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ABSTRACT

The National Weather Service (NWS) uses the SNOW17 model to forecast snow accumulation and abla-
tion processes in snow-dominated watersheds nationwide. Successful application of the SNOW17 relies
heavily on site-specific estimation of model parameters. The current study undertakes a comprehensive
sensitivity and uncertainty analysis of SNOW17 model parameters using forcing and snow water equiv-
alent (SWE) data from 12 sites with differing meteorological and geographic characteristics. The General-
ized Sensitivity Analysis and the recently developed Differential Evolution Adaptive Metropolis (DREAM)
algorithm are utilized to explore the parameter space and assess model parametric and predictive uncer-
tainty. Results indicate that SNOW17 parameter sensitivity and uncertainty generally varies between
sites. Of the six hydroclimatic characteristics studied, only air temperature shows strong correlation with
the sensitivity and uncertainty ranges of two parameters, while precipitation is highly correlated with the
uncertainty of one parameter. Posterior marginal distributions of two parameters are also shown to be
site-dependent in terms of distribution type. The SNOW17 prediction ensembles generated by the
DREAM-derived posterior parameter sets contain most of the observed SWE. The proposed uncertainty
analysis provides posterior parameter information on parameter uncertainty and distribution types that

can serve as a foundation for a data assimilation framework for hydrologic models.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A range of studies demonstrate that atmospheric warming over
the past 50 years has led to a steady decline in snowpack depth as
well as altered melt patterns across large regions of the western US
[34,35,44,54]. Changes in snowpack volume and spring melt tim-
ing substantially alter the volume and pattern of streamflow in
snow-dominated watersheds, increasing the probability of ex-
treme flooding events and droughts. Accurate prediction of snow-
melt is vital to support optimal water resources planning and
management practices [49]. The increasing western population
and corresponding water demand, as well as potential climatic ex-
tremes [67], make accurate snowmelt and runoff predictions in the
western regions of the US especially critical.
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The National Weather Service (NWS), the US agency responsible
for short- and long-term streamflow predictions across the nation,
primarily applies the SNOW17 model [3] for operational forecasting
of snow accumulation and melt in snow-dominated areas. The
SNOW17 is a process-based model requiring only precipitation
and air temperature as inputs [39,45]. Despite its conceptual nature
and low input data requirements, the model demonstrates similar,
and often better, performance than more detailed physically-based
snow models in terms of snow water equivalent and subsequent
streamflow predictions [15,16]. Although the SNOW17 model has
been extensively utilized in the operational environment for several
decades, comprehensive sensitivity and uncertainty analyses of its
model parameters are rare in the literature. Tang et al. [56] con-
ducted a sensitivity analysis of the SNOW17 model in conjunction
with the NWS operational Sacramento Soil Moisture Accounting
(SAC-SMA) rainfall-runoff model. However, only about half of the
SNOW17 parameters were analyzed. The primary focus of the Tang
et al. [56] study was to evaluate different sensitivity analysis meth-
ods rather than to explicitly quantify parameter behavior or uncer-
tainty in the SNOW17 model. The NWS is currently investigating
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distributed versions of the SNOW17 and SAC-SMA models for
operational forecasts within the Hydrology Laboratory Research
Distribution Hydrologic Model (HL-RDHM) [26,40,51] framework.
Preliminary application of the distributed SNOW17 model to opera-
tional watersheds has been conducted [46,47]. More in-depth explo-
ration of the full potential of distributed snow modeling requires a
rigorous investigation of the sensitivity and uncertainty of SNOW17
parameters and would assist in parameter identification for subwa-
tershed regions with varying climatic and geographic characteris-
tics. Previous studies illustrate that hydrologic model parameter
sensitivity varies significantly within watersheds with diverse cli-
matic and geographic characteristics [48,58] and calibration (auto-
matic or otherwise) of distributed hydrologic models has been
shown to be challenging [30]. A sensitivity and uncertainty analysis
can help identify potential relationships among watershed charac-
teristics and related parameter behavior, as well as facilitate hydro-
logic forecasting in ungauged regions.

In the current study, we combine the Generalized Sensitivity
Analysis (GSA) [23,53] and the DiffeRential Evolution Adaptive
Metropolis (DREAM) algorithm to assess parameter sensitivity
and uncertainty of the SNOW17 parameters. To reach broad con-
clusions (regionalization information), we use forcing and snow
water equivalent data from 12 contrasting study sites. The GSA
method serves as a first step in determining which SNOW17
parameters are sensitive across a range of climate conditions and
should be included in DREAM. DREAM is used to determine poster-
ior parameter distributions and related uncertainty. We are
especially concerned with identifying potential regionalization
relationships, correlating parameter sensitivity and uncertainty
with site characteristics and analyzing posterior probability den-
sity functions of sensitive parameters. The derived parameter dis-
tributions serve as a basic building block for the development of
an ensemble-based sequential data assimilation framework that
requires parameter sets to be sampled from their distributions.
The framework is currently being developed for the SNOW17 mod-
el and the SAC-SMA model.

2. Methodology

The current study focuses at the point-scale given that ground-
based snow observations are most readily available at this resolu-
tion. We advocate that rigorous investigation at the point-scale
(with ground-based measurements) provides a thorough assess-
ment and understanding of model behavior before applying rele-
vant models to larger scales using alternative data sources
[15,22]. We utilize an extensive set of observations from SNOw
TELmetry (SNOTEL) sites available from the Natural Resources
Conservation Service (NRCS). Although SNOTEL observations are
associated with some uncertainty, they are still the longest and
most widely used record of snow depth and snow water equivalent
(SWE) across a range of hydroclimatic conditions in the US [43].

2.1. SNOW17 model

The SNOW17 is a lumped process-based model that simulates
snow accumulation and ablation (Fig. 1) [3,39]. Inputs to the model
are air temperature and precipitation. Model output include snow
melt plus any rain on bare ground, and SWE. Snow is modeled as a
single layer and the heat storage of the snowpack, snow melt, and
liquid water retention and transmission are computed using
empirically-based relationships. The model has ten primary
parameters for point-scale simulation (Table 1) [2,13]. When ap-
plied to the areal domain, the model implements an additional
parameter SI (the mean areal water equivalent above which
100% snow cover exists) and an areal depletion curve (ADC) that
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Fig. 1. Schematic of the SNOW17 model processes and corresponding parameters.
The boxes designate model processes. Model inputs and output are highlighted in
bold. Source: Adapted from Anderson [3].
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accounts for the areal extent of snow cover. The SCF (snow correc-
tion factor) parameter is a multiplier of the precipitation input
used to account for gage catch deficiencies. The PXTEMP parameter
is the threshold temperature distinguishing snowfall from rainfall
in the precipitation time series. The parameters SCF and PXTEMP
determine the snow accumulation in the model.

Parameters NMF and TIPM are used to determine heat exchange
during non-melt periods, which is typically less significant than
during melt periods [3]. Heat content in the snowpack increases
or decreases as a function of the gradient between the antecedent
temperature (as determined by parameter TIPM) and the current
air temperature [3]. Heat conduction through the snowpack is as-
sumed to vary similarly to the non-rain melt factor and is scaled by
a negative melt factor (NMF). Melt occurs when enough energy has
been added to the snowpack to bring its heat content to zero.

During non-rain periods the depth of melt is determined by:

M = M;(T, — MBASE) (1)

where M is the depth of melt (mm), My is the seasonally varying
melt factor (mm/°C), and MBASE is the temperature above which
melt will occur. The melt factor is computed from a sinusoidal curve
with limits defined by the maximum (MFMAX) and minimum
(MFMIN) melt factor parameters as follows [3]:

My = % {% (sin% + 1) (MFMAX — MFMIN) + MFMIN} (2)
where At is the time step; T is the day number since March 21.
MFMAX is generally more critical than the MFMIN in determining
actual melt rate when most of melt occurs after March 21, while
MFMIN is more critical prior to March 21 [39]. Energy balance equa-
tions are used to compute melt during rain-on-snow events utiliz-
ing assumptions about meteorological conditions during rainy
periods [3]. Melt during rain-on-snow events is controlled by UAD]J,
a parameter controlling the impact of wind advection. When there
is sufficient rainfall and the air temperature is well above freezing,
increasing UAD] results in more melt [39].

Excess water will occur in the pack when it is isothermal at 0 °C
and the liquid water holding capacity of the pack (as determined
by parameter PLWHC) is met. Excess water is lagged and attenu-
ated to simulate flow through the pack based on a series of empir-
ically derived equations for ripe snow. A constant daily rate of melt
at the soil-snow interface (DAYGM) is parameterized in the model
to account for the heat flux at the soil-snow interface [3].
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Table 1

Parameters of the SNOW17 model with ranges estimated from Anderson [3] and Franz [13].
Parameters Description Unit Ranges
SCF Snowfall correction factor - 0.7-14
MFMAX Maximum melt factor considered to occur on June 21 mm/6 h/°C 0.5-2.0
MFMIN Minimum melt factor considered to occur on December 21 mm/6 h/°C 0.05-0.49
UAD] The average wind function during rain-on-snow periods mm/mb/°C 0.03-0.19
NMF Maximum negative melt factor mm/6 h/°C 0.05-0.50
MBASE Base temperature for non-rain melt factor °C 0-1.0
PXTEMP Temperature that separates rain from snow °C -2.0t0 2.0
PLWHC Percent of liquid-water capacity - 0.02-0.3
DAYGM Daily melt at snow-soil interface mm/day 0-0.3
TIPM Antecedent snow temperature index - 0.1-1.0

2.2. Study sites and datasets

The SNOTEL network, managed by the Natural Resources Con-
servation Service (NRCS), consists of 730 sites throughout 11 wes-
tern states (including Alaska), providing snowpack information for
water supply forecasting and water resources management pur-
poses [38]. A typical SNOTEL site has sensors which automatically
measure SWE, snow depth, precipitation, and air temperature [8].
The data is provided at the daily timestep. SWE and precipitation
data are generally available since the early 1980s. Air temperature
is generally available since the late 1980s. The data quality is lar-
gely controlled by instrumentation sensitivities and environmental
factors including snow drifting, wind scour, and falling debris
[10,12].

The current study focuses on observations from 12 SNOTEL sites
(Fig. 2; Table 2) with at least one site chosen from each of the eight
regions defined by Serreze et al. [42]. These defined regions (Fig. 2)
capture the major snow regimes of the Western US [42] and have
been used in a regional analysis of snowfall events [43]. The 12 se-
lected study sites are also within or close to current NWS opera-
tional basins. For some regions with distinctive characteristics,

such as the Sierra Nevada region (higher precipitation and snow-
fall), two sites are selected. The selection is also based upon using
a representative median elevation in each region (i.e. the elevation
of the selected site(s) resembles the median site elevation of the
corresponding region). Elevation of the study sites varies from
1207 m (site MC (WA)) to 3316 m (site VL (CO)); average annual
precipitation ranges from 624 mm (site BL (CO)) to 2503 mm (site
LL (CA)); average annual air temperature varies from —0.45 °C (site
BL (CO)) to 7.94°C (site WH (AZ)) (Table 2). The maximum
monthly precipitation varies from 59 mm (April, site BL (CO)) to
396 mm (January, site LL (CA)). The range for maximum monthly
SWE is from 81 mm (February, Site WH (AZ)) to 1519 mm (April,
site LL (CA)). The maximum and minimum monthly air tempera-
ture range from 10 °C (July, Site BL (CO)) to 18.8 °C (July, Site WH
(AZ)) and from —9.7 °C (December, Site BL (CO)) to 1.0 °C (January,
Site HM (OR)), respectively (Fig. 3). These wide variations exem-
plify the diverse climatic and geographic characteristics of the se-
lected study sites. A detailed discussion of these study sites is also
presented by He [21].

Daily precipitation, temperature, and SWE data for the 12 se-
lected SNOTEL sites were screened following the quality control
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Fig. 2. Location of study sites as well as eight regions (boxes) encompassing the study sites (from Serreze et al. [42]). The regions and the median elevation of SNOTEL sites
within the regions include: (1) Pacific Northwest (1422 m), (2) Sierra Nevada (2439 m), (3) Blue Mountains, Oregon (1646 m), (4) Idaho/western Montana (1905 m), (5) NW
Wyoming (2479 m), (6) Utah (2774 m), (7) Colorado (3037 m), and (8) Arizona/New Mexico (2418 m). Detailed information on the regions and SNOTEL sites can be found in
Serreze et al. [42].
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Table 2

Summary of selected SNOTEL sites. Statistics are computed by water year (WY) October 1 to September 30. Max. SWE represents the maximum SWE value recorded at the site.
Annual temperature and precipitation are mean annual values. Date of Max. SWE is the mean value of the dates of annual maximum SWE. Date of disappearance of snow and days
of snowmelt are also mean values for the period of record. Days of snowmelt represent the period from the day SWE peaks till the day snow melts out.

Site Site name State Elevation (m) Climate region Data period (WY) Max. SWE (mm)
MC Mount Crag WA 1207 1 1991-2008 2073
HM Holland Meadows OR 1503 1 1984-2008 1255
IL Independence Lake CA 2546 2 1995-2008 2068
LL Leavitt Lake CA 2931 2 1990-2008 2807
TP Tipon OR 1570 3 1990-2008 439
SM South Mtn ID 1981 4 1985-2008 828
TD Thumb Divide wy 2432 5 1990-2008 836
LM Lasal Mtn uT 2914 6 1989-2008 582
BL Brumley co 3231 7 1987-2008 485
VL Vallecito co 3316 7 1987-2008 874
SC Silver Creek Divide NM 2743 8 1990-2008 630
WH White Horse Lake AZ 2188 8 1990-2008 343

Site Annual temperature (°C) Annual precipitation (mm)

Snowfall fraction

Date of Max. SWE Date of disappearance of snow Days of snowmelt

MC 4.35 1922 0.42
HM 6.36 1964 0.34
IL 4.38 2151° 0.60
LL 2.74 2503 0.64
TP 5.37 589 0.52
SM 6.44 9197 0.52
TD 1.02 758 0.58
LM 3.87 819 0.40
BL —0.45 624 0.48
VL 2.56 865 0.57
SC 5.64 671 0.44
WH 7.94 628 0.22

3-April 6-June 63
3-March 18-May 66
29-April 2-July 63
25-April 4-July 69
18-March 2-May 44
18-March 6-May 48
11-April 24-May 42
25-March 11-May 46
16-April 19-May 32
5-April 20-May 44
4-March 19-April 45
27-February 2-April 33

@ Corrected values obtained by applying the method of Serreze et al. [42].
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Fig. 3. Monthly (a) precipitation, (b) temperature, and (c) SWE for the 12 SNOTEL sites presented in Table 2.

procedures of Serreze et al. [42] to mask outliers and identify neg-
ative SWE and precipitation values. This methodology is applied in
the studies of Serreze et al. [43] and Fassnacht et al. [12]. After
screening, the longest historical record is 25 years (site HM (OR))
and the shortest is 14 years (site IL (CA)). In a few cases, tempera-
ture data are missing (about 1% of the record length). Under these

conditions, data from the prior date and subsequent date is used to
linearly interpolate missing data. For sites IL (CA), LL (CA), and SM
(ID), the snowfall fraction (ratio of SWE to precipitation) exceeds
1.0 in several years. In such cases, the under-catch in precipitation
is estimated using the method proposed by Serreze et al. [42]. The
method uses the ratio between daily SWE increments exceeding
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2.5 cm and the corresponding precipitation data in January and
February to upwardly adjust precipitation measurements. As the
shortest data period for the selected sites is 14 years (water year
1995-2008, site IL (CA)), this common 14-year period is used for
analysis.

2.3. Sensitivity and uncertainty analysis

It is generally accepted that sensitivity and uncertainty analyses
should be conducted as part of calibration efforts and model imple-
mentation. These analyses are especially necessary for data assim-
ilation studies which require the structure of all uncertainty
sources specified a priori [31,41,50]. Generally speaking, a sensitiv-
ity analysis is the practice of identifying the primary parameters
which dominate model performance [20], while an uncertainty
analysis is the practice of determining the reliability of model out-
puts by addressing potential sources of uncertainty, including
uncertainty associated model structure, forcing, parameters and
observations [4,25,36]. A recent study [7] reviewed the advantages
and disadvantages of a range of sensitivity analysis methods. Their
review noted that the Latin Hypercube Sampling (LHS), utilized
within the Generalized Sensitivity Analysis (GSA) [23,53], was
acceptable for sensitivity analysis.

A range of uncertainty analysis methods have also been re-
ported in the hydrologic literature, including the generalized like-
lihood uncertainty estimation (GLUE) [5], the Bayesian recursive
estimation (BARE) [57], the dynamic identifiability analysis
(DYNIA) [66], and Markov Chain Monte Carlo (MCMC) methods
including the Metropolis algorithm [28], the parameter identifica-
tion method based on the localization of information (PIMLI) [59],
the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm
[60], and the Differential Evolution Adaptive Metropolis (DREAM)
algorithm [62]. The DREAM algorithm is an adaptation of the
SCEM-UA and has advantages over the SCEM-UA in the context
of maintaining detailed balance and ergodicity [62,63]. The DREAM
algorithm also exhibits the best search efficiency in comparison to
its counterparts. Most of the above methods focused only on the
uncertainty that is associated with the selection of parameters.
The disregard of other uncertainty sources (observational data,
model structure and states) in many of the current methods stems
from the fact that there is no rigorous or widely agreed upon meth-
od to characterize them [29,33]. Some methods have recently
emerged to investigate model forcing and/or structural uncertainty
[1,24,50,63], however, they have not been commonly applied.

The current work sequentially applies the GSA and DREAM
algorithm to assess parameter sensitivity and uncertainty. The
GSA method serves as a simple screening tool for determining
which SNOW17 parameters are sensitive across a range of climate
conditions and should be included in the more complex DREAM
algorithm which determines posterior parameter distributions
and related uncertainty.

2.3.1. The Generalized Sensitivity Analysis (GSA) method

The GSA method was originally proposed by Spear and Horn-
berger [53] and has received extensive application in hydrology
[e.g., 17,48,52,56,64]. The GSA has three primary components:
Monte Carlo sampling, “behavioral/non-behavioral” classification,
and sensitivity assessment. Monte Carlo sampling generates
parameter sets in the feasible parameter space from prior distribu-
tions. The current study applies Latin Hypercube Sampling (LHS) to
generate random realizations of parameters because it has been
shown to be effective in previous studies [6,7,32,36,48,55,69].
The LHS is a stratified Monte Carlo sampling method in which
parameter ranges are equally divided into N intervals (N is the
number of samples) and one realization is sampled from each
interval. This particular approach is easy to implement and use,

yet could become computationally cumbersome and inefficient in
the presence of high-dimensionality. In the present study, we as-
sume a uniform sampling distribution for each of the SNOW17
parameter with ranges that are listed in Table 1. We also utilize
the Nash-Sutcliffe efficiency (NSE) measure [37] to quantify model
performance and to distinguish behavioral from non-behavioral
parameter sets. The NSE is defined as:

s (e - )’
i (@ - e’

where Q°” and Q™ are observed and simulated states at time i,
respectively; and Qg™ is the mean value of the observed states.
Based on previous studies [e.g. 18] we utilize a threshold NSE value
of 0.3 to distinguish between behavioral (NSE>0.3) and non-
behavioral (NSE < 0.3) solutions. The behavioral parameter sets are
then divided into 10 equally sized groups based on sorted NSE val-
ues [17,65]. For each parameter, cumulative distributions of the
parameter within each of the 10 groups are plotted, producing 10
cumulative distribution curves (CDCs). Similarity (closeness) be-
tween the produced CDCs reveals that the parameter is insensitive,
whereas spread between these CDCs suggests high parameter sen-
sitivity [17]. The Kolmogorov-Smirnov (KS) test [27] is applied to
quantify the difference between the CDCs, where the calculated
KS value is the maximum vertical distance between the 10 CDCs.
The KS value ranges from 0 to 1, with higher values indicating high-
er parameter sensitivities.

Based on literature recommendations [56], 10,000 parameter
sets are generated within their feasible ranges and a corresponding
10,000 SWE estimates (model simulations) are generated for each
of the 12 sites. Behavioral sets are selected based on the NSE value,
corresponding CDCs are generated, and the KS statistic is esti-
mated. On the basis of the KS results, insensitive parameters are
identified. Finally, the correlation between parameter sensitivity
and site characteristics is assessed.

NSE=1—

(3)

2.3.2. The Differential Evolution Adaptive Metropolis (DREAM)
algorithm

The Differential Evolution Adaptive Metropolis (DREAM) algo-
rithm was recently introduced by Vrugt et al. [62] to estimate opti-
mal parameter values and their underlying posterior probability
density function within a single run. This MCMC scheme is an
adaptation of the Shuffled Complex Evolution Metropolis [60] glo-
bal optimization algorithm and has the advantage of maintaining
detailed balance and ergodicity while showing good efficiency on
complex, highly nonlinear, and multimodal target distributions
[61-63].

In the DREAM algorithm, a preset number (N) of Markov Chains
(a chain refers to a vector containing one parameter realization)
are simultaneously run in parallel. The chains are initialized by
randomly sampling the parameter space using the specified prior
distribution. These chains form a population, conveniently stored
as a N x d matrix X, with d the dimension of the parameter space.
For each chain, i € {1,2,...,N}, a candidate point z; (vector) is gen-
erated by taking a fixed multiple of the difference between ran-
domly chosen pairs of chains (without replacement) of X_; (X
without x;) [62]:

) 1)
zi = X; + (1g + €))(3, deg) {Z XriG) = O Xy | + 8 (4)
n=1

j=1

where ¢ signifies the number of chain pairs, 7 is a jumprate, and
r1(j), ro(n) € {1,2,...,N} but r1(j) # ry(n) # i.*The value of e is drawn
from Ug(—b, b) with |b| <1, and & ~ Ng(0,b ) is a white noise term
with b small compared to the width of the target distribution.
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The Metropolis ratio is used to decide whether to accept the candi-
date point or not. If accepted, the chain moves from x; to z;, other-
wise the location of the chain remains unchanged. From the
guidelines of y in Random Walk Metropolis (RWM), a good choice
of y =2.38/,/2ddys, where dey denotes the number of dimensions
that will be updated. With this approach, a Markov chain is ob-
tained, the stationary distribution of which is the posterior distribu-
tion. The proof of this is presented in Vrugt et al. [61]. After a
so-called burn-in period, the convergence of a DREAM run can be
monitored with the R-statistic of Gelman and Rubin [19], which
compares the variance within and between the chains. A value of
R smaller than 1.2 for each parameter (ﬁk <12, k=1,2,...,d)
diagnoses convergence to a limiting distribution. A detailed descrip-
tion of DREAM appears in Vrugt et al. [62,63], and so will not be re-
peated here. The robustness and usefulness of the DREAM
algorithm has been demonstrated previously. Using a variety of dif-
ferent case studies, Vrugt et al. [61] showed that DREAM works
really well compared to existing MCMC schemes. Moreover, conver-
gence results demonstrate that DREAM can also outperform the
widely used SCE-UA global optimization algorithm [11].

In the current study, DREAM is applied with standard algorith-
mic settings to determine the posterior distribution of the
SNOW17 parameters. This distribution contains all desired infor-
mation about the posterior mean, uncertainty intervals, and
cross-correlation of each individual parameter. In keeping with
previous studies, we use a traditional least squares likelihood func-
tion containing the deviation between measured and SNOW17 pre-
dicted SWE. For each DREAM trial, a maximum total of 35,000
SNOW17 model runs were used. Preliminary tests have shown that
this number of model evaluations is sufficient to obtain conver-
gence to the posterior distribution according to the R-statistic of
[19].

When using DREAM, the uncertainty analysis is presented in
terms of: (I) performance of the traditional best parameter combi-
nation (best posterior parameter set), (II) performance of all pos-
terior parameter samples (95% prediction uncertainty associated
with the posterior parameter sets is used), and (III) uncertainty
and correlation of posterior parameters. The best parameter set re-
fers to the one producing the lowest (best) RMSE value. In present-
ing the best parameter set (simulation) at each site, other metrics
including the NSE and percent bias are applied. In assessing the
prediction of the ensemble of posterior parameter sets (with R-
statistic less than 1.2), the focus is on the coverage of SWE obser-
vations by SWE predictions estimated via these parameter sets.
The coverage is hereinafter defined as the containing ratio (CR)
which stands for the percentage of SWE observations contained
within the bounds of the SWE simulated by the ensembles, evalu-
ated over the simulation period. The CR ranges from O to 1 with
higher value indicating better coverage [68]. For comparison pur-
poses, the performance of the prior parameter sets is also assessed.
Note that the prior parameter sets are those generated from the
initial uniform distribution using the LHS sampling method. To
facilitate comparison, we also evaluate the CR in terms of the
spread of the prediction ensemble, estimating a normalized con-
taining ratio (NCR), defined as:

NeR— R R (5)

Masr (swe! - swe)

where CR designates the unitless containing ratio; M represents the
time-averaged width of prediction bounds, or the difference between

the upper (SWE,U) and lower bound (SWE?) of SWE estimates, and n

is the number of simulation days. A higher NCR value indicates a high
containing ratio associated with low forecast uncertainty (low M),
whereas a lower NCR value (near 0) could indicate a low containing

ratio or, alternatively, a high containing ratio associated with high
forecast uncertainty (high M). In either case, a low NCR would repre-
sent an unwanted situation in model predictions. The prior and pos-
terior SWE prediction ensemble is also compared to the prediction
produced from the widely used SCE-UA global optimization algo-
rithm using a standard least squares objective function [11].

The performance of both the best parameter set and the ensem-
ble of parameter sets are first evaluated at the 12 study sites within
the 14-year study period. Next, performance is examined at annual
time scales at three selected sites. These three sites, LL (CA) from
the Pacific Northwest, BL (CO) from Colorado, and WH (AZ) from
the Arizona/New Mexico region, represent a range of average an-
nual snowfall, including high, medium, and scarce snowfall,
respectively. The marginal distribution of posterior parameters
and Spearman'’s rank correlation are investigated at the three se-
lected sites for brevity.

3. Results and discussion
3.1. Sensitivity analysis

The KS values for model parameters (Table 1) at the 12 study
sites are computed (Fig. 4). Results show that parameters TIPM
and NMF have generally lower KS values for all the sites with max-
imum KS values of 0.20 and 0.25, respectively. This reveals that
parameters TIPM and NMF involved in calculating heat transfer
during non-melt periods are insensitive at the study sites. PLWHC
also has consistently low KS values across the study sites. SCF,
PXTEMP, and MFMAX have significantly higher KS values, with
average KS values of 0.66, 0.52, and 0.46, respectively. As discussed
previously, SCF and PXTEMP directly alter the volume of simulated
SWE in the SNOW17. The high sensitivity of MFMAX is due to the
fact that MFMAX is the primary control on snowmelt rate during
non-rain periods after March 21; non-rain melt dominates in the
Western US and the primary melt season occurs after March 21
at most of the study sites. Parameters UAD] and MFMIN have less
overall sensitivity. The sensitivity of MBASE and DAYGM is small,
but these parameters are more sensitive at several sites than
parameters NMF, TIPM, and PLWHC. Given these results, parame-
ters NMF, TIPM, and PLWHC are excluded from further analyses.

For the more sensitive parameters, the degree of sensitivity var-
ies from site to site, suggesting that the physical site characteristics
(topographic and climatic factors) influence parameter sensitivity
(Fig. 4). To more closely examine this relationship, the correlation
between KS values and site information are evaluated (Fig. 5). The
metric applied is the Spearman’s rank correlation coefficient
(Spearman’s p), which ranges from —1 to 1 with a higher absolute
value indicating higher correlations. We also estimate a corre-
sponding p-value statistic to determine if the Spearman rank corre-
lation is significant or not, with a value less than 0.05 indicating
significant correlation. In general, parameter sensitivity shows
low correlations (correlation coefficient less than 0.6) with most
site characteristics (Fig. 5). An exception is that site mean annual
air temperature exhibits negative correlations with the sensitivity
of parameters SCF and DAYGM. The corresponding Spearman’s p
are —0.76 and —0.62, respectively. The p-values are 0.01 and
0.03, respectively, indicating that the correlation is significant. As
noted, SCF controls the mass of the snowfall input in the accumu-
lation period, with a higher SCF value leading to higher snowfall in-
put under a given set of air temperature time series; whereas air
temperature inversely regulates snowfall input in the same period
with higher temperature resulting in lower snowfall with a fixed
SCF. In the accumulation season, when the temperature is higher,
the impact of SCF is expected to be less significant on model sim-
ulations. The dependency of model estimates on SCF is therefore
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less, which explains the negative correlation between air tempera-
ture and the sensitivity of parameter SCF. Similarly, under condi-
tions where there is heat exchange between the soil surface and
snowpack (soil surface is not isothermal at 0 °C), higher tempera-
tures result in a shallower snowpack, which would be expected
to have a colder base and lower heat exchange with the ground
surface. Consequently, DAYGM would be lower for a shallower
snowpack and less important in determining overall snowpack
water balance. Site snowfall fraction is also correlated to SCF

sensitivity, with a coefficient of 0.62 and p-value of 0.03. This is
also expected since higher SCF values result in more snowfall in-
put, thus increasing the snowfall fraction. It should be noted that
the correlation between MBASE sensitivity and melting period is
0.59 which is close to, but less than, the threshold value (0.60).
Due to the insensitivity of parameters NMF, TIPM, and PLWHC
at all study sites, these parameters are fixed at constant values in
the DREAM analysis. At a few sites, the sensitivity of MBASE and
DAYGM is evident; therefore these parameters are classified as
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sensitive and are included in the uncertainty analysis. Parameter
sensitivity is poorly correlated with elevation, maximum SWE, pre-
cipitation, and length of melting period. Parameter sensitivity
might be affected by multiple site characteristics, in which case
it would be difficult to distinguish the effect of one characteristic
from another. Furthermore, other site physiographics, including
aspect and vegetation cover, may have a significant impact on wa-
tershed-scale snow accumulation and ablation rates. Their
influence on parameter sensitivity may not be evident in our
point-scale analysis, but may be more apparent, and have more
influence, at the basin-scale.

3.2. Uncertainty analysis

3.2.1. Prediction of best posterior parameter set

The SWE estimates produced from the best posterior parameter
set (maximum likelihood) are compared to the observed SWE. The
RMSE, NSE, and bias metrics are calculated for the 14-year study
period at each site (Fig. 6). First, the NSE value is consistently great-
er than 0.8 (Fig. 6a), indicating that the SNOW17 model configured
with the best parameter set accurately reproduces the SWE at all
sites. Second, the normalized RMSE (RMSE divided by long-term
annual mean snowfall) shows significant variability (Fig. 6b), with
the highest value at site LL (CA) and the lowest value at site WH
(AZ), sites that receive the highest and lowest annual precipitation,
respectively. In addition, sites MC (WA), HM (OR), IL (CA), and LL
(CA), located in regions that receive higher precipitation (Pacific
Northwest and Sierra Nevada regions), show significantly higher
RMSE values. Last, the percent bias calculated at each site indicates
a generally good match between simulated and observed SWE,
with the highest percent bias at —5.5% (sites MC (WA) and TD
(WY)). SWE is consistently under-estimated at all sites (Fig. 6c).
Since the best parameter set is derived by minimizing the RMSE,
it is most likely that the under-catch in wet years would dominate
the RMSE calculation (by over-weighting the over-catch in dry
years) and thus result in overall underestimation at the SNOTEL
sites.

To further verify the robustness of the optimal DREAM param-
eter set, we investigate the model prediction at the annual scale

1 T T T T 1 T
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for three sites: LL (Leavitt Lake, CA), BL (Brumley, CO), and WH
(White Horse Lake, AZ). Sites LL (CA), BL (CO), and WH (AZ) receive
1815 mm, 307 mm, and 113 mm snowfall on an annual basis,
respectively. The annual average RMSE accounts for 8%, 7%, and
12% of the annual average snowfall amount at three sites, respec-
tively (Fig. 7). This indicates that the prediction at wet sites LL
(CA) and BL (CO) is relatively better than at the drier site, WH
(AZ). Furthermore, for each site, there are several years where
the RMSE value is evidently higher. For instance, at site LL (CA),
the RMSE calculated for WY2006 is the highest (Fig. 7a), accounting
for 18% of the total snowfall of that year. Scrutinizing the hyeto-
graph (not shown) of this year shows that most precipitation oc-
curs in the early winter. Precipitation in December and January
accounts for 45% of the annual total precipitation and the peak pre-
cipitation (216 mm) occurs in early December. On January 2, 2006
(following a four-day intense precipitation event (396 mm) start-
ing from December 30, 2005), the model simulated SWE only ac-
counts for 80% of the observation due to erroneous classification
of snowfall from the precipitation by the model. The bias starts
to accumulate from that day forward. Consequently, the model-
predicted peak is 20% lower than the observed peak and modeled
SWE melts out 15 days earlier. The discrepancy in peak and melt-
ing patterns leads to higher RMSE values. In summary, the perfor-
mance of the best parameter set varies from year to year and, as
expected, is more satisfactory in normal years than in extreme
years. In addition, the performance is not solely affected by snow-
fall totals. The temporal distribution of snowfall (variance from the
normal pattern) also significantly influences model predictions.

3.2.2. Prediction of posterior parameter sets

The performance of DREAM-derived posterior parameter sets is
first evaluated using the containing ratio (CR). Second, the perfor-
mance is compared to the prior parameter sets. Last, the perfor-
mance is evaluated against that of the widely used SCE-UA global
optimization algorithm. The median value of the SWE prediction
ensembles is used in the comparison with the calibration algo-
rithm. The CR values range from 0.62 (at TD (WY) and VL (CO))
to 0.76 (at LL (CA)), with a mean value of 0.69 (Fig. 8a). The CR is
also highly variable from year to year (Fig. 8b). The highest CR
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Fig. 6. Statistics of 14-year (WY1995-2008) SWE predictions simulated using the DREAM-derived optimal parameter set: (a) NSE, (b) normalized RMSE (RMSE divided by

annual mean snowfall), and (c) percent bias.
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values for sites LL (CA), BL (CO), and WH (AZ) are 0.93 (WY1996),
0.94 (WY2001), and 0.94 (WY2006), respectively. These years re-
ceive normal amount of precipitation, indicating excellent perfor-
mance of the parameter sets in normal years. Correspondingly,
the lowest CR values are 0.36 (WY2006), 0.45 (WY2006), and
0.59 (WY2001) for LL (CA), BL (CO), and WH (AZ), respectively.
The low CR value for WY2006 at site LL (CA) is expected since, as
described above, the model performs poorly in that year even with
the optimal parameter set. Similarly, for site BL (CO), model perfor-
mance in WY2007 is not satisfactory; under-estimation of SWE

starting in early winter results in a low CR value. At site WH (AZ)
there are two apparent accumulation-ablation periods (October
to middle November and early January to late March) in WY2001
(not shown). The model fails to capture the first accumulation pro-
cess (it misclassifies precipitation as rain since the mean air tem-
perature of the process is greater than 2 °C) and subsequently
the first melting process. The simulated SWE from the first period
persists until the beginning of the next accumulation phase, lead-
ing to consistently higher SWE estimate in the second period.
Overall, the SWE is over-estimated. The over-estimation likely re-
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sults in low CR value at the site in WY2001. The annual mean CR
values at the three sites are 0.76 (LL (CA)), 0.69 (BL (CO)), and
0.75 (WH (AZ)), respectively, suggesting acceptable long-term per-
formance of the model-derived SWE ensembles at all three sites.
However, the low CR value at site LL (CA) (0.36) illustrates that it
is possible to produce SWE ensemble estimates without satisfac-
tory coverage of observations. As discussed earlier, the skewed dis-
tribution of precipitation in WY2006 is most likely contributing to
the low coverage of the observations.

To investigate the extent to which the posterior parameter sets
outperform the prior, the coverage of observations associated with
prior and posterior uncertainty intervals is calculated. The prior
uncertainty interval (generally wider) would be expected to cover
more observations. This is due to the fact that the prior parameters
are generated from the entire parameter space while the posterior
parameters are within a smaller region of the parameter space. To
make the comparison meaningful, a metric reconciling both CR and
the width of uncertainty interval (NCR, Eq. (5)), is applied. The ratio
of the posterior NCR to the prior NCR for sites LL (CA), BL (CO), and
WH (AZ) are evaluated (Fig. 8c). At the three selected sites, the pos-
terior parameter ensemble outperforms the prior parameter
ensemble (ratio greater than one) in all years. Specifically, the ratio
at site LL (CA) in WY1996 reaches 34, a value indicating that the
posterior parameter ensembles perform considerably better than
the prior parameter ensembles.

Peak SWE estimates for three years from sites LL (CA), BL (CO),
and WH (AZ) are also examined (Fig. 9). These years correspond to
a relative wet year, normal year, and dry year with respect to
snowfall received at each site. As expected, the uncertainty in the

prior ensembles is consistently larger than the posterior ensem-
bles. Comparing to the prior uncertainty bounds, the posterior
bounds more adequately capture the SWE peaks. Furthermore,
both the prior and posterior uncertainty bounds generally mimic
the pattern of observed SWE. However, the posterior ensembles
more closely and more appropriately match SWE variability. In
addition, at the wet site (LL (CA)), some of the prior parameters
provide non-zero SWE prediction in the summer due to the fact
that the over-estimated peak SWE predictions take much longer
to melt-out. Last, for all three years at site BL (CO), the melt-out
dates of the prior predictions are significantly lagged in compari-
son to the SWE observations.

Overall, the median of the SWE prediction ensemble (produced
from the DREAM-derived posterior parameters) more closely
resembles the observed SWE than the prediction produced from
SCE-UA derived optimal parameter set at three selected sites
(Table 3). For sites BL (CO) and WH (AZ), the ensemble median out-
performs the SCE-UA prediction in terms of the NSE and RMSE met-
rics investigated. For site LL (CA), in comparison with the ensemble
median, the SCE-UA prediction has a higher RMSE (which indicates
worse estimation on high SWE) and lower bias (which indicates
smaller overall deviation from observations). This suggests that
the SCE-UA predictions provide poorer estimation of lower SWE
values as a result of the algorithm trying to minimize the overall
least squared error between modeled and observed SWE (the
objective function applied in the SCE-UA). Results further illustrate
that the median of predictions derived from the prior parameters is
generally poorer than the median posterior prediction and SCE-UA
prediction (Table 3).
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Fig. 9. Prior and posterior 95% SWE prediction uncertainty ranges (shaded regions) along with SWE observations (circles). The top, middle, and bottom rows show results for
sites Leavitt Lake (LL (CA)), Brumley (BL (CO)), and White Horse Lake (WH (AZ)), respectively. The left, middle, and right columns illustrate examples of model performance for
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Table 3

Summary statistics of 14-year (WY1995-2008) SWE predictions for three selected
SNOTEL sites using the median of DREAM-derived posterior parameter ensemble and
the SCE-UA derived optimal parameter set. Cases 1 and 2 represent the median of
prior and posterior SWE prediction, respectively. Case 3 represents the SCE-UA
prediction.

Site Case Statistics
NSE RMSE (mm) BIAS (%)
LL Case 1 -0.41 893.05 87.71
Case 2 0.94 177.65 -3.61
Case 3 0.93 200.18 -0.88
BL Case 1 0.76 55.16 24.48
Case 2 0.96 23.26 -1.55
Case 3 0.94 26.64 -6.61
WH Case 1 0.65 22.61 20.98
Case 2 0.81 16.51 —5.50
Case 3 0.71 20.64 -26.71

3.2.3. Uncertainty and correlation of posterior parameters

The correlation between posterior parameter ensemble width
(uncertainty) for seven model parameters and various site charac-
teristics is evaluated for all study sites (Fig. 10). The evaluation
aims to identify potential regional relationships between parame-
ter uncertainty and site hydroclimatic conditions. In general, there
are only a few site/parameter combinations that show strong cor-
relation. The uncertainty of PXTEMP is negatively correlated to site
elevation (—0.91; p-value 0.00) and positively correlated to air
temperature (0.75; p-value 0.01). Recall that PXTEMP (ranging
from —2°C to 2°C) distinguishes snowfall from precipitation
based on the criterion that precipitation is in the form of snowfall
when air temperature is less than PXTEMP. More winter precipita-
tion at higher elevation is more likely to be snowfall (air tempera-
ture less than —2 °C). In this case, PXTEMP has less impact on the
determination of snow versus rain (i.e., most precipitation is in
the form of snow), leading to smaller variations in its range. The
uncertainty in parameter UAD] is found to be positively correlated
to elevation (0.67; p-value 0.02) and negatively correlated to air
temperature (—0.73; p-value 0.01). UAD] accounts for heat ex-
change due to turbulent transfer of heat during rain periods. It is
likely that the larger uncertainty in UAD]J with increasing elevation
is due to increasing winds at higher elevation for which the con-
stant UADJ cannot account. Last, a negative correlation is observed
between the uncertainty in SCF and site precipitation (-0.61; p-
value 0.04) and between SCF and length of the melting period
(—0.61; p-value 0.03). As described previously, SCF is a mass cor-
rection factor. Recall that the posterior parameters are obtained

by minimizing the RMSE of simulated and observed SWE. The more
precipitation received at a site, the less variation is expected in SCF
in order to produce SWE estimates deviating less from the ob-
served SWE (smaller RMSE). Considering the fact that SCF functions
in the accumulation period rather than the melting period, the
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Fig. 11. Normalized posterior marginal parameter distributions at the three select
sites: Leavitt Lake (LL (CA), dark gray), Brumley (BL (CO), medium gray), and White
Horse Lake (WH (AZ), white).
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correlation between SCF and the length of melting period is most
likely indirect, as the overall amount of precipitation is strongly re-
lated to the length of the melting period.

The normalized marginal distributions of the posterior parame-
ters at sites LL (CA), BL (CO), and WH (AZ) are illustrated (Fig. 11).
Parameter SCF (Fig. 11a) shows a normal distribution at all three
sites. In addition, at each site, the peak of the distribution is in the
middle part of the parameter range. Parameter MFMAX (Fig. 11c)
is similar to that of SCF, with the exception that the distribution
at site BL (CO) is skewed to the first half of parameter range. Param-
eters UAD] (Fig. 11b) and DAYGM (Fig. 11g) follow log-normal type
distributions. Parameter PXTEMP (Fig. 11e) roughly follows a uni-
form distribution at all three sites. This finding implies that the
prior and posterior marginal distribution of parameter PXTEMP fol-
lows a similar type, indicating that there is no significant high prob-
ability region of the parameter PXTEMP space. However, the
posterior PXTEMP mean at site LL (CA) is constantly different from
sites BL (CO) and WH (AZ) (Table 4). Parameters MFMIN (Fig. 11d)
and MBASE (Fig. 11f) distributions appear to be site-dependent
(log-normal or normal distributions). In general, most parameters
(except for MFMIN and MBASE) have the same posterior distribu-
tions at different sites. In addition, for the same site, different
parameters may follow different types of distributions, indicative
of the complex form of the joint distribution of posterior
parameters.

There are few significant correlations among most of the
parameters at each of the three sites (Table 4). At site LL (CA),
the correlation between parameters MFMAX and MBASE is 0.95.
This is likely due to the fact that non-rain melt is the primary melt
process at site LL (CA) and that the melt starts in the Spring at the
site (on April 25, Table 2). Recall that parameters MFMAX, MFMIN,
and MBASE control non-rain melt where MFMAX and MBASE dom-
inate the calculation of melt amount after March 21. The high cor-
relation between MFMAX and MBASE at the site is thus expected.
At site WH (AZ), a correlation coefficient of 0.72 is found between
parameters SCF and MFMIN. The p-values under both cases are
much less than 0.05, indicating that the correlation is significant.
Moderate correlations are seen between parameters SCF and
MFMAX (—0.38) and SCF and MBASE (—0.55) at site LL (CA); be-

Table 4
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tween parameters SCF and MFMAX (0.44) and between MBASE
and MFMAX (0.41) at site BL (CO); and between MFMIN and DAY-
GM (-0.33) at site WH (AZ).

4. Summary and conclusions

In the current study the sensitivity and uncertainty of SNOW17
model parameters are investigated for a set of SNOTEL sites with
varying hydroclimatic characteristics using the commonly applied
GSA and the advanced parameter uncertainty algorithm DREAM.
The study demonstrates how different SNOW17 parametric sensi-
tivity and uncertainty vary under different hydroclimatic (forcing)
conditions. Results also show the regionalization information asso-
ciated with the parametric sensitivity and uncertainty. In addition,
the study has implications with regards to model behavior and
merging observational data and the model via data assimilation
techniques, which are addressed in future work. Findings from
the current study are summarized as follows:

(1) Parameter sensitivity is highly variable from site to site.
Parameters SCF, MFMAX, and PXTEMP are generally sensi-
tive across the study sites, while the remaining parameters
are only sensitive at a few of the study sites. Consistent sen-
sitivity of SCF and PXTEMP is expected because they control
snowfall input to the model. This observation highlights the
importance of identifying and correcting precipitation bias
(usually undercatch) as well as improving rain-snow parti-
tioning in snow modeling, laying the foundation for
improved modeling of accumulation processes and, subse-
quently, melting processes. Improved understanding of the
accumulation phase also holds considerable potential for
improving the areal extent of snow cover in distributed
snow modeling, allowing better representation of the
observed heterogeneity of watershed snowpack. MFMAX is
sensitive because it is the key parameter determining
non-rain melt which is the primary melt process in the Wes-
tern US. Three parameters NMF, TIPM, and PLWHC are gen-
erally insensitive at all sites.

Posterior mean and correlation structure between SNOW17 model parameters for three selected SNOTEL sites for the study period (WY1995-2008). Shading designates level of

correlation: low (white), medium (light gray), high or significant (dark gray).

Parameter Posterior mean SCF UAD] MFMAX MFMIN PXTEMP MBASE DAYGM
Site Leavitt Lake (LL, CA)

SCF 0.72 - 0.00 -0.38 —-0.03 0.00 -0.55 0.07
UAD] 0.03 - - 0.01 0.03 -0.02 0.03 0.03
MFMAX 0.96 - - - 0.08 -0.04 0.95 0.03
MFMIN 0.05 - - - - 0.00 0.10 0.05
PXTEMP 1.95 - - - - - 0.04 0.05
MBASE 0.56 - - - - - - 0.03
DAYGM 0.00 - - - - - - -

Site Brumley (BL, CO)

SCF 1.04 - —-0.06 0.44 0.00 0.05 -0.12 0.32
UAD] 0.03 - - -0.11 0.02 0.00 0.02 -0.02
MFMAX 1.18 - - - 0.05 0.02 0.41 -0.01
MFMIN 0.05 - - - - —-0.02 0.09 0.00
PXTEMP 1.05 - - - - - -0.01 0.03
MBASE 0.01 - - - - - - -0.05
DAYGM 0.30 - - - - - - -

Site White Horse Lake (WH, AZ)

SCF 1.06 - 0.05 0.19 0.72 0.03 —0.06 0.10
UAD] 0.03 - - 0.01 0.04 0.01 -0.01 —-0.02
MFMAX 0.66 - - - -0.15 0.01 0.20 0.05
MEMIN 0.07 - - - - 0.00 0.01 -0.33
PXTEMP 1.05 - - - - - 0.00 0.04
MBASE 0.02 - - - - - - 0.04
DAYGM 0.29 - - - - - - -
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(2) The 95% SWE prediction uncertainty ranges corresponding
to the posterior parameter sets contains, on average, 75%
of the observations in respect to both peak and variation
(pattern) at three selected sites with contrasting wetness.
In addition, the median posterior simulation outperforms
the prediction of the widely used deterministic calibration
algorithm (SCE-UA), confirming the robustness of DREAM
in estimating parameter and model predictive uncertainty.

(3) There is generally low correlation between SNOW17 para-
metric sensitivity/uncertainty and most site characteristics
investigated. This shows that the regionalization informa-
tion is very limited, and hence it will be difficult to identify
useful empirical relationships for complex snow models to
extrapolate parametric sensitivity and uncertainty to
ungaged areas. Our results suggest that to accurately iden-
tify sensitivity and uncertainty patterns of model parame-
ters for a given site and study period, the coupled
sensitivity and uncertainty analysis should be conducted
for that case specifically.

(4) For the sites studied, the mean posterior parameter values
change from site to site. The inter-correlation among poster-
ior parameters also varies with different study sites,
although there are only a few pairs of parameters at each
site which have significantly strong correlation. The mar-
ginal distributions of most model parameters have similar
distribution types. The derived correlation structure and dis-
tributions provide critical information on formulating a real-
istic and accurate data assimilation framework for a range of
operational forecasting locations across the western US. Sci-
ence-based estimates of parameter distribution should also
help improve probabilistic ensemble streamflow predic-
tions, which the NWS relies on to produce long-term
streamflow outlooks [9,14].

It is worth noting that our analyses do not explicitly address
uncertainty in forcing (except for those represented by SCF and
PXTEMP uncertainty), observations, and model structure. These
different sources of uncertainty and their affect on regionalization
will be addressed in due course. In addition, due to the limited
availability of SNOTEL data on a time scale finer than a day, simu-
lations are conducted using a 24-h time step only. Application of
SNOW17 to analyze diurnal variations could potentially yield dif-
ferent results and hence requires further investigation.

Acknowledgements

The authors thank Dr. Pedro Restrepo, Dr. Dong-Jun Seo, and Dr.
Yugiong Liu for their suggestions and advice on the development of
this work. This work is partially supported by a grant from the Na-
tional Oceanic Atmospheric Administration (NOAA) National
Weather Service (NAO7NWS4620013) and by a UCLA Graduate
Division Fellowship. The work of the last author is supported by
a J. Robert Oppenheimer Fellowship from the Los Alamos National
Laboratory Postdoctoral Program.

References

[1] Ajami NK, Duan Q, Sorooshian S. An integrated hydrologic Bayesian
multimodel combination framework: confronting input, parameter, and
model structural uncertainty in hydrologic prediction. Water Resour Res
2007;43:W01403.

Anderson EA. Calibration of conceptual models for use in river
forecasting. Hydrology Lab., Silver Spring, MD: National Weather Service;
2002.

Anderson EA. National weather service river forecast system - snow
accumulation and ablation model. Tech. memo NWS HYDRO-17. Silver
Springs, Md.: National Oceanographic and Atmospheric Administration;
1973. p. 2491.

2

3

[4] Beck MB. Water quality modeling: a review of the analysis of uncertainty.
Water Resour Res 1987;23:1393.

[5] Beven K, Binley A. Future of distributed models: model calibration and
uncertainty prediction. Hydrol Process 1992;6:279.

[6] Blasone RS, Vrugt JA, Madsen H, Rosbjerg D, Robinson BA, Zyvoloski GA.
Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov
Chain Monte Carlo sampling. Adv Water Resour 2008;31:630.

[7] Christiaens K, Feyen ]. Use of sensitivity and uncertainty measures in
distributed hydrological modeling with an application to the MIKE SHE
model. Water Resour Res 2002;38:1169.

[8] Crook AG. SNOTEL: monitoring climatic factors to predict water supplies. ] Soil
Water Conserv 1977;32.

[9] Day GN. Extended streamflow forecasting using NWSRFS. ] Water Res PI-ASCE
1985;111:157.

[10] Doesken NJ, Schaefer GL. The contribution of SNOTEL precipitation
measurements to climate analysis, monitoring and research. In: Western
snow conference, Vancouver, B.C., Canada; 1987. p. 14.

[11] Duan Q, Sorooshian S, Gupta V. Effective and efficient global optimization for
conceptual rainfall-runoff models. Water Resour Res 1992;28:1015.

[12] Fassnacht SR, Dressler KA, Bales RC. Snow water equivalent interpolation for
the Colorado River basin from snow telemetry (SNOTEL) data. Water Resour
Res 2003;39:1208.

[13] Franz K]. Characterization of the comparative skill of conceptual and
physically-based snow models for streamflow prediction. Irvine: University
of California; 2006. p. 223.

[14] Franz K], Hartmann HC, Sorooshian S, Bales R. Verification of national weather
service ensemble streamflow predictions for water supply forecasting in the
Colorado River basin. ] Hydrometeorol 2003;4:1105.

[15] Franz K], Hogue TS, Sorooshian S. Operational snow modeling: addressing the
challenges of an energy balance model for National Weather Service forecasts.
] Hydrol 2008;360:48.

[16] Franz K], Hogue TS, Sorooshian S. Snow model verification using ensemble
prediction and operational benchmarks. ] Hydrometeorol 2008;9:1402.

[17] Freer ], Beven K, Ambroise B. Bayesian estimation of uncertainty in runoff
prediction and the value of data: an application of the GLUE approach. Water
Resour Res 1996;32:2161.

[18] Garbrecht JD. Comparison of three alternative ANN designs for monthly
rainfall-runoff simulation. ] Hydraul Eng ASCE 2006;11:502.

[19] Gelman A, Rubin DB. Inference from iterative simulation using multiple
sequences. Stat Sci 1992;7:457.

[20] Hamby DM. A review of techniques for parameter sensitivity analysis of
environmental models. Environ Monit Assess 1994;32:135.

[21] He M. Data assimilation in watershed models for improved hydrologic
forecasting. Los Angeles: University of California; 2010. p. 172.

[22] Hogue TS, Bastidas LA, Gupta HV, Sorooshian S. Evaluating model performance
and parameter behavior for varying levels of land surface model complexity.
Water Resour Res 2006;42:W08430.

[23] Hornberger GM, Spear RC. An approach to the preliminary analysis of
environmental systems. ] Environ Manage 1981;12:7.

[24] Kavetski D, Kuczera G, Franks SW. Bayesian analysis of input uncertainty in
hydrological modeling: 1. Theory. Water Resour Res 2006;42:W03407.

[25] Kitanidis PK, Bras RL. Real-time forecasting with a conceptual hydrologic
model 1. Analysis of uncertainty. Water Resour Res 1980;16:1025.

[26] Koren V, Reed S, Smith M, Zhang Z, Seo DJ. Hydrology laboratory research
modeling system (HL-RMS) of the US National Weather Service. ] Hydrol
2004;291:297.

[27] Kottegoda NT, Rosso R. Statistics, probability, and reliability for civil and
environmental engineers. New York: McGraw-Hill; 1997.

[28] Kuczera G, Parent E. Monte Carlo assessment of parameter uncertainty in
conceptual catchment models: the Metropolis algorithm. ] Hydrol
1998;211:69.

[29] Liu Y, Gupta HV. Uncertainty in hydrologic modeling: toward an integrated
data assimilation framework. Water Resour Res 2007;43:W07401.

[30] Madsen H. Automatic calibration of a conceptual rainfall-runoff model using
multiple objectives. ] Hydrol 2000;235:276.

[31] Margulis SA, McLaughlin D, Entekhabi D, Dunne S. Land data assimilation and
estimation of soil moisture using measurements from the Southern Great
Plains 1997 field experiment. Water Resour Res 2002;42:W01407.

[32] McKay MD. Sensitivity and uncertainty analysis using a statistical sample of
input values. Boca Raton, Fla: CRC Press; 1988. pp. 145-86.

[33] Montanari A. What do we mean by’uncertainty’? The need for a consistent
wording about uncertainty assessment in hydrology. Hydrol Process
2007;21:841.

[34] Mote PW. Trends in snow water equivalent in the Pacific Northwest and their
climatic causes. Geophys Res Lett 2003;30:1601.

[35] Mote PW, Hamlet AF, Clark MP, Lettenmaier DP. Declining mountain
snowpack in Western North America. Bull Am Meteorol Soc 2005;86:39.

[36] Muleta MK, Nicklow JW. Sensitivity and uncertainty analysis coupled with
automatic calibration for a distributed watershed model. ] Hydrol
2005;306:127.

[37] Nash JE, Sutcliffe JV. River flow forecasting through conceptual models: Part I.
A discussion of principles. ] Hydrol 1970;10:282.

[38] NRCS. SNOTEL data collection system. Natural Resources Conservation Service;
1997.

[39] NWS. National Weather Service River forecast system - user’s manual. Silver
Spring, MD.: Hydrology Lab, National Weather Service; 2004.



M. He et al./Advances in Water Resources 34 (2011) 114-127 127

[40] Reed S, Koren V, Smith M, Zhang Z, Moreda F, Seo D-], et al. Overall distributed
model intercomparison project results. ] Hydrol 2004;298:27.

[41] Seo DJ, Koren V, Cajina N. Real-time variational assimilation of hydrologic and
hydrometeorological data into operational hydrologic forecasting. ]
Hydrometeorol 2003;4:627.

[42] Serreze MC, Clark MP, Armstrong RL, McGinnis DA, Pulwarty RS.
Characteristics of the western United States snowpack from snowpack
telemetry (SNOTEL) data. Water Resour Res 1999;35:2145.

[43] Serreze MC, Clark MP, Frei A. Characteristics of large snowfall events in the
montane western United States as examined using snowpack telemetry
(SNOTEL) data. Water Resour Res 2001;37:675.

[44] Service RF. As the west goes dry. Science 2004;303:1124.

[45] Shamir E, Carpenter TM, Fickenscher P, Georgakakos KP, Asce M. Evaluation of
the National Weather Service operational hydrologic model and forecasts for
the American River basin. ] Hydrol Eng 2006;11:392.

[46] Shamir E, Georgakakos KP. Distributed snow accumulation and ablation
modeling in the American River basin. Adv Water Resour 2006;29:
558.

[47] Shamir E, Georgakakos KP. Estimating snow depletion curves for
American River basins using distributed snow modeling. ] Hydrol 2007;334:
162.

[48] Sieber A, Uhlenbrook S. Sensitivity analyses of a distributed catchment model
to verify the model structure. ] Hydrol 2005;310:216.

[49] Singh P, Singh VP. Snow and glacier hydrology. The Netherlands: Kluwer
Academic Publishers; 2001.

[50] Slater AG, Clark MP. Snow data assimilation via an ensemble Kalman filter. ]
Hydrometeorol 2006;7:478.

[51] Smith MB, Seo D-], Koren VI, Reed SM, Zhang Z, Duan Q, et al. The distributed
model intercomparison project (DMIP): motivation and experiment design. J
Hydrol 2004;298:4.

[52] Spear RC, Grieb TM, Shang N. Parameter uncertainty and interaction in
complex environmental models. Water Resour Res 1994;30:3159.

[53] Spear RC, Hornberger GM. Eutrophication in peel inlet - II. Identification of
critical uncertainties via generalized sensitivity analysis. Water Res
1980;14:43.

[54] Stewart IT, Cayan DR, Dettinger MD. Changes in snowmelt runoff timing in
Western North America under a ‘business as usual’ climate change scenario.
Climatic Change 2004;62:217.

[55] TangY, Reed P, van Werkhoven K, Wagener T. Advancing the identification and
evaluation of distributed rainfall-runoff models using global sensitivity
analysis. Water Resour Res 2007;43:W06415.

[56] Tang Y, Reed P, Wagener T, Van Werkhoven K. Comparing sensitivity analysis
methods to advance lumped watershed model identification and evaluation.
Hydrol Earth Syst Sci 2007;11:793.

[57] Thiemann M, Trosset M, Gupta H, Sorooshian S. Bayesian recursive parameter
estimation for hydrologic models. Water Resour Res 2001;37:2521.

[58] van Werkhoven K, Wagener T, Reed P, Tang Y. Characterization of watershed
model behavior across a hydroclimatic gradient. Water Resour Res
2008;44:W01429.

[59] Vrugt JA, Bouten W, Gupta HV, Sorooshian S. Toward improved identifiability
of hydrologic model parameters: the information content of experimental
data. Water Resour Res 2002;38:1312.

[60] Vrugt JA, Gupta HV, Bouten W, Sorooshian S. A shuffled complex evolution
metropolis algorithm for optimization and uncertainty assessment of
hydrological model parameters. Water Resour Res 2003;39:1201.

[61] Vrugt JA, ter Braak C, Diks CGH, Roberts DA, Hyman JM, Higdon D. Accelerating
Markov Chain Monte Carlo simulation by differential evolution with self-
adaptive randomized subspace sampling. Int ] Nonlinear Sci Numer Simulat
2009;10:273.

[62] Vrugt JA, ter Braak C, Gupta H, Robertson D. Equifinality of formal (DREAM)
and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch
Environ Res Risk Assess 2008. doi:10.1007/s00477-008-0274-y.

[63] Vrugt JA, ter Braak CJF, Clark MP, Hyman JM, Robinson BA. Treatment of input
uncertainty in hydrologic modeling: doing hydrology backwards with Markov
chain Monte Carlo simulation. Water Resour Res 2008;44:W00B09.

[64] Wagener T, Boyle DP, Lees M], Wheater HS, Gupta HV, Sorooshian S. A
framework for development and application of hydrological models. Hydrol
Earth Syst Sci 2001;5:13.

[65] Wagener T, Kollat J. Numerical and visual evaluation of hydrological and
environmental models using the Monte Carlo analysis toolbox. Environ Modell
Softw 2007;22:1021.

[66] Wagener T, McIntyre N, Lees MJ], Wheater HS, Gupta HV. Towards reduced
uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability
analysis. Hydrol Process 2003;17:455.

[67] Washington WM, Weatherly JW, Meehl GA, Semtner Jr A], Bettge TW, Craig AP,
et al. Parallel climate model (PCM) control and transient simulations. Clim
Dynam 2000;16:755.

[68] Xiong L, O’Connor KM. An empirical method to improve the prediction limits
of the GLUE methodology in rainfall-runoff modeling. ] Hydrol 2008;349:115.

[69] Zhang Y, Pinder G. Latin hypercube lattice sample selection strategy for
correlated random hydraulic conductivity fields. Water Resour Res
2003;39:1226.



http://dx.doi.org/10.1007/s00477-008-0274-y

	Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes
	Introduction
	Methodology
	SNOW17 model
	Study sites and datasets
	Sensitivity and uncertainty analysis
	The Generalized Sensitivity Analysis (GSA) method
	The Differential Evolution Adaptive Metropolis (DREAM) algorithm


	Results and discussion
	Sensitivity analysis
	Uncertainty analysis
	Prediction of best posterior parameter set
	Prediction of posterior parameter sets
	Uncertainty and correlation of posterior parameters


	Summary and conclusions
	Acknowledgements
	References


