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Abstract

This paper presents an automated approach for processing Soil Survey

Geographic (SSURGO) Database and National Land Cover Database (NLCD),

and deriving gridded a priori parameters for the National Weather Service

(NWS) Sacramento Soil Moisture Accounting (SAC-SMA) model from these

data sets. Our approach considerably extends methods previously used in the

NWS and offers automated and geographically invariant ways of extracting

soil information, interpreting soil texture, and spatially aggregating SAC-

SMA parameters. The methodology is comprised of four components. The

first and second components are SSURGO and NLCD preprocessors. The

third component is a parameter generator producing SAC-SMA parameters

for each soil survey area on an approximately 30-m grid mesh. The last

component is a postprocessor creating parameters for user-specified areas of

interest on the Hydrologic Rainfall Analysis Project (HRAP) grid. Imple-
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mented in open-source software, this approach was employed in creating a set

of SAC-SMA parameter and related soil property grids spanning 25 states,

wherein it was shown to greatly reduce the derivation time and meanwhile

yield results comparable to those based on State Soil Geographic Database

(STATSGO). The broad applicability of the methodologies and associated

intermediate products to hydrologic modeling is discussed.
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2



1. Introduction1

Distributed modeling of hydrologic processes, by accounting for spatial2

variations in meteorological forcing and land surface properties, holds the3

promise of augmenting the hydrologic prediction capabilities currently pro-4

vided by lumped modeling frameworks (Beven, 1985; Smith et al., 2004). Re-5

cent years have witnessed a growing number of efforts in developing and test-6

ing distributed modeling frameworks (Woolhiser et al., 1990; Arnold et al.,7

1993; Ogden et al., 2004). Some of the frameworks were comparatively evalu-8

ated in the Distributed Model Inter-comparison Project (DMIP; Smith et al.9

(2004)). A common issue confronting the implementation of various dis-10

tributed models concerns determining an initial set of spatially distributed11

parameters commonly referred to as a priori parameters (Koren et al., 2003),12

from physiographic properties such as soil and land cover (see Di Luzio and13

Arnold (2004), Bandaragoda et al. (2004), and Anderson et al. (2006) for re-14

lated model needs). These a priori parameters can serve to facilitate model15

calibration and evaluation(Kuzmin et al., 2008).16

Heretofore, advances in remote sensing and measurement technologies17

have brought increasingly refined soil and land cover information. Such in-18

formation, when properly used, can potentially improve the physical repre-19

sentation of a priori model parameters and thereby expedite calibration and20

deployment of distributed models. The challenge, however, is that the grow-21

ing data volume and complexity requires coherent, reproducible, and efficient22

a priori parameter estimation methods and tools. This paper presents a suite23

of such products conceived for a specific hydrologic model but nevertheless24

having potential applicability to a broad range of models. The model of25
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interest is the distributed model developed by Office of Hydrologic Develop-26

ment (OHD) of the National Weather Service (NWS). This model, hereafter27

referred to as the NWS-DHM or simply the DHM, is aimed at providing en-28

hanced river forecasts and other products and services to the nation (Carter,29

2002). Interested readers are referred to Koren et al. (2003, 2004) for a com-30

plete description of the NWS-DHM and to Reed et al. (2007) for flash flood31

applications of this model. In the DMIP (Smith et al., 2004), NWS-DHM32

performed favorably against the NWS lumped model and other distributed33

models in several catchments (Reed et al., 2004).34

At present, the water balance component of DHM is the Sacramento Soil35

Moisture Accounting model (SAC-SMA; Burnash et al. (1973) and Burnash36

(1995)). Koren et al. (2000) laid out an a priori estimation framework in37

which the values of 11 SAC-SMA parameters were related to observable soil38

properties. This framework was employed in deriving a priori parameters39

from a gridded version of State Soil Geographic Database (STATSGO; Miller40

and White (1998)), and the results were used in the DMIP. More recently,41

Anderson et al. (2006) developed a set of procedures utilizing this framework42

to derive SAC-SMA parameters from the Soil Survey Geographic database43

(SSURGO3) and the National Land Cover Dataset (NLCD4), two public44

domain data sources that offer by far the most detailed soil and land cover45

characterizations on a national scale.46

The approach described by Anderson et al. (2006) offers consistent ways47

of aggregating soil properties over multiple soil texture components and hori-48

3http://grass.osgeo.org/
4http://www.mrlc.gov
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zons in the SSURGO data. In past hydrologic simulation experiments, the49

parameters derived via this approach have been shown to outperform those50

based on STATSGO/NLCD in terms of simulation accuracy for a number51

of catchments (Zhang et al., 2006). Yet, at least three major limitations52

exist for this approach which to a great extent hinder its wider application.53

Firstly, the said approach relies exclusively on the user to manually parse54

and interpret texture. This can be a daunting and error-prone task given55

the wide variation in SSURGO soil texture types and encoding, and the fact56

that a generic texture code may correspond to multiple texture descriptions57

depending on the locations. Secondly, the said approach lacks a coherent way58

of aggregating parameters over larger areas (i.e., at a watershed or a region59

scale) from multiple survey areas. Thirdly, most of the procedures were done60

via graphical user interface (GUI). The sheer volume of the SSURGO and61

NLCD data makes it difficult, if not impossible, to apply these GUI-based62

procedures to a regional scale (i.e., for one or more states). In addition to63

these, a minor, but practically important issue is that the application of this64

approach is predicated on the access to proprietary software, such as ESRI-65

Arcview and Microsoft-Access. In light of these limitations, an enhanced66

approach was developed. This approach retains the basic mechanisms of An-67

derson et al. (2006) but is based on systematic, and consistent underlying68

methodologies that are applicable to most, if not all, geographic settings.69

Among the notable features of the new approach are automated preproces-70

sors for the SSURGO and NLCD data, a standardized method of interpreting71

soil texture, and a coherent method for spatially aggregating soil properties72

and parameters. These enhancements allow a user to easily reproduce the73
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results obtained by others. Implemented exclusively via open source soft-74

ware packages, this new approach can be implemented and tested by users75

both within and outside NWS without the restriction of commercial software76

licensing requirements 5.77

In this paper we describe this enhanced approach and demonstrate its78

efficacy by applying it without any modification to 25 states that encompass79

the geographic domains of six NWS River Forecast Centers (RFCs). The cre-80

ation of the end product, a set of mosaicked parameters spanning 25 states81

(referred to as 25-state parameter mosaics hereafter), offers the opportunity82

to comprehensively assess the potential hydrologic benefits of incorporating83

the high resolution SSURGO and NLCD data sets. While the approach was84

intended for the NWS DHM, its methodologies, as well as some of the inter-85

mediate products, are broadly applicable to other hydrologic models whose86

parameters can be derived from the SSURGO, NLCD, or a combination of87

both. Examples of such models include the Soil and Water Assessment Tool88

(SWAT; Wang and Melesse (2006)), Gridded Surface/Subsurface Hydrologic89

Analysis (GSSHA; Ogden et al. (2004)), TOPNET (network version of the90

TOP model; (Bandaragoda et al., 2004)), and the TIN-based Real-time In-91

tegrated Basin Simulator (tRIBS; Ivanov et al. (2004)). The constituent92

methodologies for digesting and infusing the SSURGO and NLCD data com-93

plement the more generic parameter estimation interface provided by some94

of the afore-mentioned models (see, e.g., Di Luzio et al. (2002) and Ogden95

et al. (2004)).96

5The US government does not specifically endorse any of the software packages men-
tioned herein.
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The remainder of the paper is organized as follows: Section 2 reviews the97

a priori parameter estimation framework. Section 3 describes the SSURGO98

and NLCD data sets and the parameter derivation procedures. Section 499

examines the resulting parameter grids and Section 5 summarizes the work.100

2. The a priori Parameter Estimation Framework101

The formulation of the SAC-SMA model was originally presented in Bur-102

nash et al. (1973). In the model, soil horizons are generalized into a relatively103

thin upper zone (UZ) and a lower zone (LZ), with water stored in each zone104

further partitioned into free water that drains by gravity and tension water105

held by the suction of the soil matrix. The free water storage of the lower106

zone is subdivided into supplemental and primary storages, which account107

for faster and slower draining groundwater flows, respectively. Percolation is108

allowed from the upper to the lower zone. During a rainfall event, the runoff109

rate is determined jointly by rainfall, UZ storages and the percolation rates110

(the last is a function of UZ free water saturation and LZ saturation; see111

Koren et al. (2003, 2004), Anderson et al. (2006) and references therein).112

The framework of Koren et al. (2000) offers a means for estimating 11113

soil-related SAC-SMA parameters (Table 1) from soil and land cover data.114

The soil data set provides three sources of information 1) hydrologic soil115

group (HSG), 2) texture class and 3) vertical soil profile. In Anderson et al.116

(2006), HSG is used jointly with land cover to determine the Soil Conser-117

vation Service (SCS, now Natural Resource Conservation Service, or NRCS)118

curve number (CN), which is needed for estimating initial rainfall abstrac-119

tion (Ia). Soil texture is used to determine hydrologic soil group (HSG) that120
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would form the basis for estimating SAC-SMA parameters.121

The curve number is assigned on the basis of HSG and land cover type in122

accordance to the empirical relations published in Chapter 9 of NRCS-ARS123

(2010) assuming dry antecedent condition (which has been shown to yield124

more accurate streamflow simulations). There are four primary HSGs and125

each corresponds to an estimated runoff potential, i.e., A (low), B (moderate),126

C (moderately high) and D (high) (see Chapter 7 of NRCS-ARS (2010)). Be-127

sides the four classes, there are also dual classifications (e.g., ”A/D”, ”B/D”128

and ”C/D”). It is assumed here that a) it is the variation in soil moisture129

level that results in the pairwise difference in drainage characteristics (say, be-130

tween ”A” and ”A/D”), and b) such a difference is automatically accounted131

for by soil moisture states generated through NWS-DHM simulations. Under132

these assumptions, no additional distinction needs to be made in the curve133

number between two HSGs sharing the same primary designator, e.g., ”A”134

and ”A/D”. This is reflected in the curve number assignment in Table 2.135

The curve number thus estimated is then used to derive the thickness of136

the upper zone Zup. The method of estimation developed by Koren et al.137

(2000) is based on the NRCS approach documented in McCuen (1982). Es-138

sentially, the curve number determines the abstraction Ia for a soil column139

via the formula Ia = 5.08(CN/1000− 10) (Chap. 10 of NRCS-ARS (2010)).140

Ia is assumed to be 20% of additional water needed to saturate a soil column141

initially at its field capacity. Therefore, Zup is uniquely determined by Ia,142

soil porosity θs and field capacity θfld. For a multi-horizon soil column, Zup143

needs to satisfy the following condition:144
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Ia =

∫ Zup

0

(θs(z) − θfld(z))dz (1)

where z is the depth from surface. The schematic of the estimation is shown145

in Figure 2. In practice, one adds up the free water storage of each horizon146

iteratively until the sum equals or exceeds the initial abstraction Ia (Fig. 2).147

In the latter case, the horizon where Ia is exceeded is split in such a way148

that allows the free water storage of the upper zone to equal Ia. The lower149

zone extends from this depth to the depth of bedrock, or to the upper edge150

of an impermeable layer when such a layer exists above the bedrock (Fig. 2).151

The 11 SAC-SMA parameters can be computed given the soil properties152

for the upper and lower zones which include porosity (θs), field capacity153

(θfld), wilting point (θwp) and saturated hydraulic conductivity (Ks). (see154

Appendix A, and Koren et al. (2000) for additional details). Among these,155

three parameters, namely, UZTWM, UZFWM, LZTWM can be computed156

directly by adding corresponding quantities of each soil horizon, whereas157

estimating the rest requires vertically averaged soil properties (Appendix B).158

3. Methodology and Implementation159

The enhanced SAC-SMA parameter estimation approach, similar to its160

predecessor by Anderson et al. (2006), and those developed for models such161

as GSSHA (Downer and Ogden, 2006) and SWAT (Di Luzio et al., 2002),162

employs Geographic Information System (GIS) for mapping and infusing soil163

and land cover data. In this approach, parameter derivation is performed in164

three phases (see schematic in Fig 1). The first phase entails preprocess-165

ing the SSURGO and NLCD, extracting information relevant to parameter166
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derivation, and saving the results in formats usable in later phases. This167

phase is implemented in two software components, i.e, SSURGO and NLCD168

preprocessors (Fig 1). The second phase entails generating parameters for169

each soil survey area, and the corresponding software component is referred170

to as parameter generator (Fig 1). The third and final phase entails post-171

processing the 30-m parameter grids to yield mosaicked, gridded data sets172

on the Hydrologic Rainfall Analysis Project (HRAP; Greene and Hudlow173

(1982), Reed and Maidment (1999)) grid mesh, and the associated software174

component is termed postprocessor (Fig. 1).175

3.1. SSURGO Preprocessor176

The project for creating the Soil Survey Geographic Database was under-177

taken by the NRCS to provide digitized soil maps for the entire United States178

at resolutions considerably higher than those for STATSGO (mapping scale179

from 1:12,000 to 1:63,360 for SSURGO compared to approximately 1:250,000180

for STATSGO). The project was originally set to complete in 2008, and at181

present SSURGO maps are available for the majority of counties for most of182

the states6.183

Figure 3 depicts the hierarchical structure of the SSURGO database.184

The data sets are organized by survey areas, where a survey area is usually185

equivalent to a county. Within each survey area, soil patches sharing similar186

characteristics are lumped into one map unit (Figs. 3 and 4). Each map unit187

is uniquely identified using map unit symbol (MUSYM). Within each map188

unit are multiple soil components with varying percentage areal coverage189

6http://soildatamart.nrcs.usda.gov/StatusMaps/SoilDataAvailabilityMap.

pdf
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(Fig. 3). Each soil component encompasses one or multiple horizons, and at190

each horizon one or multiple soil texture classes may be present (Fig. 3). At191

a given horizon, the soil element corresponding to a unique texture class is192

hereafter referred to as a subcomponent. For each survey area, the locations of193

map units (represented as polygons) are provided in spatial files, and the soil194

texture and associated properties at various depths are provided in tabular195

files.196

The SSURGO preprocessor performs the following tasks. In a prelimi-197

nary step, it standardizes tabular file names and removes irregularities. In198

the second step, it delineates the effective depth of the soil column, filters out199

the dominant component for subsequent curve number computation, and ex-200

tracts subcomponent level physical properties for each polygon. In the third201

step, it computes the horizon-averaged physical properties, and augments the202

attribute of each polygon by adding the hydrologic property. The details of203

each step follow below.204

As opposed to the previous approach of Anderson et al. (2006), which205

involves using a Microsoft-Access interface provided by NRCS, the first step206

of the present approach employs an automated procedure for directly access-207

ing the SSURGO spatial and tabular data. Due to the observation that the208

tabular headings are often inconsistent with the standard ones documented209

in the metadata7, the former are automatically modified wherever such an210

inconsistency arises. As an example, in some survey areas texture group211

information is stored in a file incorrectly named “chtexgrp.txt”, this file is212

7http://soildatamart.nrcs.usda.gov/documents/SSURGOMetadataTableColumns.

pdf
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renamed to “chtexturegrp.txt” according to SSURGO metadata.213

In the second step, some simplifications are made to digest the com-214

plex, multi-component, multi-horizon structure of soil texture within a map215

unit. The enhanced approach follows the strategy devised by Anderson et al.216

(2006), which was shown to produce parameter values that led to improved217

simulation results (Anderson et al., 2006). This strategy consists of the218

following two elements (see illustration in Fig. 6). First, for a map unit,219

whenever multiple texture components are present in a map unit, only the220

dominant ones, i.e., those associated with the highest percentage areal cov-221

erage, are used. Second, in determining variables such as depth, only the222

representative values are used (SSURGO provides the lower, representative223

and upper values). These simplifications vastly reduce the complexity of the224

soil textures. The effective depth of a soil column (i.e., the depth to SAC-225

SMA lower zone, or Zmax) can then be delineated as the depth to the bedrock226

(or to a restrictive layer, e.g., dense glacial till and fragipan, if such a layer227

is present) in the dominant texture component. In cases where the depth to228

restrictive layer is zero, the parameters are left as “missing” (the gaps can229

be filled by interpolation). The hydrologic property would be the one for the230

dominant component.231

Physical properties are determined on the basis of soil texture. Though232

SSURGO contains fields of measured values for quantities such as θs and Ks,233

such fields are often left unpopulated (also noted in Anderson et al. (2006)).234

As a result, the mapping from texture to physical property is performed235

via a table (Table 5) constructed from empirical relationships documented236

in Clapp and Hornberger (1978) and Cosby et al. (1984); associated details237
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can be found in Anderson et al. (2006)). Considerable difficulty, however,238

remains in simplifying complex SSURGO soil textures into the categories239

given in Table 5. In the prior approach, classification was done entirely by240

the user, who would first interpret the soil texture for a given survey area,241

and then create a lookup table manually to relate the local texture classes242

to standard ones (see Table 5 for the latter). The need of subjective de-243

cisions from the user, along with the labor-intensiveness of table creation,244

hinder the application of such procedures to regional and national scale im-245

plementation. The new approach employs an automatic soil identification246

algorithm that addresses these shortcomings. As illustrated in Figure 7, this247

algorithm relies on two SSURGO fields as the basis for interpreting texture,248

namely “TEXTURE” and “MUNAME”, with the former as the primary and249

the latter the secondary reference. To elaborate, for each subcomponent, the250

algorithm first examines the value of the field “TEXTURE”. If the value251

points unambiguously to a known texture class, then the simplified texture252

class is assigned accordingly (Scenario A in Fig. 7). On the other hand, in253

some cases the “TEXTURE” field contains only a generic descriptor (such as254

“SPM”, or slightly decomposed plant material) and meanwhile the descrip-255

tion field “MUNAME” provides an identifiable texture name (Scenario B of256

Fig. 7). In these situations the latter would be used in lieu of the former to257

determine the simplified texture (Scenario B in Fig. 7). If neither field pro-258

vides the needed information, a symbol of “O”, which represents “Other”,259

is assigned (Scenario C in Fig. 7). This objective procedure removes the260

ambiguity surrounding texture determination and renders the procedure re-261

producible.262
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In the third step, as in Anderson et al. (2006), soil properties are arith-263

metically averaged for each horizon by combining the embedded subcom-264

ponents (Fig. 6). To simplify the process, for a given horizon only those265

subcomponents with identifiable texture are used. Also in this step, the266

hydrologic property for each map unit is added to the original SSURGO at-267

tribute table, and the augmented table will be used in the curve number268

computation.269

The SSURGO preprocessor is implemented primarily in a set of scripts270

written in R, an open source statistical package (Becker et al., 1988). The271

regularization of tabular heading is done via perl scripts and automation272

of the process is realized using a collection of shell scripts. The data flow273

diagram is shown in Figure 5 and the detailed functionalities are provided in274

Table 4. For each map unit, this implementation takes SSURGO tabular data275

and attribute table from the shapefile as inputs, automatically performs the276

tasks as mentioned above, and produces the horizon-averaged soil properties277

and an augmented attribute table containing HSG information (Fig5) that278

will be used in the curve number computation.279

3.2. NLCD Preprocessor280

The National Land Cover Database (NLCD) was created from Land281

Remote-Sensing Satellite (Landsat) images by the Multi-Resolution Land282

Characteristics (MRLC) Consortium 8. Two versions are currently available:283

the NLCD 1992 and NLCD 2001. Methodologies for creating the data sets284

can be found in Vogelmann et al. (2001) and Homer et al. (2004), respec-285

8http://www.mrlc.gov
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tively. In both versions the land cover is represented on approximately 30-m286

grids in the coordinates of Albers Equal Area (AEA). The NLCD 1992 files287

are partitioned along state boundaries (California and Texas are sub-divided288

into multiple sub-regions, and data for Alaska is unavailable). The NLCD289

2001, by contrast, is organized by zones (data available for Alaska). There290

are 14 super-zones for the conterminous United States (CONUS).291

The NLCD employs a modified version of the Anderson land-use and292

land-cover classification system (Anderson et al., 1972) that contains nine293

broad categories9. The sub-categories differ slightly between the NLCD 1992294

and 2001 under Shrubland, Herbaceous Upland Natural/Semi-Natural Veg-295

etation, and Wetlands (Table 2). To account for these differences, NWS296

developed separate methods for each version of the NLCD. Only the one for297

the NLCD 2001 is described here, as the latter one provides more recent land298

cover information and is deemed to be of closer relevance to the forecasting299

missions of NWS.300

Preprocessing of the NLCD is done in three steps (Fig. 8). In the first301

step the raw NLCD 2001 data sets are ingested, wherein any value beyond302

the valid range (1-99) is set to null (Fig. 8). Then zonal NLCD 2001 data303

sets are mosaicked and divided along state boundaries (Fig. 8). The NLCD304

data for each state is subsequently reprojected into geographic coordinates to305

match the SSURGO data (Fig. 8). The NLCD preprocessor is implemented306

in a series of SHELL scripts that uses Geographic Resources Analysis Support307

System (GRASS; 10) as the GIS platform. The descriptions of the scripts can308

9see details at http://landcover.usgs.gov/classes.php/#similar
10http://grass.osgeo.org/
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be found in Table 6.309

3.3. Parameter Generator310

The parameter generator takes the outputs from the SSURGO and NLCD311

preprocessors and produces 30-m SAC-SMA parameters and associated zonal312

averaged soil properties. While the algorithms are mostly derived from the313

previous approach (Anderson et al., 2006), the processes were considerably314

improved and automated. The generator consists of the following steps (il-315

lustrated in Fig. 9). First, SSURGO spatial files are ingested into a GIS316

framework, wherein the HSG data from the SSURGO Preprocessor are ras-317

terized to match the NLCD grid (Fig. 9). Then the curve number is com-318

puted by coupling HSG and the NLCD land cover (Fig. 9). Subsequently,319

SAC-SMA parameters are computed for each polygon based on HSG and320

polygon-averaged curve number (Fig. 9). In the end, polygon-based param-321

eters and properties are rasterized to 30-m grids (Fig. 9). The details of the322

curve number and parameter generation are provided below.323

The curve number is computed for each 30-m cell following the algorithm324

outlined earlier in the paper on the basis of the NLCD land cover and collo-325

cated HSG. The curve number is then used jointly with the horizon-averaged326

soil properties to compute the upper zone depth (Zup). Note that Zup com-327

puted following Eqn. (1) could be zero or beyond Zmax. In these situations,328

the parameters are left missing. Otherwise, upper and lower zone SAC-SMA329

parameters can then be computed via the equations provided in Koren et al.330

(2000) (reproduced in Appendix A). To facilitate future corroboration and331

modification of the parameters, a suite of 30-m byproducts are also generated332

in this step. These data sets include zonal averaged values of porosity (θu
s and333
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θl
s, where u and l denote upper and lower zones, respectively), field capacity334

(θu
fld and θl

fld), wilting point (θu
wp and θl

wp) and saturated hydraulic conduc-335

tivity (Ku
s and K l

s) for upper and lower zones. Each quantity is computed336

by vertically averaging the respective values within the designated zone. For337

example, the upper zone averaged saturated hydraulic conductivity, Ku
s , is338

simply:339

Ku
s =

1

Zup

∫ Zup

0

Ks(z)dz (2)

An additional auxiliary data set created in this process is the HRAP340

coordinates for each 30-m cell, which will be used subsequently in creating341

coarser resolution parameters.342

The parameter generator is wrapped in a set of GRASS/SHELL scripts,343

which rely on embedded R scripts for parameter computations. The scripts344

and their descriptions can be found in Table 7.345

Postprocessor346

The postprocessor combines 30-m parameter grids for all survey areas347

of interest and produces SAC-SMA parameter values on 1/4, 1/2 and full348

HRAP grids over one or multiple states. A difficulty in creating these data349

sets, which the previous approach (Anderson et al., 2006) was not able to350

address, arises from the situations where a pixel along survey area bound-351

aries overlaps with multiple survey areas. For such a pixel, survey-area level352

parameter estimation results in multiple pixel-mean values, each based solely353

on the values within one survey area. These pixel-mean values need to be354

combined according to the degree of overlap between the pixel and survey355
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areas as well as the number of missing values in the sub-pixel cells. The356

present approach addresses this issue via a three-step process. In the first357

step, all embedded 30-m cells are identified for each 1/4 HRAP pixel within a358

state (or a part of a state), then the valid parameter values (i.e., not missing)359

for these cells, which can be located within one or multiple survey areas, are360

arithmetically averaged. The number of of embedded 30-m cells with valid361

values is recorded in an auxiliary grid (also on 1/4 HRAP scale). In the362

second step, this auxiliary grid is used jointly with corresponding parame-363

ter grids for designated states in creating the multi-state mosaics, with the364

former serving as the weights in averaging the latter, i.e.,365

χ̄i,j =

∑

k nk
i,jχ

k
i,j

∑

k nk
i,j

(3)

where χk
i,j and nk

i,j denote the parameter value and the number of valid 30-m366

cells within each 1/4 HRAP pixel (i, j) over a survey area k, and χ̄i,j is the367

weighted average across multiple survey areas.368

In the third step, the 1/4 HRAP based parameters are aggregated onto369

1/2 and full HRAP grids, wherein the number of embedded cells within each370

embedded pixels are once again used as the weight (the number of sub-pixel371

cells varies depending on the number of missing values).372

The postprocessor is implemented in a set of programs written in C++373

and SHELL scripts. Their descriptions and the associated data flow diagram374

are provided in Table 8 and Figure 10, respectively.375
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4. Derivation of a Multi-State a priori Parameter Set376

The automated approach was employed in deriving a multi-state param-377

eter product for an area that covers the geographic domains of six RFCs,378

i.e., CNRFC (California-Nevada), CBRFC (Colorado Basin), WGRFC (West379

Gulf), ABRFC (Arkansas-Red Basin), LMRFC (Lower Mississippi) and SERFC380

(Southeast). This region encompasses 25 states and a total of 1713 survey381

areas.382

For this effort, the NLCD 2001 data for 14 super-zones were obtained and383

processed. The preprocessors and the parameter generator were initially de-384

veloped and tested for a few survey areas in Missouri, and were then applied385

without modifications to other states. In the testing phase, data from the386

SSURGO and NLCD 1992 data were used to produce parameter value via387

both the manual and automated approach and the results were compared388

(note that the manual procedures are only directly applicable to NLCD 1992389

data). The polygon-specific results were most identical, and the only differ-390

ences were owing to a change in the delineation of the depth to the bottom391

of the lower zone (the earlier Avenue script uses hzdepb r and resdept r from392

the secondary component when either of these variables (not both) is miss-393

ing in the primary component, whereas the preprocessor in the automated394

approach uses the non-missing value from the primary component in order395

to be consistent with the documentation).396

Preliminary comparisons were performed between the parameter values397

derived using the SSURGO and NLCD 2001 data against those based on398
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STATSGO soil data and Global Land Cover Characterization (GLCC11 data.399

Such comparisons indicate that the parameters derived via the two means400

(SSURGO + NCLD 2001 vs. STATSGO + GLCC) exhibit similar geo-401

graphic features. Such features include low UZTWM values across central402

and southern Florida where sandy soils have a relatively low capacity to403

hold water in tension (Fig. 12). For UZFWM and UZTWM, the values from404

the two sources are broadly comparable, with the ratio of the SSURGO to405

the STATSGO means close to 1 (0.99 for UZFWM and 0.96 for UZTWM).406

The UZFWM and UZTWM values from the two sources are also consider-407

ably correlated (0.59 and 0.56, respectively; Figure 13). Yet, considerable408

differences are also evident (Figs. 12 and 13). These differences can be at-409

tributed to a combination of the following factors. First, the SSURGO and410

STATSGO-based soil texture may differ substantially. Our analysis indicates411

that, for some areas (e.g., northern Oklahoma), these differences were a ma-412

jor contributing factor to large discrepancies in the UZTWM and UZFWM413

values. Second, the NLCD and GLCC land cover may differ due to dif-414

ferences in sensor, resolution and classification methods. The land cover415

difference translate into those in curve number and parameter values. Third,416

the parameter derivation method is nonlinear. To elaborate, the average of417

parameter values computed individually over sub-areas using distinct curve418

number and soil properties does not necessarily equal the parameter value419

computed using the averaged curve number and soil properties over the en-420

tire area. Additional investigations on the impacts of these differences on421

hydrologic simulations are underway, which would shed light on whether and422

11http://edc2.usgs.gov/glcc
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how the use of SSURGO would lead to improvements to the accuracy in423

streamflow predictions.424

The automation built in each of the components (preprocessors, parame-425

ter generator, and postprocessor) led to a sharp reduction of processing time.426

The absence of licensing restrictions on ESRI-Arcview and Microsoft Access427

further improved efficiency by enabling simultaneous parameter derivation428

for geographic areas on multiple workstations. In deriving the 25-state mo-429

saic, the entire process of parameter derivation took about a week to complete430

when running on three 32-bit linux workstations (not dedicated to this task).431

Since the previous approach developed by Anderson et al. (2006) required432

manual intervention, lacked precise mechanism for inter-state mosaicing, and433

relied on multiple platforms, a precise comparison of the performance of the434

two approaches was not feasible. Nevertheless, past experience suggests that435

excluding the time for downloading SSURGO and preprocessing the NLCD436

data, on the average about six hours were required for deriving the HRAP-437

based product for a single survey area. By contrast, applying the present438

approach for deriving the HRAP-based product for 92 survey areas took439

only about 0.24 hour for each survey area. This translates into a 96% reduc-440

tion in processing time. A break-down of the approximate time needed in441

each component is shown in Table 9.442

5. Discussions443

One of the requisites of implementing spatially distributed hydrologic444

model is a spatially varying a priori parameters that are representative of445

land surface hydrologic properties. Despite the diversity of current modeling446
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frameworks, soil and land cover remain two of the most important sources447

of observations that modelers rely on in deriving these a priori parameters.448

Yet, the volume and complexity of these data hindered the derivation of449

parameters over regional and national domains, which in turn delayed com-450

prehensive evaluations of the parameters and refinement of the parameter451

derivation methods.452

This paper documents an enhanced and automated a priori approach that453

allows users to fast and reliably digest the SSURGO and NLCD data sets,454

and derive parameters for SAC-SMA that are used in operational hydro-455

logic forecast on a national scale. Though based on previously established456

methods, this approach replaces the subjective and ad hoc elements of the457

previous approach by Anderson et al. (2006) with standardized and auto-458

mated procedures, and offers new algorithmic features such as automatic459

texture identification and coherent, sequential spatial aggregation. An im-460

portant outcome of the standardization and automation is reproducibility.461

The first aspect of the reproducibility is that one, by applying the software462

tools according the documented procedures, is able to reproduce parame-463

ters derived by others. The second aspect is that the software tools can464

be applied unchanged to other geographic settings. In the derivation of the465

25-state parameter mosaics, the algorithms were developed at two counties466

in Missouri but were applied without alteration to 1713 survey areas over467

25 states in the Coterminous US. Preliminary assessments indicated that468

the newly derived parameter values are quite reasonable, as these values are469

closely correlated with parameters based on the STATSGO/NLCD. Another470

important outcome is the vastly improved efficiency. The creation of the471
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25-state parameter mosaics took only about 4% of the time that it used to472

take using the manual approach.473

Though developed for a specific model, i.e., SAC-SMA, a large portion474

of the automated approach is directly applicable to similar parameter esti-475

mation tasks for other models. While guidance and tools for soil and land476

cover based parameter estimation have been available for some of the models477

(see, e.g., Di Luzio et al. (2002) and Downer and Ogden (2006)), few pro-478

vided specifics of digesting and infusing the SSURGO and NLCD. In cases479

where such specifics were provided Anderson et al. (2006); NRCS (2008), the480

methodologies consisted of mostly manual procedures. The present approach,481

by offering efficient, geographic invariant ways of processing the SSURGO482

and NLCD data, complements the strength of existing methodologies. In483

fact, some of the products of the SSURGO and NLCD preprocessors, such484

as porosity and hydraulic conductivity (computed for each horizon survey485

polygon and for each horizon), can be ingested in models such as GSSHA486

(provided the soil layers is similarly delineated). Another useful product487

is the curve number, a common input to a variety of curve-number based488

models, including TR-20 (NRCS, 1983), Storm Water Management Model489

(SWMM, Heaney et al. (1975)), and SWAT (Arnold et al., 1993). The inges-490

tion of some of the intermediate products (e.g., hydraulic conductivity and491

curve number) in other models would permit a closer examination of how492

structural differences of models affect their relative performance. Further-493

more, these data sets also offer modelers an opportunity to address the scale-494

dependent impacts of infusing fine-scale soil and land cover on the accuracy495

of hydrologic model simulations (relative to, say, those based on STATSGO).496
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Such an effort is, in fact, already underway at the NWS.497

On the software side, our implementation is based on open-source software498

packages, and the scripts and source codes can be easily modified by a user.499

Though tested only on a linux system, these programs can be ported to500

any platform where the underlying packages can be installed (R, GRASS501

and Perl are available on windows, Mac OS, so are the compilers). The502

modularity of the design allows it to be tailored to suit the particular needs503

of a modeler. As an example, one can retain the Microsoft-Access interface504

provided by NRCS for extracting soil information and feed it to the rest505

of the SSURGO preprocessor. In areas where either the SSURGO or the506

NLCD is not available, one can compute the curve number externally using507

local data, and ingest the results in the Parameter Generator.508

Despite the afore-mentioned promises, the current approach is not with-509

out its own limitations. Soil survey results, after all, consist of subjective510

elements which often require human expertise to properly interpret and di-511

gest. The simplification of SSURGO data documented in the current ap-512

proach, while necessary, may leave out information useful for determining513

soil properties and the associated parameters. As an example, the effective514

soil column is assumed to end at the restricted layer, though such a layer itself515

might be highly permeable. Similarly, minor texture components, which are516

eliminated in the soil preprocessor, may play a determining role in shaping517

the aggregate soil properties of a map unit. In addition, the current approach518

utilizes solely laboratory based soil properties as a first cut solution, though519

the values provided in SSURGO, when they do exist, may be more accurate520

representations of polygon-specific soil properties. Moreover, for simplic-521
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ity arithmetic averaging was used in computing multi-horizon effective Ks,522

though harmonic average in theory might be more appropriate. In view of523

these shortcomings, additional investigations have been proposed, which in-524

clude, but are not limited to: a) experimenting retaining the minor texture525

components in computing soil properties, b) exploring additional sources of526

information for refining the texture mapping, c) integrating the available in527

situ soil properties given in SSURGO and examining the effects on parame-528

ter values and hydrologic simulations; and d) estimating the uncertainty of529

parameters arising from the simplifications.530

6. Summary531

This paper presents an enhanced and automated approach for deriving a532

priori parameters for the NWS distributed hydrologic model from Soil Sur-533

vey Geographic database and National Land Cover Dataset. The approach534

was implemented entirely in open source software packages, notably R and535

GRASS. It consists of four elements: i) SSURGO preprocessor; ii) NLCD pre-536

processor; iii) parameter generator and iv) parameter postprocessor. These537

elements offer systematic and reproducible ways of acquiring, processing and538

computing parameters. In deriving a set of 25-state a priori parameter grids,539

this approach was shown to substantially reduce the time for parameter es-540

timation (to 4% of the time previously needed). The methodologies and the541

associated software, in particular those for deriving curve number, identify-542

ing soil texture, and spatially aggregating parameter values, can be adopted543

to facilitate the implementation of other hydrologic models that can utilize544

the SSURGO and NLCD data.545
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Appendix A

Zonal-averages of soil property χ for upper and lower zones (denoted by552

χu and χl respectively) are defined as follows:553

χu =

∫ Zup

0

χ(z)dz (A.1)

and554

χl =

∫ Zmax

Zup

χ(z)dz (A.2)

where Zup and Zmax are the depths to the bottom of the upper and lower555

zones, respectively. In these equations,χ can be porosity θs, field capacity556

θfld, wilting point θwp, and saturated hydraulic conductivity Ksat. The SAC557

parameters for the upper and lower zones can be defined correspondingly558

(the definitions of these parameters can be found in Koren et al. (2000)).559

UZTWM =

∫ Zup

0

θfld(z) − θwp(z)dz (A.3)

560

UZFWM =

∫ Zup

0

θs(z) − θfld(z)dz (A.4)

561

UZK = 1 −

(

θu
wp

θu
s

)n

(A.5)

562

LZTWM =

∫ Zmax

Zup

θfld(z) − θwp(z)dz (A.6)

563

LZFSM =

(

θl
wp

θl
s

)n
∫ Zmax

Zup

θs(z) − θfld(z)dz (A.7)

564

LZFPM =

[

1 −

(

θl
wp

θl
s

)n]
∫ Zmax

Zup

θs(z) − θfld(z)dz (A.8)
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LZSK =
UZK

1 + 2(1 − θl
wp)

(A.9)

565

LZPK = 1 − e−
1

µ
(1+β)π2KsD2

s
(Zmax−Zup)δt (A.10)

566

PFREE =

(

θl
wp

θl
s

)n

(A.11)

567

REXP =

(

θl
wp

θwp,sand − 0.001)

)1/2

(A.12)

where µ is defined as follows:568

µ = 3.5(θl
s − θl

fld)
1.66 (A.13)

ZPERC =
LZTWM + LZFSM(1 − LZSK) + LZFPM(1 − LZPK)

LZFSM LZSK + LZFPM LZPK
(A.14)
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Appendix B

The electronic supplement is made up of an instruction file and five569

archives: nlcd proc.tgz, param ssurgo.tgz, grass prog.tgz, and util prog.tgz,570

and grass dir.tgz. The first archive contains the scripts needed for process-571

ing NLCD data. The second archive contains the column title table and572

the scripts for SSURGO preprocessor, parameter generator and postproces-573

sor. The third and fourth archives provide the GRASS extensions and utility574

programs for postprocessing, respectively. The fifth archive provides an ex-575

ample of GRASS directory structure and the GRASS projection files for576

NLCD, SSURGO, and parameter products.577
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Figure 7: Illustration of texture mapper.
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Figure 10: Data flow diagram for Parameter Postprocessor.
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Figure 11: States for which SAC-SMA parameters were derived. Superimposed are
geographic domains of six River Forecast Centers (RFCs), namely, California-Nevada
(CNRFC), Colorado Basin (CBRFC), Arkansas Red River Basin(ABRFC), West Gulf
(WGRFC), Lower Missisippi (LMRFC) and Southeast (SERFC).
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Figure 12: Comparisons of 25-state composite a priori grids (HRAP resolution) of UZFWM
(top) and UZTWM (bottom) based on SSURGO (left) and STATSGO (right). Left blank
are areas where SSURGO data is currently unavailable, or no meaningful soil texture can
be derived from SSURGO data, or curve number reaches 100 (impervious surface).
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Figure 13: Comparisons of SSURGO and STATSGO-based UZFWM and UZTWM for
areas shown in Figure 12. Superimposed are correlations (denoted by ρ).
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Table 1: SAC-SMA Parameters

Symbol Name Typical Rangea

UZTWM Upper zone tension water capacity, mm 10-300
UZFWM Upper zone free water capacity, mm 5-150
UZK Interflow depletion rate, day−1 0.1-0.75
ZPERC Ratio of maximum and minimum percolation rates 5-350
REXP Shape parameter of the percolation curve 1-5
LZTWM The lower zone tension water capacity, mm 10-500
LZFSM The lower zone supplemental free water capacity,mm 5-400
LZFPM The lower zone primary free water capacity, mm 10-1000
LZSK Depletion rate of lower zone supplemental free water storage, day−1 0.01-0.35
LZPK Depletion rate of lower zone primary free water storage, day−1 0.001-0.05
PFREE Percolation fraction that goes directly to the lower zone free water 0.0-0.8

aRanges are based on lumped model calibration and do not necessarily constrain grid-
ded values.
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Table 2: NLCD 2001 Classes and Curve Number

Classes ID CN by Hydraulic Group
N/A A,A/D B,B/D C,C/D D

Water
Water 11 -9999 100 100 100 100
Ice/Snow 12 -9999 95 95 95 95
Developed Areas
Open Space 21 -9999 29 48 61 69
Low Intensity 22 -9999 40 56 67 74
Medium Intensity 23 -9999 58 70 79 83
High Intensity 24 -9999 70 79 84 87
Barren
Bare Rock/Sand/Clay 31 -9999 95 95 95 95
Unconsolidated Shore 32 -9999 58 72 81 87
Forested Upland
Deciduous Forest 41 -9999 19 39 53 61
Evergreen Forest 42 -9999 19 39 53 61
Mixed Forest 43 -9999 19 39 53 61
Shrubland
Dwarf Scrub - Alaska 51 -9999 34 51 64 77
Shrub/Scrub Areas dominated by shrubs 52 -9999 34 52 64 72
Non-Natural Woody
Orchards/Vineyards/Other 61 -9999 24 44 57 66
Herbaceous Upland
Grasslands/Herbaceous 71 -9999 29 48 61 69
Sedge/Herbaceous - Alaska only 72 -9999 28 46 58 67
Lichens - Alaska only 73 -9999 47 61 72 77
Moss- Alaska only 74 -9999 47 61 72 77
Planted/Cultivated
Pasture/Hay 81 -9999 29 48 61 69
Cultivated Crops 82 -9999 45 57 66 70
Wetland
Woody Wetlands 90 -9999 100 100 100 100
Palustrine Forested Wetland 91 -9999 100 100 100 100
Palustrine Scrub/Shrub Wetland 92 -9999 100 100 100 100
Estuarine Forested Wetland 93 -9999 100 100 100 100
Estuarine Scrub/Shrub Wetland 94 -9999 100 100 100 100
Emergent Herbaceous Wetlands 95 -9999 100 100 100 100
Palustrine Emergent Wetland (Persistent) 96 -9999 100 100 100 100
Estuarine Emergent Wetland 97 -9999 100 100 100 100
Palustrine Aquatic Bed 98 -9999 100 100 100 100
Estuarine Aquatic Bed 99 -9999 100 100 100 100
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Table 3: Highlights of Differences between Previous and Current Approaches

Component Task Previous Current
Software Features Software Features

SSURGO Table MS-Access GUI R offline,
Preprocessor Extraction manual automated

SSURGO Texture MS-Excel manual R automated
Preprocessor Mapping Arcview region-specific region-independent

NLCD NLCD Arcview GUI GRASS offline
Preprocessor Processing manual automated

Parameter Parameter Arcview GUI GRASS/R offline
Generator Generation manual GRASS/R automated

Postprocessor Postprocess C/ArcInfo requires C++/GRASS requires
ArcInfo Lib. GRASS Lib.

Table 4: SSURGO Preprocessor

Script Written In Function
preprocessor.sh BASH Create directories and run the following R scripts
std.tname.R R Standardizes names of tabular files
hydrologic.R R Extracts hydraulic soil groups
physical.R R Extracts soil horizons and texture
zmax.R R Computes maximum depth of the soil layers
phy lay ave.R R Computes horizon-averaged soil properties
aug.soil.attr.R R Adds drainage group to SSURGO attribute table
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Table 5: Soil properties

ID Symbol Texture θs θfld θwp Ks µ
[mm h−1]

1 S Sand 0.37 0.15 0.04 634.6 0.29
2 LS Loamy Sand 0.39 0.19 0.05 562.6 0.23
3 SL Sandy loam 0.42 0.27 0.09 124.8 0.15
4 SIL Silt loam 0.47 0.35 0.15 25.9 0.10
5 SI Silt 0.48 0.34 0.11 20.0 0.12
6 L Loam 0.44 0.30 0.14 25.0 0.13
7 SCL Sandy Clay Loam 0.42 0.29 0.16 22.7 0.12
8 SICL Silty Clay Loam 0.48 0.41 0.24 6.1 0.04
9 CL Clay Loam 0.45 0.36 0.21 8.8 0.07
10 SC Sandy Clay 0.42 0.33 0.21 7.8 0.07
11 SIC Silty Clay 0.48 0.43 0.28 3.7 0.02
12 C Clay 0.46 0.40 0.28 4.6 0.03
13 O Other 0.60 0.60 0.53 0.1 0.01

Table 6: NLCD Preprocessor

Script Written In Function
import 2001.sh GRASS/BASH Imports NLCD data into GRASS
zone to state.sh GRASS/BASH Derives state-wise NLCD data
reproj.sh GRASS/BASH Reproject NLCD to Geographic
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Table 7: Parameter Generator

Script Written In Function
param.gen.2001.sh BASH Shell wrapper that runs the scripts below
import ssurgo.sh GRASS/BASH Imports SSURGO shapefile into GRASS
r.cn.2001 GRASS/C Computes Curve Number for NLCD 2001
r.cn.ave.poly GRASS/C Computes polygon-mean Curve Number
r.ll.hrap GRASS/C Computes HRAP ID from lat/lon location
sac sma.each.R R Computes SAC-SMA parameters for each polygon

Table 8: Parameter Postprocessor

Script Written In Function
grass2xmrg GRASS/C++ Merges 30-m parameter grids to 1/4 HRAP resolution
mergeXMRG C++ Merges multiple 1/4 HRAP-based parameters grids
aggrgXMRG C++ Aggregates 1/4 HRAP parameters to coarser resolution grids

Table 9: Processing Time for Previous and Present Approach (per survey area)

Task Previous Present
[h] [h]

SSURGO Preprocessing 1 0.01
Parameter Generation 3 0.22
Parameter Aggregation 2 0.01
Total 6 0.24
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