
Graphical output Mumerical output
[ wirite graphical output [ Wvrite nurmerical output
CQutput format: Qutput format:

JPEG file (*jpg) E‘ |><n-1|_ file (*xmi) E”

Options for selected output format:

Image width (pixels): |8IIID |
Image height (pixels): |EDD |
Image guality {0.0-1.0; |1.D |

| Cancel || et |

52



Fig. 12b: product display options

Product generation options b
Wirite Display
Options for displaying output
Graphical output Mumerical output
[ |Display graphical output [ Display numerical output
| Cancel | | Back | | Save |

When writing numerical outputs for metrics that are based on one or more thresholds
of the observations, such as the Brier Score, Relative Operating Characteristic and
Reliability diagram, information about these thresholds is written to an XML file with
the metadata.xml extension. Specifically, the probability thresholds are written
for each time step, together with their values in real units (of the observations) and
the numbers of samples selected by those thresholds. An example is given in Fig.
14.
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Fig. 13: plot collection for a metric with one plot for each lead time
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Fig. 14: example of a metadata file for metrics based on observed thresholds

Probability thresholds used at first lead time  Real values of thresholds

= C:\Documents and)Setti ngsibrownj\DesktopANCRFC_testiardm5.grdm5.Streamflow.Relative_operatirg c - Windows Internet Explorer

L EAZ ~ |2 Ctipocumengs and Settingslbrowni\DEsktop\NCRFC_test'Lgrde.grdms.Streamflow.Relativa_operating_cha/actar\stic_m "| 41| % | | P
Google Gl v Gou5 @ E +  §% Bookmarksw @?b\uck&d “.?Chsck - iy - BSend tow @Settingsv
w e I@C:\Dncumentsa d5ettlngs\hrnwn]lDesktnp\NCRF(_t."] l ﬁ - B @ ~ |5 Page ~ f}}' Tools =
/ Rl
<?xml version="1.0" sfandalone="yes" 7= E |
- <results:> =
.
>
- <meta_datax
<thresholds_typef-false</thresholds_type=
<original_file_id=grdm5.grdm5.Streamflow.Relative_opgrating_characteristic_metadata.xml</original_file_id=>
</meta_datax=
- <results>
<lead_hour=24</|lead_hourz
- «<data> [ ]
<values>1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.g§ 0.1, 0.0</valuss =
<values=2520.0, 971.4, 552.2, 342.4, 296.2, 221.5, 61.2, 40.7, 20.2, 0.0, 0.0</valuss>
<values>-999.0, iﬂ, 5.0, 7.0, 10.0, 12.0, 14.0, 17.0, 19.0, 20.0, 20.0</valuss>
</data>
<fresult>
- <result>
<lead_hour=>48</lead_hour=
- <data>
<values=1.0, 0.9, p.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0</values=
<values>1940.0, 403.7, 536.0, 337.2, 305.0, 215.0, 57.0, 37.8, 18.8, 0.0, 0.0</values=>
<values=-999.0, }.0, 5.0, 7.0, 10.0, 12.0, 14.0, 17.0, 19.0, 20.0, 20.0</values>
M
Done “§ My Computer LTy

Sample counts for each threshold
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6. THE VERIFICATION METRICS AVAILABLE IN THE EVS
6.1 Classes of verification metric and attributes of forecast quality

Detailed reviews of ensemble forecast quality can be found in Wilks (2006) and
Jolliffe and Stephenson (2003). This section focuses on the verification metrics
available in the EVS and the attributes of forecast quality to which they refer. In this
context, “attribute” refers to a specific dimension of quality, such as the unbiasedness
or “reliability” of the forecast probabilities. Important attributes of forecast quality are

obtained by examining the joint probability distribution function (pdf) of the forecasts,

Y, and observations, X, f,,(X,y). The joint distribution can be factored into
fy (X1y)-f,(y), which is known as the “calibration-refinement” factorization or
fyx (Y1x)- f(x), which is known as the “likelihood-base rate” factorization (Murphy
and Winkler, 1987). Differences between f,(x) andf,(y) describe the

unconditional biases in the forecast probabilities. The conditional pdf, f,,(x]y),

describes the conditional reliability of the forecast probabilities when compared to

f,(y) and “resolution” when only its sensitivity to f,(y) is considered. For a given

level of reliability, forecasts that contain less uncertainty, i.e. “sharp forecasts”, may
be preferred over “unsharp” ones, as they contribute less uncertainty to decision
making (Gneiting et al., 2007). By way of illustration, a flood forecasting system is
“reliable”, or conditionally unbiased in its forecast probabilities, if flooding is observed
twenty percent of the time when it is forecast with probability 0.2 (repeated for all
forecast probabilities). A flood forecasting system has “resolution” if small changes in

the forecast probabilities are associated with different observed outcomes, whether

or not the forecast probabilities are reliable. In contrast, f,,,(y|Xx) measures the

ability of the forecasts to “discriminate” between different observed outcomes. An
ensemble forecasting system is discriminatory with respect to an event if it
consistently forecasts the event’s (observed) occurrence with a probability higher
than chance (i.e. climatology) and consistently forecasts its (observed) non-
occurrence with a probability lower than chance. In general, the utility of a forecasting
system will depend on several attributes of forecast quality (Jolliffe and Stephenson,
2003). However, for a particular application of the forecasts, some attributes of
forecast quality may be more important than others. For example, when issuing flood

warnings, it is particularly important that observed flood flows and non-flood flows are
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discriminated between, because flood warnings are only effective if they are

consistently correct and do not “cry wolf”.

For any given attribute of forecast quality, there are several possible metrics or
measures of quality. For example, summary statistics for reliability and resolution can
be obtained from quadratic error statistics, such as the BS (Brier, 1950), which
contains a summed contribution from these two components (Murphy, 1996). When
more details are required, specific events may be defined, such as flooding or the
occurrence of precipitation, and forecast quality determined over specific ranges of
forecast probability (as in the reliability diagram; Hsu and Murphy, 1986). Only those
metrics thought to convey significantly different aspects of forecast quality are
included in the EVS, which includes metrics that convey specific attributes of quality
at various levels of detail (see Table 4). The flexibility to consider different attributes
of forecast quality at various levels of detail is important, as the EVS is intended for a

wide range of applications and users.

The EVS includes single-valued error statistics, which can be used to verify the
ensemble mean forecast, and statistics that measure the quality of the forecast
probabilities. While deterministic metrics cannot verify the forecast probabilities, they
are useful for comparing single-valued forecasts with the “best estimate” from the
ensemble forecast (such as the ensemble mean), particularly if the ensemble
forecasts were derived from single-valued forecasts (e.g. via Model Output Statistics;
Gneiting et al.,, 2005). However, caution should be exercised when using
deterministic measures to verify the ensemble mean forecast, because the ensemble
spread adds potential skill to the ensemble forecast and is not verified by a
deterministic measure. Currently, the deterministic measures available in the EVS
include the mean error, the mean absolute error, the RMSE, and the coefficient of
correlation between the ensemble mean forecast and observed outcome (Table 4).
Other measures of central tendency applied to an ensemble forecast, such as the
median, or measures of high probability, such as the mode, may be included in
future. Table 4 lists the verification metrics that are currently available in the EVS,
which contain varying levels of detail about the forecasting errors. The verification
scores, such as the BS and the Continuous Ranked Probability Score (CRPS) are
integral measures of forecast quality and are less sensitive to sampling uncertainty.
Sampling uncertainty is an important concern when verifying forecast probabilities

(Jolliffe and Stephenson, 2003; Wilks, 2006), particularly for extreme events (Bradley
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et al., 2003). Also, the BS and CRPS may be decomposed into summed
contributions from (lack of) reliability and resolution (Murphy 1996, Hersbach 2000).

As indicated above, reliability and discrimination are two key attributes of ensemble
forecast quality. Both unconditional and conditional biases contribute to a lack of
reliability in the forecast probabilities. If the forecasting system is conditionally
unbiased, it is also unconditionally unbiased, but the reverse may not hold. The
conditional biases are often considered alongside the forecast spread or “sharpness”,
because sharp forecasts are more informative, but not necessarily more reliable
(Gneiting et al., 2007). For example, a forecast that issues the climatological
probability of an event is unconditionally unbiased, because the average observed
and forecast probabilities are, by definition, the same. However, it is conditionally
biased, because hydrologic events are conditional upon several factors, such as
precipitation amount and antecedent soil conditions. The conditional bias
corresponds to the difference between a forecast issued from a perfectly reliable
forecasting system (the diagonal line in the reliability diagram; Hsu and Murphy,
1986) and the climatological probability of occurrence (a horizontal line in the
reliability diagram). Several metrics are available in the EVS for assessing the
unconditional and conditional biases that contribute to unreliable forecast

probabilities. In order of increasing detail, these include; 1) the reliability component

of the mean CRPS (CRPS ; Matheson and Winkler, 1976; Hersbach, 2000); 2) a plot
of the unconditional biases in the forecast probabilities (the mean error of probability
diagram, MEPD); 3) a plot of the conditional biases in the forecast probabilities (the
spread-bias diagram, SBD), which that is similar to the cumulative rank histogram
(Anderson, 1996; Hamill, 1997; Talagrand, 1997); and 4) the reliability diagram,
which plots the conditional biases in the forecast probabilities of a discrete event,
such as flooding, and includes a plot of sharpness (Hsu and Murphy, 1986).

The reliability component of the CRPS measures the average reliability of the
ensemble forecasts across all possible events (Hersbach, 2000). Specifically, it
shows whether the observed outcome falls below the jth of m ranked ensemble
members, {z..< z; j=2,...,m} , in proportion to j/m, on average. The MEPD shows the
frequency with which an observed outcome falls below a probability threshold in the

unconditional or “climatological”’ forecast distribution (Section 6.2). The SBD is

closely related to the reliability component of the CRPS . It shows the frequency with

which an observed outcome falls below a probability threshold in the (conditional)
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forecast distribution (see Section 6.2). The MEPD, the SBD, and the reliability
diagram all measure bias in probability and have a common graphical interpretation.
In each case, a deviation from the diagonal line represents to a lack of calibration in
the forecast probabilities, whether unconditional (the MEPD) or conditional upon the
forecast ensemble (the SBD) or specific forecast events (the reliability diagram). The
reliability diagram plots the conditional probability that an event is observed to occur,
given the forecast, against its forecast probability of occurrence (Hsu and Murphy,
1986; Brocker and Smith, 2007a). It is useful to distinguish between the unconditional
and conditional biases in the forecast probabilities, because the unconditional biases
are more easily removed (e.g. through post-processing; Hashino et al., 2006), and

may originate from different sources.

One measure of resolution and two measures of discrimination are currently

available in the EVS, namely: 1) the resolution component of the CRPS (Hersbach,
2000); 2) the Relative Operating Characteristic (ROC) score (Mason and Graham,
2002; Fawcett, 2006); and; 3) the ROC curve (Green and Swets, 1966; Mason and

Graham, 2002). The resolution component of the CRPS measures the average
ability of the forecasts to distinguish between different observed outcomes, whether
or not they were forecast reliably (Hersbach, 2000). The forecasting system has
positive resolution if it performs better than the climatological probability forecast. The
ROC score and ROC curve measure the ability of the forecasts to discriminate
between observed events and non-events, such as flooding versus no flooding. In
this context, there is a trade-off between the correct prediction of occurrences and
the correct prediction of non-occurrences, or the probability level at which actions are
triggered. For example, if a flood warning is triggered by only a small probability of
flooding, there is a smaller chance that a flood event will evade detection, but there is
a concomitantly higher chance that a non-event will be forecast incorrectly (i.e. of
“crying wolf”; other factors being equal). Thus, the ROC curve plots the probability of
detection against the probability of false detection for a range of forecast probability
levels (Green and Swets, 1966). The ROC score measures the average gain over

climatology for all probability levels (based on the integral of the ROC curve).

In addition to measures of reliability and discrimination, there are several composite

measures of forecasting error provided in the EVS. In order of increasing information

content, these include: 1) the BS; 2) the CRPS ; 3) the Mean Capture Rate Diagram

(MCRD); and 4) box plots of errors in the forecast ensemble members. The BS and
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the CRPS quantify the mean square error of the forecast probabilities for a single
threshold and for all thresholds, respectively. In contrast, the MCRD and box plots

show the forecasting errors in linear units (see Section 6.2). The quadratic form of

the BS and the CRPS allows for their decomposition into reliability, resolution, and
uncertainty (Murphy, 1996). However, this also complicates their use in operational
forecasting, where low-probability, high-impact, events are crucial, but the square
errors of probability in the forecasts are necessarily small (see Section 6.2 also). In
order to support comparisons between forecasting systems and across hydroclimatic
regimes, the Brier Skill Score (BSS) and the Continuous Ranked Probability Skill
Score (CRPSS) are also provided in the EVS. In both cases, the reference forecast is

user-defined, and is introduced by defining an additional VU in the EVS.

6.2 Metrics developed for the EVS with an emphasis on operational forecasting

In addition to the standard metrics for reliability, resolution and discrimination, the
EVS provides a platform for testing new metrics. Currently, these include the mean
error of probability diagram (MEPD), which measures the unconditional biases in the
forecast probabilities, the spread-bias diagram (SBD), which is similar to the
(cumulative) rank histogram and tests the forecasts for conditional reliability
(Anderson, 1996; Hamill, 1997; Talagrand, 1997), the Mean Capture Rate Diagram
(MCRD), which is based on the Probability Score of Wilson et al. (1999), and
modified box plots of the ensemble forecast errors versus observed amount. An
important aim in developing these metrics was to provide operational forecasters with

more application-oriented measures of ensemble forecast quality.

The MEPD measures the reliability of an ensemble forecasting system in an
unconditional sense. Let z; denote the jth of m ensemble members from the ith of n
ensemble forecasts and let x;° denote the observed outcome associated with the ith

ensemble forecast. The forecast climatology has an empirical distribution function,

Ifnm(v) , which is computed from the n ensemble forecasts as

Fn(V)=205" Fo(v) where F (v)=2 %" %z, <}, ()

and K} is a step function that assumes value 1 if the condition is met and 0

otherwise. Let H=[a,b|a,be[0,1]] denote an interval of fixed width on the
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support of Ifnm(v). The MEPD counts the fraction of observations that fall within the

interval, H, namely

MEPD(H ):%Zin:ll{lfnm(xio)e H}' (2)

An ensemble forecasting system is unconditionally reliable or marginally calibrated
over the interval, H, if it captures observations in proportion to the width of that

interval

lim %Zinzll{lfnm(xi")eH} =b-a. 3)

n,m—ow

The MEPD shows MEPD(H ) against the width of H for each of k windows that
span the unit interval. In practice, the k windows may cover any subintervals of the
unit interval. The MEPD is similar to the quantile-quantile (Q-Q) plot (Wilks, 2006)
and the probability-probability (P-P) plot (Shorack and Wellner, 1986; Gneiting et al.,
2007). The Q-Q plot compares the order statistics of two samples, or the order
statistics of one sample against the values of a theoretical distribution at
corresponding quantiles (Wilks, 2006). The P-P plot compares the quantiles
corresponding to these order statistics. Indeed, the MEPD is equivalent to a P-P plot

of the climatological distributions of X and Y when evaluated for the n intervals,

HJ.:[O,bj]|bj :%+l,j:l,...,n . As indicated above, the MEPD assumes

asymptotic convergence of MEPD(H ) as n—«. In practice, this may be evaluated

by comparing the MEPD( H ) for g subsamples of the n available data.

For continuous random variables, such as temperature and streamflow, the SBD
provides a simple measure of conditional reliability. It involves counting the fraction of

observations, SBD( ), that fall within an interval of fixed width on the support of the

ith forecast, | =[c,d|c,d €[0,1]]

SBD(1)=J1 >0 HF, (X)) el}. (4)
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An ensemble forecasting system is reliable over the interval, I, if it captures

observations in proportion to the width of that interval

lim %Zin:ll{lfmi(xi")e 1} =d-c. (5)
By defining k windows on the unit interval, |, =[c;,d;]|c;,d; €[0,1];j=1,...k ,

the reliability can be determined for the entire range of forecast probabilities. In
practice, the k windows may cover any subintervals of the unit interval. Certain
windows may be preferred for some applications or for sampling reasons. For
example, if the forecasts are uncertain in the tails, windows centered on the forecast

median may be preferred. The SBD shows the observed frequency, SBD(1),

against the expected frequency, d-c. Any deviation from the diagonal line represents
a lack of reliability in the forecast probabilities. More specifically, the ensemble

forecasts are unreliable if the observed frequency, SBD(1), deviates from the
expected frequency by more than the sampling uncertainty of SBD(1). If the k

windows each cover a probability interval of 1/k, the expected frequency has a
uniform probability distribution, and the actual reliability can be tested for its
goodness-of-fit to a uniform distribution (e.g. using the one-sided Cramer von Mises
test; Anderson, 1962; Elmore, 2005; Brocker, 2008).

For continuous random variables, the expected SBD( 1) is equal to the width of the

interval, |, and is, therefore, strictly increasing as the width increases (see above).
However, for mixed random variables, such as precipitation and wind-speed, the
discrete portion of the probability distribution comprises an infinite number of intervals
of different width. Although the window definition could be adapted for this case (see
Hamill and Colucci, 1997 for a similar discussion), the reliability diagram may be

preferred for mixed random variables.

While the SBD is analogous to the cumulative rank histogram, it explicitly defines the
width of the interval, I, into which observations fall. When these windows are based
on non-exceedence probabilities and are uniform in width (as well as non-
overlapping and exhaustive), the SBD is also analogous to the Probability Integral
Transform (PIT) (Casella and Berger, 1990), although the latter involves fitting a
parametric cdf to the ensemble forecast distribution prior to evaluating the PIT

(Gneiting et al., 2005). In that case, the SBD, the cumulative rank histogram and the
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PIT can also be summarized with the reliability component of the CRPS (Hersbach,
2000), which tests whether an observation falls below a threshold with a frequency
proportional to the cumulative probability of that threshold (averaged across all
thresholds).

Integral measures of forecasting error are widely used in ensemble verification and
include the BS and CRPS. As indicated above, the BS and CRPS may be
decomposed into a reliability component, a resolution component, and an uncertainty
component (Hersbach, 2000). In addition, they have the important property of being
“strictly proper” (Brocker and Smith, 2007b; Gneiting et al., 2007). A scoring rule is
“proper” if it is maximized for a forecaster's true belief and is “strictly proper” if its
maximum is unique (Gneiting et al., 2007). While linear scores are improper,
guadratic scores, such as the BS and CRPS, are strictly proper. Nevertheless, if the
user has a strong risk aversion towards extreme events, quadratic scores may not be
desirable. The Probability Score (PS) of Wilson et al. (1999) is not strictly proper but
has some appeal in operational forecasting (see also, Mason, 2008). The PS

integrates the forecast probability distribution, f,(y), over a symmetric window of

width, w, around the observed outcome, x°, and is defined as PS( f, ,x°,w)

x°+0.5w

PS(f x*w)= [, " f,(y)dy. (6)

As with the CRPS, the PS(f,,x°,w) is averaged over n pairs of forecasts and

verifying observations to form the PS(w)

PS(w)= 3, PS( 1, ). g

On average, the probability that a forecast value (or ensemble member) will fall within
w of the observed value is P_S(W). The expected PS of a perfect forecastin