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This report is provided in accordance with sub-tasks 2 and 3 of Task 10-15, the deliverables for 
which are defined in the technical proposal as follows: 
• A report on potential and recommended data sources and methods for creating multi-

decade precipitation analyses of record for hydrologic model calibration. 
• A report on potential and recommended data sources and methods for creating multi-

decade temperature analyses of record for hydrologic model calibration. 
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Summary of Recommendations 
 
The National Weather Service Office of Hydrologic Development intends to prepare a 

high-resolution, long-term historical archive of gridded precipitation and temperature. This 
analysis of record (AOR) will be developed for a ≤1-km grid mesh and a 1-hr temporal interval 
for the period 1979-2010, with eventual extension back to 1948. The AOR will include the 
continental U.S., Alaska, Hawaii, Puerto Rico, and the portions of Canada and Mexico that drain 
to the U.S.  

Riverside has prepared this report to summarize research into the data sources, 
development methods, and evaluation techniques available for developing the precipitation and 
temperature AOR. The following recommendations are made throughout the report: 

 
• All reasonable historical data sources should be included for development of the AOR to 

satisfactorily estimate temperature and precipitation at the high spatial and temporal 
resolution requirements, even though doing so inevitably means that the quality of the 
AOR will change over time as new data sources are introduced. The limitations of the 
AOR datasets should be clearly described for users, particularly related to the differing 
data sources and approaches applied for different periods. 

• All historical data must undergo quality control to ensure high quality data are being 
input to the AOR development process. The quality control processes should be 
automated to a large extent, although some manual review would be beneficial if 
resources permit. Users of the AOR should have access to the raw input data, the 
quality-controlled data, and quality control information (e.g., correction factors), in 
addition to the final datasets.  

• A background climatology dataset must be selected to establish the long-term 
characteristics of the AOR datasets. The selection criteria should consider the potential 
impact on the hydrologic models used at the river forecast centers. Station-based climate 
normals and gridded climatological datasets from the PRISM system are widely 
employed at the river forecast centers. However, existing climatological datasets may 
not accurately capture the climatology in every location, and may require adjustment 
based on an evaluation of the AOR, for example using hydrologic simulations. 

• The feasibility and benefits of a high-resolution reanalysis to support the AOR 
development should be evaluated. A new, high-resolution reanalysis dataset would 
benefit the gridding of historical point observations, spatial downscaling of gridded 
datasets, and temporal disaggregation of the AOR datasets to an hourly time step by 
representing dynamic processes that affect local weather patterns.  

• A data fusion framework should be developed, or adapted from an existing system, for 
the AOR development. The system should be developed to produce repeatable results, 
to support research and development, and to apply enhanced methods to improve the 
AOR datasets. 

• The data fusion framework should employ uncertainty estimates to produce merged, 
multi-sensor precipitation and temperature fields. The uncertainty estimates may be 
simplistic for the initial AOR development. Additional development could benefit the 
methods used to estimate uncertainties, as this is an active area of research.  

• The data fusion process should be accomplished on a daily time step prior to 
disaggregation to an hourly time step, as it is possible to develop a daily dataset with 
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significantly less uncertainty. More historical data are available on a daily time step. In 
addition, a daily dataset may suffice for some applications. Both the hourly and the daily 
datasets should be made available to users.  

• Data fusion should be accomplished using a stepwise process including bias corrections 
for all input data sources, gridding of point observations, spatial downscaling of gridded 
inputs to a common grid mesh, temporal aggregation to a daily time step, merging of the 
input data sources, and disaggregation to an hourly time step.  

• To transform point observations to gridded estimates, climatological differences 
between locations must be accounted for. One recommended methodology is 
climatology-aided interpolation, where the interpolation method is based on the 
synergraphic mapping system (SYMAP) algorithm or optimal interpolation.  

• To downscale coarse-resolution precipitation grids, climatological differences between 
locations must be accounted for. A recommended methodology for downscaling 
precipitation fields is spatial disaggregation with bias corrections (e.g., Wood et al., 
2004). For temperature, a downscaling method that employs interpolation with terrain 
adjustments may suffice.  

• If resources permit, it would be beneficial for the gridding and downscaling methods to 
perform additional development to identify and account for significant regional 
physiographic and atmospheric variables that are not captured in the selected 
background climatological dataset (e.g., Hsu et al., 2011).  

• Hourly weights to disaggregate daily fields to an hourly time step should be based on a 
combination of observations and stochastic methods. A hierarchy needs to be defined to 
prioritize and merge disaggregation weights from various sources (e.g., hourly gages > 
radars > high-resolution reanalysis datasets > satellites > stochastic methods > coarse-
resolution reanalysis datasets).  

• The requirements, development methods, and eventual quality of the AOR datasets will 
be affected by regional differences in climate, hydrology, forecast objectives, data 
sources, and data quality. Prototype datasets should be developed for multiple 
geographic areas and limited time periods to assess the suitability of selected methods 
for different regions prior to full development of the AOR.  

• The AOR needs to be evaluated at multiple stages in the development process using 
multiple methods:  

o Expert input should be solicited at the beginning of the development process to 
provide input on the reasonableness of the proposed approach; at the prototyping 
phase of the development process to determine whether preliminary results are 
reasonable; and at the final evaluation phase of the development process to 
review the final datasets. A feedback mechanism should be established to 
document issues identified by users and to inform additional development efforts 
if the AOR is regenerated in the future.  

o The AOR datasets should be compared against existing precipitation and 
temperature datasets to identify biases and to assess the need to re-calibrate 
existing hydrologic models:  
 The AOR should be compared against the legacy forcings that have been 

used to calibrate the hydrologic models employed at the river forecast 
centers. 
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 The AOR should be compared against existing temperature and 
precipitation datasets that have been developed using long-term, stable 
networks or for watersheds that have been monitored intensively.  

o The AOR datasets should be evaluated using hydrologic models. The hydrologic 
models employed at the river forecast centers should be included for suitable 
watersheds. In addition, distributed models should be considered for the 
evaluation process.  

• An important outcome from the AOR development process is the establishment of a 
formal evaluation procedure that identifies geographically-representative test basins and 
objective evaluation metrics that can be used to quantify the value of new data, inputs, 
and models (CBRFC, personal communication, February 22, 2012). 

• The development approach for the AOR should maximize the use of available 
frameworks, automated processes, methodologies, and datasets to reduce the 
development cost and effort. Existing systems that have been developed by the NCDC, 
NOHRSC, NSSL, OHD, NCEP, NASA, and academic institutions should be evaluated 
for this purpose.  

• The AOR datasets should follow established guidelines for delivery and format 
requirements.  

• The AOR datasets should be made available to the public, ideally with tools to facilitate 
subsetting by geographic location and time period.   

• The AOR has the potential to be an enormous advancement, exceeding the spatial 
extents, periods of record, and resolutions of existing gridded datasets. As such, it has 
potential to benefit a wide variety of stakeholders. This provides an opportunity for the 
NWS OHD to engage a variety of interested parties in the development and maintenance 
of the AOR datasets. Intended customers of the AOR should participate in defining the 
development approaches and evaluating the resulting datasets. For example, the river 
forecast centers have particular expertise in data quality control and regional issues.  
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1 Introduction 
 
The National Weather Service (NWS) Office of Hydrologic Development (OHD) intends 

to prepare a high-resolution, long-term historical archive of gridded hydrometeorological 
forcings, including precipitation and temperature. Precipitation data are the primary 
meteorological inputs to the hydrologic models run operationally by the River Forecast Centers 
(RFCs). Temperature data are also needed to determine the form of precipitation and the rate of 
snowmelt. The retrospective precipitation and temperature datasets are referred to as the analysis 
of record (AOR).  

The AOR was first envisioned as a means to verify gridded forecasts from the National 
Digital Forecast Database (Colman et al., 2005; Horel and Colman, 2005). A significant driver 
for the development of the AOR currently is that the NWS is transitioning forecasting operations 
from the National Weather Service River Forecast System (NWSRFS) to the Community 
Hydrologic Prediction System (CHPS). As part of this conversion, RFC personnel will evolve 
the operational processes used to develop the meteorological inputs towards high-resolution 
gridded inputs. Currently, many of the RFCs utilize meteorological forcings that are basin 
average values generated from a weighted combination of point observations. This practice dates 
to an earlier era when point observations were the only data available, and basin average values 
were sufficient for lumped hydrologic models. The relatively recent availability of gridded 
precipitation and temperature estimates from radars, satellites, and numerical weather prediction 
(NWP) models makes it desirable to retire the older method of direct computation of basin 
averages. Moreover, the basin average datasets are not suitable for distributed hydrologic 
models, which generally require gridded inputs.  

The NWS intends to use the AOR to calibrate lumped and distributed hydrologic models 
used for forecast operations, to determine climatological statistics for forecast ensembles, and to 
support forecast verification (NWS, 2011a). The AOR also has broad potential to support 
agencies and applications outside of the NWS. In May 2011, the U.S. Army Corps of Engineers 
(USACE), the U.S. Geological Survey (USGS), and the National Oceanic and Atmospheric 
Administration (NOAA) signed a memorandum of understanding that formalizes a commitment 
to multiagency collaboration that will “address the goals of the Integrated Water Resources 
Science and Services (IWRSS) initiative and the objective of Building Strong Collaborative 
Relationships for a Sustainable Water Resources Future initiative to build a Federal Support 
Toolbox for Integrated Water Resources Management (USACE et al., 2011).” Under the IWRSS 
initiative, the AOR can be used by the USACE to simulate reservoir operations and by the USGS 
to conduct a national assessment of water availability and use through the National Water Census 
(USGS, 2002).  

Riverside Technology, inc. (Riverside) has considerable experience with meteorological 
datasets and hydrologic models, and in particular with the data and models used by the RFCs for 
forecast operations. Riverside has developed forcing datasets, calibrated hydrologic models, and 
implemented forecast systems for hundreds of basins in the U.S. and around the world. As a 
result of this experience, Riverside is knowledgeable about the requirements for calibration 
datasets, including unbiased climatological characteristics and consistency with the data that are 
available for real-time operations. Riverside is also knowledgeable in identifying and adjusting 
inconsistencies in calibration datasets due to changes in data networks and sensor hardware. 

Riverside is supporting the NWS OHD by researching data sources, development 
methods, and evaluation techniques for the AOR. Riverside collected information from a variety 
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of sources, including peer-reviewed journal articles, conference proceedings, webinars, 
presentations, websites, and expert interviews. This report presents a summary of that research, 
along with implications for hydrologic modeling and recommendations for the AOR. This report 
will be used, among other inputs, by the NWS OHD to develop an implementation plan for the 
AOR. 

The remainder of the report is organized as follows: 
 
• Section 2: AOR Requirements contains a summary of the requirements that have 

been defined for the AOR. 
• Section 3: Data Sources contains information on useful sources of historical 

temperature and precipitation data from stations, radars, satellites, and reanalyses. 
• Section 4: Data Quality Control contains information on quality control checks that 

should be performed on all data sources to ensure that high quality datasets are used 
to produce the AOR. 

• Section 5: Data Assimilation/Data Fusion contains a summary of approaches that 
can be used to combine observations from multiple data sources. 

• Section 6: Gridding Methods contains a summary of techniques that transform point 
observations to gridded estimates. 

• Section 7: Spatial Downscaling contains a summary of techniques that generate a 
higher resolution grid from a lower resolution grid. 

• Section 8: Temporal Disaggregation contains a summary of techniques that generate 
higher resolution time series from lower resolution time series. 

• Section 9: AOR Evaluation contains a summary of methods for evaluating the AOR 
using existing temperature and precipitation datasets, as well as streamflow 
simulations from hydrologic models. 

• Section 10: Existing Weather Data Management Systems provides an overview of 
several of the systems that currently collect and quality control weather data, produce 
gridded estimates, and/or produce multi-sensor estimates. These systems have 
frameworks, automated processes, methodologies, and datasets that may be beneficial 
for the AOR.  

• Section 11: Technical Considerations discusses the temporal and regional influences 
on data availability and quality that will affect the development of a consistent, long-
term AOR. 

• Section 12: Summary and AOR Recommendations contains a summary of previous 
sections and recommendations for the AOR. 

 

2 AOR Requirements 
 
The NWS OHD has defined minimum spatial and temporal requirements for the initial 

AOR development, as summarized in Table 1. The spatial extent of the AOR must include the 
continental U.S. (CONUS), Alaska (AK), Hawaii (HI), Puerto Rico (PR), and the portions of 
Mexico (MX) and Canada (CN) that drain to the U.S. The AOR will have a temporal interval of 
at least one hour and a grid mesh of less than or equal to one kilometer. The AOR will be 
developed initially to include precipitation and temperature, the meteorological variables 
required to support RFC operations. The AOR will later include variables such as 
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evapotranspiration, freezing level, solar radiation, longwave radiation, relative humidity, and 
wind speed to support the RFCs, land surface modeling, and the evaluation of meteorological 
forecasts (Horel and Colman, 2005; NWRFC, personal communication, February 27, 2012). The 
initial AOR will be developed for the period 1979-2010. Eventually, the AOR will be extended 
back to 1948 to support applications that would benefit from a longer archive, such as the Great 
Lakes pilot study being conducted as part of the National Water Census (USGS, 2011). Moving 
forward, the AOR will be extended using gridded estimates of temperature and precipitation that 
are generated in real-time at the National Water Center to support river forecast operations 
(OHD, personal communication, October 5, 2011). 

 
Table 1. Minimum Requirements for the Analysis of Record 

 
Spatial Extent CONUS, AK, HI, PR, MX, CN 
Temporal Interval ≤1 hour 
Spatial Grid Mesh ≤1 kilometer 
Period of Record 1979-2010 
Meteorological Variables Precipitation, temperature 

 
In addition to the spatial and temporal requirements, additional requirements have been 

identified that impact the utility of the AOR for RFC forecast operations: 
  
• The AOR needs to maintain statistical stability over the period of record, particularly 

with respect to long-term averages, but also with respect to variability. This 
requirement presents a challenge due to changes in the observing systems over time, 
including the addition and removal of entire networks and individual observing sites, 
the introduction of radars and satellites, and improvements in precipitation estimation 
algorithms. 

• The AOR needs to be consistent with the precipitation and temperature grids that will 
be available in real-time to avoid introducing biases into the forecasting process. It is 
unlikely that the AOR will be restricted to include only those data sources that are 
available in real-time. On the contrary, the high spatial and temporal resolution 
requirements for the AOR necessitate that all reliable historical data be used to 
generate the best possible estimates. However, the AOR and the real-time procedures 
should reflect the same climatology to ensure consistency. The need for consistency 
implies that the methodologies for the AOR and the real-time processes should be 
developed in conjunction.  

• The AOR needs to be evaluated against the legacy forcings that have been used to 
develop the hydrologic models employed at the RFCs. It is highly likely that the AOR 
will yield different basin average values than were used for model calibration. The 
NWS OHD has summarized work performed at four RFCs to evaluate the differences 
in operational forcings between the legacy NWSRFS and the current CHPS (NWS, 
2011b). The differences in basin-average values between the AOR and the calibration 
datasets are expected to manifest as both random and systematic biases. The 
magnitude of the differences will dictate the need for adjustments to the hydrologic 
model parameters. 
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The AOR has the potential for future improvements due to continually improving data 
sources, data assimilation methods, and quality control techniques. The impact on the hydrologic 
models, including the need for model parameter adjustments and the relative improvement in 
simulation quality, should be considered prior to updating the AOR. 

 

3 Data Sources 
 
Riverside developed an inventory of data sources that are available for temperature and 

precipitation in the United States (including Alaska, Hawaii, and Puerto Rico) as well as the 
portions of Mexico and Canada that drain to the United States. The data inventory includes 
station, radar, satellite, and reanalysis products. While the data inventory is intended to capture 
major sources of historical precipitation and temperature data, Riverside acknowledges that it is 
likely not comprehensive, given the breadth of work being performed and the rapidity with 
which changes are made.  

The data inventory includes a number of descriptive attributes: 
 
• Data type: The assigned values include point observation, gridded station 

observation, gridded radar observation, gridded satellite observation, gridded multi-
sensor estimate, and gridded reanalysis product. 

• Data source: This field represents the agency responsible for generating (and often 
distributing) the data.  

• Spatial extent: The data inventory indicates whether the data source is available for 
the CONUS, Alaska, Hawaii, Puerto Rico, Canada, and Mexico.  

• Spatial resolution/grid mesh: This field indicates the nominal grid mesh of the 
gridded data sources.  

• Temporal interval: This field indicates the temporal interval of the data source.  
• Historical period of record: This field provides information about the period of 

historical data availability, which has implications for the quality and the consistency 
of the AOR.  

• Historical data format and coordinate system: This information is provided to 
support an assessment of the effort required to include the data source in the AOR.  

• Data assimilation: This information is provided to indicate which data sources have 
been adjusted using in situ observations. Where both raw and adjusted data sources 
are available, it may be preferable to use the raw data in developing the AOR so that 
improved quality control and data assimilation procedures can be applied.  

• Weather variables: The data inventory indicates whether the data source provides 
precipitation, temperature, evaporation, freezing level, solar radiation, longwave 
radiation, relative humidity, and wind speed.  

• Data types: For precipitation, this field indicates whether the historical data are 
accumulated or incremental values. For temperature, this field indicates whether the 
historical data represent minimum, maximum, average, or instantaneous temperature 
values.  

• Data units: This field indicates whether the historical data are available in metric or 
English units.  
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• Web links: The data inventory includes uniform resource locators (URLs) to the 
historical data archives and metadata sources.  

 
In addition to the attributes that describe the historical data, the inventory contains 

information regarding real-time data availability, format, and latency. This information may be 
useful to OHD for developing an implementation plan for the real-time forcings, but is also 
useful in considering the consistency between the AOR and the real-time forcings.  

Data sources that are recommended for use in the AOR, or that are recommended for 
additional investigation, are described in the following sections. Appendix A contains the 
complete data inventory, including data sources that are not recommended for inclusion in the 
AOR. 

 
3.1 Stations 

 
Station networks are the most difficult data sources to inventory comprehensively due to 

the number of local and regional networks. For the purposes of the AOR development, it may be 
most efficient to obtain lists of stations used at each RFC for the development of calibration and 
real-time forcings to ensure no important stations are omitted (CBRFC, personal communication, 
February 22, 2012; SERFC, personal communication, December 14, 2011). 

Station networks are designed for a variety of monitoring objectives, including synoptic-
scale weather conditions, meso-scale weather conditions, flood warning, snowpack assessment 
for water supply, fire safety, climate change, soil moisture, and evapotranspiration for 
agricultural applications. The monitoring objectives often dictate the network density, the 
weather variables that are measured, and the sensor equipment that is installed. Most station 
networks measure both precipitation and temperature, with the exception of flood warning 
networks such as the Automated Local Evaluation in Real Time (ALERT) network and the 
Integrated Flood Observing and Warning System (IFLOWS). In addition, some of the citizen-
observed weather networks are focused on precipitation, such as the Community Collaborative 
Rain, Hail, and Snow (CoCoRaHS) network.  

Station networks can be further categorized according to manual or automated 
observations and agency or citizen-collected data. Increasingly, manual observations tend to be 
associated with citizen-collected data that are provided on a daily time step, while agency data 
are collected and transmitted automatically on an hourly (or even more frequent) time step. 
Although citizen networks tend to have shorter historical archives and uncertainties that are less 
well defined, the “observations have been very important for [the] understanding of small-scale 
variations of surface weather features” and “can be quite useful to emergency managers and local 
meteorologists when flooding rains or tropical cyclone conditions threaten (Ruscher, 2004).” 

Table 2 presents a summary of the national and regional station networks that are 
recommended for inclusion in the AOR, including the spatial extent, temporal interval, and 
historical archive associated with each network. In terms of spatial coverage, the highest station 
density is found in the eastern half of the CONUS and along the west coast (Figure 1). The 
station density tends to be lower in the intermountain west and areas outside of the CONUS. In 
terms of temporal consistency, there are several notable dates that affect the amount and quality 
of the available point observation data: 
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• 1948: Digital records for the National Climatic Data Center (NCDC) Cooperative 
(COOP) observer network become available, representing a significant increase in 
spatial representation.  

• 1979: The Natural Resources Conservation Service (NRCS) Snowpack Telemetry 
(SNOTEL) network becomes available, representing a major advance in monitoring 
at high elevations. 

• 1990s: The number of automated weather stations rapidly increases, representing a 
significant improvement in weather characterization on a sub-daily timescale. 

 
Table 2. Recommended Station Networks 
 

Station Network Data Source 
Temporal 
Interval 

Earliest 
Data 
Availability  C

O
N

U
S 

A
K

 

H
I 

PR
 

C
N

 

M
X

 

Cooperative 
(COOP) Network NCDC Daily, 

hourly 1948       

Historical 
Climatology 
Network (HCN) 

NCDC Daily 1900       

Climate Reference 
Network (CRN) NCDC Daily, 

hourly 2000       

Snowpack 
Telemetry 
(SNOTEL) 

NRCS Daily, 
hourly 1978       

Soil Climate 
Analysis Network 
(SCAN) 

NRCS Daily, 
hourly 1993       

Remote Automated 
Weather Stations 
(RAWS) 

National 
Interagency 
Fire Center 

Daily, 
hourly 1985       

Automated Surface 
Observing System 
(ASOS) 

NOAA/ 
DOD/ FAA  Hourly 1991       

 
FAA Hourly 1941       

Integrated Flood 
Observing and 
Warning System 
(IFLOWS) 

NOAA NWS 
Irregular 
(sub-
hourly) 

1981       

Community 
Collaborative Rain, 
Hail, and Snow 
(CoCoRaHS) 
network 

CoCoRaHS Daily 1998       
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Station Network Data Source 
Temporal 
Interval 

Earliest 
Data 
Availability  C

O
N

U
S 

A
K

 

H
I 

PR
 

C
N

 

M
X

 

Citizen Weather 
Observer Program 
(CWOP) 

CWOP/ 
MADIS 5-minute Unknown 

(<2003)       

Mesonet  
Various (e.g., 
MesoWest, 
MADIS) 

Sub-hourly Varies       

Agricultural 
Weather Network 
(AgriMet) 

USBR 15-minute 
to daily 1983       

Canadian Climate 
Data 

Environment 
Canada 

Daily, 
hourly Unknown       

CLICOM Mexican 
Daily Surface Data CONAGUA Daily 1902       

Mexico Sistema de 
Información 
Hydrométrica 
(SIH) database 

CONAGUA Daily, 
hourly 1995       

Mexican 
automated 
meteorological 
stations 

CONAGUA 10-minute 1999       

Mexico 
Agriculture 
Automated 
Weather Station 
Data 

AGROSON 10-minute 2004       

Northwest Mexico 
NAME rain gage 
network; NAME 
supplemental rain 
gage Network 

NCAR Earth 
Observing 
Laboratory 

5-minute 
to daily 2002       
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Figure 1. Hourly COOP, ASOS, CRN and HADS precipitation stations in the CONUS 
(reproduced from Rennie, 2011a) 

 
Many factors affect the quality of station observations, and those factors tend to vary 

depending on whether the observations are manually obtained or automated. For example, 
automated stations are affected by mechanical and electronic malfunctions, transmission errors, 
decoding errors, inaccuracies in the algorithms used to convert between direct readings and 
temperature or precipitation, and drift over time if the instruments are not frequently recalibrated 
(Seo and Breidenbach, 2002; Daly et al., 2005; Kondragunta and Shrestha, 2006). In addition, 
automated stations more frequently suffer from gages that clog with frozen precipitation, 
resulting in a reduced or zero precipitation amount (West Gulf River Forecast Center [WGRFC], 
personal communication, November 17, 2011). 

Manual stations are affected by: 
 
• Nonstandard equipment. Relatively strict criteria exist for federal observing systems, 

while citizen observing networks may not have standard requirements for sensors and 
measurement methods (Creager, 2006). Some citizen observing networks, such as the 
CoCoRaHS network, do have standard equipment.  

• Changing station locations. As volunteers cease participation, the station identifiers 
may be assigned to new volunteers at slightly different locations and elevations. 
Changes in station locations affect the long-term consistency of the historical dataset. 
This issue affects the NCDC COOP network in particular.  

• Observation times. Citizen-observed data tend to be reported on a daily time step, 
typically in the morning at 7-8 am local time, or in the evening at 5-6 pm local time. 
The observation times need to be explicitly accounted for in distributing daily values 
to an hourly time step, as the observation times affect the period represented by the 
reported data.  
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• User errors. A common error is that citizen observers may report the depth of frozen 
precipitation rather than the water equivalent. Another common issue is that observers 
may report a precipitation value on Monday morning that represents the total 
precipitation accumulation over the preceding weekend rather than individual daily 
totals. 

• Low participation rates. Citizen-observed weather data may be less reliable than 
automated observations. For example, a CoCoRaHS coordinator in Indiana has 
reported that approximately 25% of registered observers actually submit reports 
(Baker, 2011). 

• Inadequate maintenance. Most weather instrumentation requires periodic maintenance 
and calibration. Volunteers may be less likely than operational agencies to perform 
required maintenance (Creager, 2006). 

 
All stations are affected by:  
 
• Catch deficiencies. The catch deficiency is the amount by which the station 

underreports the true amount of precipitation. The magnitude of the catch deficiency 
is a function of the precipitation type, gage type, and wind characteristics at the 
orifice of the gage (Anderson, 2002). In general, the catch deficiencies are greater for 
snow than for rain. 

• Sensor characteristics. Some gages, such as those in the RAWS network, lack heating 
elements, making them unsuitable for measuring frozen precipitation (Daly et al., 
2008). However, gages with heating elements are subject to evaporative losses. 
Changes in sensor equipment can affect the consistency of the historical record. For 
example, NRCS SNOTEL stations in Colorado were modified in the early 2000s to 
use extended range temperature sensors, producing noticeable breaks on double mass 
analysis plots (Riverside, 2010a). 

• Inaccurate metadata. Point observations may erroneously reflect weather 
characteristics if the associated latitude, longitude, or elevation attributes are 
inaccurate.  

 
In addition to providing high quality point observations of precipitation and temperature, 

station observations are often used to perform bias adjustments for remotely-sensed precipitation 
estimates from radars and satellites. Hourly precipitation observations can be used for 
distributing daily precipitation values to a sub-daily time step. 

 
3.2 Ground-Based Radars 

 
The radars included in the data inventory can be generally categorized according to 

weather radars, aviation radars, radars mounted to satellites, and distributed networks of limited-
range radars. The radars differ in operating specifications such as range, frequency, and beam 
width. For the purposes of the AOR, the primary source of radar precipitation is the Weather 
Surveillance Radar-1988 Doppler (WSR-88D) radars in the Next-Generation Radar (NEXRAD) 
network operated by the NWS, Federal Aviation Administration (FAA), and the Department of 
Defense (DOD) (Figure 2). The observations undergo a series of data processing from the raw 
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analog data (Level 1) to reflectivity and precipitation (Level 2) to precipitation on an hourly time 
step and the Hydrologic Rainfall Analysis Project (HRAP) grid system (Level 3). The 
precipitation grids from individual radars are mosaicked by the NWS RFCs to cover the RFC 
domain and by the National Center for Environmental Prediction (NCEP) to cover the CONUS. 
The algorithms for quality controlling the reflectivity data and for estimating precipitation rates 
have improved significantly over time. At the RFCs, a series of gage-radar processing 
algorithms, including Stage 2, Stage 3, and RFCWide, have been replaced by the Multi-sensor 
Precipitation Estimation (MPE) program. MPE includes multiple gage-only and gage-radar 
processing options, including some that have been developed outside OHD.  

 

 
 
Figure 2. National Doppler Radar Sites (reproduced from NWS, 2004) 

 
A secondary source of radar precipitation for the AOR is the Terminal Doppler Weather 

Radar (TDWR) network operated by the FAA (Figure 3). The TDWR radars are installed at or 
near airports to improve travel safety by detecting thunderstorms and associated wind shear and 
microbursts (NSSL, 2011a; MIT, 2011). The TDWR radars have a shorter range than the WSR-
88D radars, but a higher operating frequency, resulting in higher resolution precipitation 
estimates for overlapping domains. The narrow beam and ground clutter suppression algorithms 
provide high quality data on boundary layer dynamics, which is important for forecasting 
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convective activity (MIT, 2011). However, the TDWR radar beams are significantly attenuated 
by heavy precipitation (Ferree, 2005). Though some correction algorithms have been developed, 
none have been implemented operationally for precipitation from TDWR. 

 

 
 
Figure 3. Terminal Doppler Weather Radar Sites (reproduced from MIT, 2011) 

 
Table 3 presents a summary of the radar precipitation products that are recommended for 

consideration in the AOR. Riverside prioritized base radar precipitation products over bias-
adjusted or multi-sensor products to facilitate the application of consistent quality control 
techniques and statistical adjustments that use the maximum amount of historical data. For gage-
radar estimates prior to 2002, the NEXRAD precipitation products generated by the RFCs using 
Stage 3 and RFCWide will require mosaicking and statistical adjustments (OHD, personal 
communication, September 29, 2011). OHD is investigating the utility of hourly NCEP Stage 2 
radar-only mosaics produced for the period 1996-2001. 

After 2002, the national radar mosaic produced by NCEP (i.e., the NCEP Stage 2 radar-
only product) can be utilized. The NWS OHD has already begun improving the NCEP Stage 2 
data archive by removing temporal and spatial artifacts and applying bias adjustments (OHD, 
personal communication, December 2, 2011). The NCEP NEXRAD Stage 4 multi-sensor 
product, which benefits from quality control performed at the RFCs, may also have value for 
developing the AOR. 

In addition to the NEXRAD and TDWR products, the National Severe Storms 
Laboratory (NSSL) produces a high quality national radar mosaic (NMQ) that includes the 
WSR-88D, TDWR, Canadian, and gap-filling radars. The NWS OHD has a NOWRAD dataset 
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generated by WSI that requires decoding and conversion from reflectivity to precipitation. The 
National Center for Atmospheric Research (NCAR) has an archive of manually-digitized radar 
products that may be useful for developing the AOR, but would require significant efforts to 
process. Canada and Mexico maintain national radar networks, but access to the full historical 
records is not assured. 

The NSSL and the NCDC have recently developed a plan for re-creating multiple years 
of NMQ precipitation within the Multi-radar and Multi-sensor (MRMS) platform. Generation of 
the  retrospective archive, including an upgrade of the spatial resolution to a 500-m grid mesh, 
will be implemented within two years. In the near future, the real-time MRMS will also be 
upgraded to higher spatial resolution (Kenneth Howard, NSSL, personal communication, 2012). 

 
Table 3. Recommended Sources for Ground-Based Radar Precipitation 

 

Product 
Name 

Data 
Source 

Grid 
Mesh 

Temporal 
Interval 

Data 
Availability  C

O
N

U
S 

A
K

 

H
I 

PR
 

C
N

 

M
X

 

NEXRAD 
Stage 3 NWS 4-km Hourly 1993-2000       

NEXRAD 
RFCWide NWS 4-km Hourly 2000-2002       

NCEP 
NEXRAD 
Stage 2 
Radar-only 

NCEP 4-km 
Hourly, 6-
hour, 
Daily 

1996-
Present       

NCEP 
NEXRAD 
Stage 4 Multi-
sensor 

NCEP 4-km 
Hourly, 6-
hour, 
Daily 

2002-
Present       

TDWR FAA, NWS 4-km 5-minute 
to Daily 

1994-
Present       

NMQ 
(current) NSSL 1-km 5-minute 

to Daily 
2008-
Present       

NMQ 
(planned) NSSL 500-m 5-minute 

to Daily 2012+       

NMQ 
(retrospective) 

NSSL, 
NCDC 500-m 5-minute 

to Daily 2002-2010       

NOWRAD WSI  2-km 15-minute 1996-2007       
Manually 
Digitized 
Radar 

NWS / 
NCAR 40-km Hourly 1978-1994       

Canadian 
Weather 
Radar 

Environment 
Canada Unknown 10-minute <2007-

present       

Mexican 
Radars CONAGUA Unknown Unknown Unknown       
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Radar precipitation estimates can be adversely affected by a number of factors, including 

inadequate calibration, beam attenuation, anomalous propagation, ground clutter, range effects, 
beam blockage, and frozen precipitation. Echoes in radar reflectivity data do not always 
correspond to precipitating particles. The largest errors in radar precipitation estimates appear to 
be caused by overshooting of precipitation by the radar beam and inadequate calibration (Hunter, 
1996).  

It is very difficult to accurately estimate frozen precipitation using radars. On a practical 
level, wet snow can accumulate on the radar antenna and degrade performance. Most of the 
uncertainty in accurately determining frozen precipitation rates is due to variations in the 
physical properties, specifically variations in the bulk density, although variations in particle 
shape (i.e., non-spherical particles) and size distributions contribute smaller errors (Matrosov et 
al., 2009). The characteristics of the frozen precipitation also affect the radar beam and returns. 
Beam attenuation in wet snow typically exceeds that for rain with comparable precipitation rates, 
while attenuation in dry snow is small and often ignored (Matrosov et al., 2009). Table 4 
presents a summary of radar reflectivity properties for varying types of snow. 

 
Table 4. Radar Reflectivity Values for Varying Snow Types (Matrosov et al., 2009) 

 

Type of Snow 
Air Temperature 
[°C] 

Reflectivity 
[dBZ] 

Differential 
Reflectivity [dB] 

Dry snow in aggregates <0 20-35 <0.5-0.6 
Wet snow >0 >35 >0.6 
Pristine single crystal snow <-5 to -10 <20 >0.6 
 

To correct for a wide range of errors in radar precipitation estimates, bias adjustments are 
applied using observed precipitation values at nearby stations. The bias adjustments are 
equivalent to adjusting the multiplicative factor used to compute precipitation rates from 
reflectivity (i.e., parameter A in Equation 1). 

 
 

 
Where: 
  

Z = Rainfall rate (mm/hr) 
A = Multiplicative factor (mm/hr) 
R = Reflectivity (dBZ) 
b = Exponent (unitless) 

Equation 1. Z-R Relationship 
 
A mean field bias adjustment applies a single multiplicative adjustment to all grid cells 

within a radar umbrella. This type of adjustment works well in areas with a sparse station 
network and a uniform bias over the radar umbrella. In order to reliably compute the mean field 
bias adjustment, a threshold must be established for the minimum number of grid cells in the 
radar umbrella that had precipitation recorded both by the radar and at nearby stations. A value 
of 20 has been recommended for this threshold (Seo et al., 1999). Applying a mean field bias 
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adjustment can exacerbate overestimation errors, particularly where radars overestimate rainfall 
due to brightband enhancement (Seo et al., 2002). 

A local bias correction allows the multiplicative adjustment factor to vary for each grid 
cell within the radar umbrella. Adjustment factors are computed for each grid cell with a 
sufficient number of station observations within the specified radius of influence. The adjustment 
factors are then interpolated to the entire domain. The local bias correction is more effective than 
the mean field bias adjustment in areas with a dense station network and for stratiform rainfall 
events that occur during the cool season (Seo et al., 2002). In some cases, local bias adjustments 
have been shown to underestimate high rainfall amounts and to overestimate low rainfall 
amounts (Seo et al., 2002). 

One of the major advances in radar precipitation technology is the deployment of dual 
polarization capability. Dual polarization aids in clutter removal and in distinguishing non-
precipitating objects from precipitating particles. Precipitation estimates during the warm season 
due to convective activity are likely to improve significantly as a result of dual polarization 
(Earth System Research Laboratory [ESRL], personal communication, November 16, 2011).  

In addition to precipitation detection and estimation, radar estimates are also beneficial 
for temporal disaggregation of precipitation estimates, spatial interpolation of point observations, 
and determination of the elevation separating rain from frozen precipitation. 

  
3.3 Satellite  

 
3.3.1 Precipitation 

 
Precipitation rates determined from remotely-sensed data measured by satellite-mounted 

instruments are improving and are becoming more commonly used in hydrologic applications. 
Satellite-based precipitation estimates have the advantage of near-global coverage, although 
precipitation rates cannot currently be determined from satellite data for polar latitudes (i.e., 
north of approximately 50-60°N and similar in the south). Satellite precipitation estimates are 
valuable over oceans where alternative measurements are limited and in areas where gage and 
radar coverage is sparse. Although of lower utility for the AOR development in comparison to 
gage or radar data, satellite precipitation estimates could be incorporated for specific locations 
and time periods, and for spatial or temporal disaggregation. For example, the Hydroestimator 
geostationary infrared algorithm is used operationally for some areas of Mexico that drain to the 
U.S. (Scofield and Kuligowski, 2003).  

Kidd and Levizzani (2011) provide a useful overview of the current state of satellite 
precipitation estimation, including estimation techniques associated with specific data types as 
well as techniques used to merge information from different satellite sources. Various sensors 
have been utilized for precipitation estimation, including visible, infrared, passive microwave, 
and active microwave (precipitation radar) sensors. The instruments are mounted on a range of 
satellite constellations, with a range of techniques employed to convert measured data into 
precipitation estimates. Visible imagery has been utilized in training algorithms to identify cloud 
types and subsequently to determine rainfall amounts associated with specific cloud types. 
Infrared (IR) measurements provide temperature data for cloud tops, which can be related to 
precipitation rates. However, the relationships vary widely, so although IR data are available at 
high spatial and temporal resolutions, precipitation estimates from IR data are less reliable than 
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other estimates. Passive microwave (PMW) instruments can be used to identify variations in 
microwave radiation emitted from the earth caused by scattering of the radiation by precipitating 
ice particles, and subsequently can be used to estimate precipitation more directly than with IR 
data. The combined PMW coverage from satellites has a lower spatial resolution than IR data 
and less frequent observations, with 3-6 hours between successive passes of PMW-equipped 
satellites over a given location. Finally, precipitation radar, such as that associated with the 
Tropical Rainfall Measuring Mission (TRMM), provides the most direct measurement of 
precipitation from space-borne instrumentation, similar to ground-based radars. However, 
precipitation radars have narrow swath widths and are placed on a relatively small number of 
satellites, with relatively infrequent passes over a given location. The data are used primarily to 
calibrate other instruments, but may also be useful for gap filling and temporal disaggregation of 
other data sources.  

Various techniques have been developed to combine PMW and IR measurements and to 
utilize information from both sources to provide an improved satellite-based precipitation 
estimate. Kuligowski (2002), Behrangi et al. (2010), and Joyce and Xie (2011) describe 
algorithms used to combine PMW and IR information, as well as the limitations of these 
approaches. The techniques are categorized into four main groups:  

 
1. Techniques that develop relationships between PMW and IR imagery to derive local 

mapping of IR measurements to rainfall rates (e.g., SCaMPR, Kuligowski, 2002). 
2. Techniques that assign PMW-based rainfall estimates when available and IR-based 

rainfall rates when PMW measurements are unavailable. 
3. Motion-based techniques that utilize PMW data to estimate rainfall rates and IR data to 

define cloud movement paths between each PMW rainfall estimate (e.g., CMORPH, 
Joyce et al., 2004). 

4. Techniques that combine cloud movement information with cloud modeling.  
 
Because of the wide range of satellite precipitation products that are available, the 

Program to Evaluate High Resolution Precipitation Products (PEHRPP) was established, from 
which the International Precipitation Working Group provides regular validation information on 
different satellite-based precipitation products over the U.S. (Ebert et al., 2007). Of the products 
produced on a regular basis, the motion-based techniques such as the Climate Prediction Center 
(CPC) Morphing Method (CMORPH; Joyce et al., 2004) and the more recent Global Satellite 
Mapping using a Moving Kalman Filter (GSMaP_MVK+; Ushio et al., 2009) perform better 
than the simpler combination techniques or single-sensor techniques (Sapiano et al., 2010; Tian 
et al., 2010). Recently, the CMORPH technique was modified to incorporate a Kalman filter and 
improve inter-calibration of PMW data, among other improvements (Joyce and Xie, 2011). The 
updated algorithms of the Kalman Filter CMORPH (KF-CMORPH) result in improved 
precipitation estimates for hours between successive PMW overpasses. The CMORPH product 
was recently reprocessed to incorporate better quality-controlled input data and to extend the 
period of record back to 1998; the CPC plans to process an equivalent period of record for the 
improved KF-CMORPH product before the expected launch of the first Global Precipitation 
Mission (GPM) satellites in 2013 (CPC, personal communication, December 20, 2011). 

Recent developments in cloud modeling appear promising, improving upon motion-based 
precipitation estimation through inclusion of cloud classification and cloud modeling information 
(e.g., the Lagrangian Model [LMODEL; Bellerby et al., 2009] and Rainfall Estimation using 
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Forward-Adjusted advection of Microwave Estimates [REFAME; Behrangi et al., 2010] 
techniques), although at the time of reporting these products were not available operationally. In 
addition, the CPC is working with the University of California-Irvine and the National 
Aeronautics and Space Administration (NASA) to integrate the cloud classification system of the 
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 
Cloud Classification System (PERSIANN-CSS) algorithm (Hsu et al., 2010), the post-processing 
monthly bias removal of the TRMM Multisatellite Precipitation Analysis (TMPA) system 
(Huffman et al., 2007), and the KF-CMORPH algorithm into the Integrated Multisatellite 
Retrievals for the Global Precipitation Mission (IMERG), with an anticipated completion date 
corresponding with the GPM launch date (Huffman et al., 2012).  

Table 5 presents a summary of the satellite precipitation products that are recommended 
for consideration in generating the AOR. Of the operational products that will be available in the 
near future, the KF-CMORPH product incorporates many of the improvements of the 
GSMaP_MVK+ technique compared with the CMORPH technique. Furthermore, the KF-
CMORPH product is preferable over the GSMaP_MVK+ product since it is produced by the 
CPC and forms the basis for the IMERG development, which should provide further 
improvements to the KF-CMORPH product. Depending on the AOR development timeline, the 
LMODEL, REFAME, or IMERG products may also be feasible alternatives if these are 
generated over the complete historical record and become operational products. 

 
Table 5. Recommended Sources for Satellite Precipitation Data 

 

Product 
Name Data Source 

Grid 
Mesh 

Temporal 
Interval 

Data 
Availability  C

O
N

U
S 

A
K

 

H
I 

PR
 

C
N

 

M
X

 

TRMM 
Level 2 
Rainfall 
Rate  

NASA 4-km 3-hour 1997-
present       

KF-
CMORPH NCEP/CPC 8-km 30-minute 1998-

present       

CMORPH NCEP/CPC 8-km 30-minute 1998-
present       

IMERG NCEP/CPC/ 
NASA Under development 

LMODEL UC-Irvine Under development 
REFAME UC-Irvine Under development 
 

Various data quality issues are associated with the visual, IR, PMW, and precipitation 
radar data. The data quality is impacted by individual sensor calibration and sensor drift issues, 
beam angle, and incorrect data classification due to a wide range of factors (Kidd and Levizzani, 
2011; Joyce and Xie, 2011). In particular, satellite-based precipitation estimates are less accurate 
over snow and ice due to ice-contamination issues of PMW detections (Sapiano et al., 2008). 
Once precipitation estimates are derived for individual sensors, differences in precipitation 
estimates from different sensors need to be resolved. One of the improvements of the KF-



Hydrometeorological Forcings May 2012 17 

CMORPH algorithm compared to the original CMORPH algorithm is an improved accounting 
for differences between sensor precipitation estimates (Joyce and Xie, 2011). The satellite sensor 
constellation has changed over the available period of record, affecting the uncertainties 
associated with the precipitation estimates. Work presented by Joyce and Xie (2011) indicates 
that efforts are underway at the CPC to quantify the impact of changing satellite constellations 
on uncertainty estimation; the paper presents preliminary results of this investigation. 

Although satellite precipitation algorithms are improving, the quality of the precipitation 
estimates remains relatively low compared to alternative sources of information due to the 
indirect nature of the precipitation estimates and the quality issues described previously. 
Although the satellite coverage extends to approximately 60°N, the precipitation estimates are 
poor at the northernmost extents due to challenges in the estimation procedures over snow and 
ice. In one inter-comparison study, satellite-based precipitation estimates were shown to perform 
better than NWP models during summer months and for convective storms (Sapiano et al., 
2010). However, NWP models performed better during winter months, when snow and ice cover 
is more likely, and during stratiform events. 

Satellite precipitation estimates suffer from relatively large biases. The TMPA 3B42 v6 
product includes a post-processing step that removes bias on a monthly basis using gridded 
station data (Huffman et al., 2007). Xie and Xiong (2011) perform a bias adjustment for the 
CMORPH product based on a daily gage analysis; the CMORPH product is adjusted based on 
matching probability density functions between the CMORPH and the daily gage analysis over a 
5° box and a moving 30-day window. The NWS MPE program also performs mean field and 
local bias adjustments to satellite precipitation inputs (Seo, 2003; Fulton, 2005b; NWS, 2008). 

Because of their large spatial extents, satellite-based precipitation estimates are valuable 
data sources in data-sparse regions such as the Rio Conchos Basin in Northern Mexico, which 
flows to the Rio Grande River on the U.S.-Mexico border. Likewise, satellite precipitation data 
may have utility for precipitation detection in areas with large gaps between precipitation 
stations. Because satellite precipitation estimates have relatively low absolute accuracy, the 
estimates should be used in the AOR development by creating merged multi-sensor products, 
possibly using uncertainty information to assign satellite estimates lower weight relative to 
higher quality data sources. The hourly temporal interval of the KF-CMORPH product could be 
valuable for temporally disaggregating daily precipitation estimates in areas lacking hourly rain 
gages or ground-based radar estimates. 

Although there are challenges associated with satellite precipitation estimation, satellite 
instrumentation and estimation algorithms continue to improve. In 2013, NASA and the Japanese 
Space Administration are expected to jointly launch the GPM core satellite, initiating a multi-
year science mission. The new satellites will significantly augment the current satellite 
precipitation constellation, and are expected to result in worldwide improvements in remotely-
sensed precipitation. Considering ongoing improvements in satellite-based sensors and 
estimation algorithms, these data will likely hold a more prominent role in future precipitation 
estimation over the U.S. in data sparse areas. NOAA staff are preparing proposals for eventual 
transition of the GPM program to operations. 

 
3.3.2 Temperature 

 
Temperature estimates from satellite observations have long been used to analyze the 

magnitude of global climate change, and more recently to assess soil moisture conditions and 
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crop evapotranspiration requirements. Satellite observations can be used to estimate land surface 
temperatures using infrared and microwave instruments (Wan and Dozier, 1996). Polar-orbiting 
systems equipped with Advanced Very High Resolution Radiometers (AVHRR) and the 
Moderate Resolution Imaging Spectroradiometers (MODIS) have been used to estimate land 
surface temperatures because they produce estimates at high spatial resolutions. However, polar-
orbiting satellites observe a given location only twice per day, and are adversely affected by 
cloud cover (Pinker et al., 2009; Jin and Dickinson, 1999). Geostationary satellites have the 
advantage of continuously observing a fixed (but limited) location, producing estimates with 
high temporal resolutions (Pinker et al., 2009). Many algorithms have been developed to 
estimate land surface temperatures from satellite observations. Single channel methods require 
that surface emissivities and temperature/water vapor profiles be specified. Split-window 
methods require that surface emissivities be specified, but correct for atmospheric effects based 
on the differential absorption in adjacent infrared bands (Wan and Dozier, 1996; Pinker et al., 
2009). Single channel and split-window algorithms do not work well in arid and semi-arid 
environments (Wan et al., 2002). Additional methods extract relative emissivities from multi-
spectral thermal infrared data (Wan et al., 2002). In general, the quality of satellite-based land 
surface temperature estimates tends to be adversely affected by heterogeneous land surfaces, 
clouds, falling precipitation, and changes in satellites and instrumentation throughout the 
historical record. Table 6 presents a summary of the historical land surface temperature data that 
are available from the Aqua MODIS and Terra MODIS satellites.  

 
Table 6. Satellite Land Surface Temperature Data  

 

Product Name 
Data 
Source 

Grid 
Mesh 

Temporal 
Interval 

Data 
Availability  C

O
N

U
S 

A
K

 

H
I 

PR
 

C
N

 

M
X

 

MODIS Land 
Surface 
Temperatures 

NASA 1-6 
km 

5-min to 
Monthly 2000-present       

  
Many studies are being conducted to develop algorithms for estimating near-surface air 

temperatures from satellite-based land surface temperatures (e.g., Ceccato et al., 2010; 
Vancutsem et al., 2010; Lin et al., 2012). These studies employ regression models to predict 
maximum (or minimum) air temperatures as a function of land surface temperatures, elevation, 
vegetation indices, and soil moisture estimates, among other variables. The estimation of daily 
minimum air temperatures from land surface temperatures retrieved at night tends to be more 
straightforward, as solar radiation does not affect the thermal infrared signal (Ceccato et al., 
2010; Vancutsem et al., 2010; Lin et al., 2012). The estimation of daily maximum air 
temperatures from land surface temperatures retrieved during the day tends to be more variable, 
as the relationships vary as a function of season, ecosystem, solar radiation, and cloud cover 
(Vancutsem et al., 2010).   

For the purposes of the AOR development, air temperatures derived from satellite 
observations may be less valuable in terms of absolute values, except in areas with very sparse 
station networks. However, satellite-based temperature estimates may be beneficial for 
characterizing diurnal temperature cycles (e.g., Jin and Dickinson, 1999). 
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3.4 Numerical Weather Prediction Models and Reanalysis Data 

 
NWP models represent the condition of the atmosphere, and in some cases, interactions 

among the atmosphere, oceans, sea ice, and land surfaces. NWP models are used to forecast 
weather conditions based on current conditions. Multiple groups have employed NWP models to 
produce retrospective datasets, referred to as reanalysis products. To produce the reanalysis 
products, the NWP models are initialized using historical conditions prior to the start of the 
reanalysis period. Forecast runs are made with the NWP models. Moving forward in time, 
observed data such as radiance, sea surface temperature, and pressure are assimilated into the 
models to maintain the model states reasonably close to historical conditions. New forecast runs 
are produced once the observed data are assimilated into the NWP model to produce updated 
model states. In this manner, an entire historical record of NWP model output can be generated. 

Table 7 presents a summary of the reanalysis products that are recommended for 
investigation for the AOR. These reanalysis products can be further categorized into global 
reanalysis products and regional high-resolution reanalysis products. The reanalysis products 
provide a variety of weather variables, including precipitation, temperature, solar radiation, 
longwave radiation, relative humidity, and wind speed. Of the available variables, precipitation is 
the most difficult to simulate well using NWP models. 

 
Table 7. Recommended Sources for Reanalysis Data 

Product 
Name 

Data 
Source 

Grid 
Mesh 

Temporal 
Interval 

Data 
Availability  C

O
N

U
S 

A
K

 

H
I 

PR
 

C
N

 

M
X

 

Climate 
Forecast 
System 
Reanalysis 
(CFSR) 

NCEP 36-km Hourly 1979-2011       

NCEP/NCAR 
Reanalysis 
(Version 1) 

NCEP/ 
NCAR 2.5°  Daily, 6-

hour 
1948-
present       

North 
American 
Regional 
Reanalysis 
(NARR) 

NCEP 32-km 3-hour 1979-
present       

Arctic 
System 
Reanalysis 
(ASR-
Interim) 

Ohio State 
Polar 
Meteorology 
Group 

10-30 
km 3-hour 2000-2008       

ERA Interim ECMWF 0.7° 3-hour 1979-2011       
ERA-40 ECMWF 1.125° 6-hour 1957-2002       
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3.4.1 Global Reanalysis Products 
 
The NCEP/NCAR Reanalysis (R1; Kalnay et al., 1996) was the first major, global 

reanalysis run in the mid-1990s. The dataset covered the period 1948-1996, with updates 
extending the record through the present. The NCEP/DOE Reanalysis (R2; Kanamitsu et al., 
2002) was generated a few years later to correct various errors identified in the R1 dataset. The 
R2 dataset was limited to begin in 1979. Subsequently, the European Center for Medium-Range 
Weather Forecasts (ECMWF) generated the ECMWF 15-year Reanalysis (ERA-15; Gibson et 
al., 1997), covering the period 1979-1993. In subsequent years, ERA-40 (Uppala et al., 2005) 
was generated to replace ERA-15, covering the period 1957-2002 based on updated models and 
improved data assimilation techniques. The Japanese Meteorological Agency (JMA) produced 
the Japanese 25-year Reanalysis (JRA-25; Onogi et al., 2007), using many of the same 
algorithms as the ERA-40 reanalysis, but with improved input data over Asia. The original JRA-
25 reanalysis covers the period 1979-2004, with updates using recent data. The JMA began 
production of an extended reanalysis, JRA-55, in August 2010, with an expected completion date 
in 2013. This reanalysis will cover the period 1958-2012 using an improved version of the JMA 
NWP model and improved data assimilation methods. The ECMWF has generated the ERA-
Interim product (Dee et al., 2011) in preparation for a longer reanalysis extending back to the 
early 20th century. The ERA-Interim reanalysis focused on addressing many deficiencies 
identified in the ERA-40 model, observations, and data assimilation system. The product was 
originally run for the period 1987-2006, though it continues to be extended forward in time, and 
was recently extended back to 1979.  

In the U.S., several global reanalysis products have been produced in recent years. The 
Twentieth Century Reanalysis (20CR; Compo et al., 2011; Compo et al., 2012; Chang, 2012) 
was produced by the NOAA Cooperative Institute for Research in Environmental Sciences 
(CIRES). This product differs from many of the other reanalysis datasets in that the observed 
data that were assimilated (i.e., surface pressure observations) and the data that were used as 
boundary conditions (i.e., sea surface temperatures and sea ice distributions) were limited to 
allow a consistent reanalysis to be generated further back in time, and to provide a means to 
assess the impact of additional data inputs in the satellite era. The 20CR dataset has been 
extended to begin prior to 1900. In evaluating the 20CR dataset, Compo et al. (2012) have found 
that the dataset provides higher quality estimates in the northern hemisphere than in the southern 
hemisphere.  

The NASA Goddard Global Modeling and Assimilation Office (NASA-GMAO) recently 
completed the Modern Era Retrospective-Analysis (MERRA; Reinecker et al., 2011) reanalysis. 
The NCEP recently completed the Climate Forecast System Reanalysis (CFSR; Saha et al., 
2010). Both products employ similar atmospheric models. However, the MERRA reanalysis 
utilized an older version of the data assimilation system, and is limited to an atmospheric model 
reanalysis, utilizing observed data for oceanic, sea ice, and land surface boundary conditions. 
The CFSR product includes coupled atmospheric, oceanic, sea ice, and land surface models. The 
MERRA reanalysis continues to be updated with new data. The CFSR product initially covered 
the period 1979-2009 and was recently extended through March 2011, although no additional 
updates are planned. Kumar (2012) reports that the CFSR dataset depicts high-frequency (i.e., 
synoptic) variability on a daily time step better than low-frequency variability.  

Of the global reanalysis products, the ERA-Interim, MERRA, and CFSR products 
represent the most recent advances in NWP models, observational datasets, and data assimilation 
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methods. The CFSR product is generated at the highest spatial and temporal resolutions 
(approximately 36-km grid mesh and 1-hr temporal interval, compared to approximately 45-km 
grid mesh and 1-hr temporal interval for MERRA, and 80-km grid mesh and 3-hr temporal 
interval for the ERA-Interim product). However, Kistler (2012) reports that these datasets are 
affected by changes in observing systems, in particular the introduction of the special sensor 
microwave/imager (SSMI) instrument in 1987 and the advanced microwave sounding unit 
(AMSU-A) instrument in 1998. The ERA-Interim, MERRA, and CFSR datasets were produced 
by assimilating data from different channels from the two instruments, resulting in 
inconsistencies that vary in timing and magnitude in the reanalysis datasets.  

Reinecker et al. (2011) compares the ability of each of the reanalysis products to estimate 
precipitation on a large scale compared to the Global Precipitation Climatology Project (GPCP; 
Adler et al., 2003) and to the CPC Merged Analysis of Precipitation (CMAP; Xie and Arkin, 
1997) observed precipitation products. The GPCP and CMAP products incorporate satellite- and 
ground-based observations to produce gridded precipitation estimates on a monthly basis. In 
Reinecker et al. (2011) and associated studies, the reanalysis products yielded comparable 
results. It was also demonstrated that changes in the observational network resulted in major 
changes in the reanalysis precipitation estimates on a monthly basis. Although the latest 
reanalyses show significant improvements in precipitation estimation relative to the original 
reanalyses, Reinecker et al. (2011) concluded that the reanalyses do not provide additional 
information concerning precipitation at this time compared to the GPCP or CMAP precipitation 
products due to the difficulties of data assimilation.  

Much like satellite-based temperature estimates, the temperature fields from the global 
reanalyses have been used to detect and quantify climatic trends. The temperature fields have 
been compared to gridded observational datasets on relatively coarse spatial and temporal scales. 
The comparisons have employed temperature anomalies to minimize the effect of biases in the 
datasets and to focus on evaluating low-frequency temporal variations. For example, Simmons et 
al. (2004) compared anomalies in monthly mean surface air temperatures at 2-m from the ERA-
40 and NCEP/NCAR reanalyses to a gage-based, gridded observational dataset (CRUTEM2v) 
developed by the U.K.’s Climatic Research Unit. The comparison was done for the period 1958-
2001 using a 5° grid mesh, with results aggregated to hemisphere and continental scales. The 
authors concluded that the three datasets demonstrated similar inter-annual variability, but that 
the ERA-40 temperature fields tended to be closer to the observed data after 1967 in North 
America. Prior to 1967, the quality of the ERA-40 reanalysis suffers from a lack of synoptic-
level data for assimilation. In addition, the authors reported that suspect values occurred to a 
limited extent in both the observational dataset (due to erroneous station values) and the 
reanalysis datasets. Chelliah and Ropelewski (2000) compared average monthly and seasonal 
temperature anomalies between the NCEP/NCAR reanalysis and gridded station observations. 
This comparison was performed on a 5° grid mesh for the period 1958-1996. The authors 
reported seasonal correlations ranging from 0.65-0.85, with higher correlations occurring in 
winter (December-February), and lower correlations occurring in summer (June-August) and 
over mountainous regions such as the Rockies. Finally, the authors report that a change in 
relative bias occurs in the NCEP/NCAR and ERA-15 reanalysis datasets in 1991-1997 due to a 
change in the satellite data inputs used in the reanalyses. Although these studies provide some 
insight into the potential quality of the reanalysis temperature fields, additional investigation is 
required at the spatial and temporal resolutions intended for the AOR. 
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Given the spatial and temporal resolutions, recent advances in modeling and data 
assimilation techniques, and comparable performance between the CFSR, MERRA, and ERA-
Interim products, the CFSR is likely to be most applicable for the AOR. The R1 and ERA-40 
products may also be applicable for the AOR for the period 1948-1979 if the AOR is extended to 
include that period, unless recent reanalysis datasets are extended to cover the earlier period. 

 
3.4.2 Regional and High-Resolution Reanalysis Products 

 
In addition to the global reanalysis products, numerous regional reanalyses have been 

completed that are relevant to the AOR. The North American Regional Reanalysis (NARR; 
Mesinger et al., 2006) was originally completed for the period 1979-2003 by NCEP and 
continues to be updated in near-real time, with the motivation to improve the precipitation fields 
and to increase the spatial and temporal resolution of R2 over North America. The grid mesh of 
the NARR is approximately 32 km, a significant improvement over R2. For the NARR, observed 
precipitation data were assimilated indirectly into the NWP model by adjusting the latent heat 
state to force precipitation to be simulated when it was observed. The assimilation of observed 
precipitation data was generally successful, and the NARR product better represents precipitation 
compared with previous reanalysis products. However, the input precipitation data were gridded 
point observations. Thus, the result is impacted by how the station data were interpolated to 
produce gridded products.  

The Ohio State Polar Meteorology Group recently completed a preliminary 8-year 
reanalysis using the Weather Research and Forecasting (WRF) model on a 30-km grid mesh for 
the period 2000-2008. This preliminary reanalysis was intended as a test prior to generating the 
Arctic System Reanalysis (ASR) on a 10-km grid mesh for the period 2000-2010 over the Arctic 
region (Wang et al., 2011). Though not yet complete, the ASR product will provide a high-
resolution reanalysis input for Alaska that may be valuable for the AOR. 

 
3.4.3 Issues and Benefits 

 
The reanalysis products have multiple potential applications for the AOR development. 

Although input datasets have changed over the period of record intended for the AOR, the NWP 
models and associated data assimilation algorithms provide a consistent means to simulate the 
state of the atmosphere over the period of record. For any given location and time, the associated 
atmospheric conditions are represented, so the unique conditions that generate rainfall and 
temperature conditions are represented. However, there are limitations with the reanalysis 
products. Most importantly, the grid mesh of the products that are available over the desired 
domain for the AOR is limited to 32-38 km. Within one grid element of this resolution, there are 
over 1,000 nested 1-km grid cells. Identifying appropriate means to downscale the reanalysis 
fields to a finer spatial resolution is a challenge. Furthermore, there are known limitations with 
the precipitation fields in the reanalysis products. Although the NARR addresses this issue to 
some degree through indirect data assimilation, differences between the observations and the 
NARR precipitation estimates still exist (Bukovsky and Karoly, 2006; West et al., 2007; Becker 
et al., 2009). 

Although the precipitation outputs from the reanalyses may not be directly usable, the 
reanalysis products could be used for other purposes. Reanalysis fields besides precipitation and 



Hydrometeorological Forcings May 2012 23 

temperature are necessary for the AOR, such as wind direction, wind speed, and water vapor 
content. These variables may be utilized to characterize atmospheric conditions, allowing for 
specific techniques to be applied to downscale precipitation or temperature fields. The 
temperature or precipitation fields may be useful for temporal disaggregation if alternative 
sources are not available. In places with frozen precipitation, the reanalysis products may 
provide the best estimate of the rain-snow elevation.  

With respect to simulated precipitation, it is unclear whether the NARR or the CFSR 
product is preferable for use in the AOR. Given the advances in modeling and data assimilation 
techniques between the NARR-era reanalysis and the CFSR-era reanalysis, the CFSR likely 
provides a superior representation of atmospheric variables that could be used within the AOR 
framework. Over its available record and extent, the ASR appears to be the best reanalysis 
product.  

 
3.5 Gridded Climatology and Observation Datasets 

 
A number of gridded precipitation and temperature datasets are currently available, 

including both time series and multi-decade climatologies, that can be used for developing the 
AOR. These datasets may be useful in terms of applying the same methodologies, using the 
gridded products to establish the long-term statistical characteristics of the AOR, or using the 
gridded products as validation datasets. Table 8 presents a summary of the gridded datasets that 
are recommended in these capacities for developing the AOR. 

 
Table 8. Gridded Data Sources 

 

Product 
Name Data Source 

Grid 
Mesh 

Temporal 
Interval 

Period 
of 
Record  C

O
N

U
S 

A
K

 

H
I 

PR
 

C
N

 

M
X

 

PRISM 400-
m 

The Climate 
Source, Inc. 400-m 30-yr 

average 
1971-
2000       

PRISM 2-
km 

The Climate 
Source, Inc. 2-km 30-yr 

average 
1961-
1990       

PRISM 4-
km 

The Climate 
Source, Inc. 4-km Monthly 1895-

present       

Atlas 
Climatico 
Digital de 
Mexico 

Uniatmos/ 
CONAGUA 1-km 50-yr 

average 
1950-
2000       

Prototype 
monthly 
climatology 
datasets 

NCDC 4-km 30-yr 
average 

1978-
2007       

Hamlet / 
Lettenmaier 

University 
of 
Washington 

1/8° Daily 1915-
2003       
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Product 
Name Data Source 

Grid 
Mesh 

Temporal 
Interval 

Period 
of 
Record  C

O
N

U
S 

A
K

 

H
I 

PR
 

C
N

 

M
X

 

Maurer et al. Santa Clara 
University 1/8° Daily, 

Monthly 
1949-
2010     (1)  

Stage 2 
National 
Precipitation 
Analysis 
(gage-only) 

NCEP 4-km Daily 1996-
present       

US Daily 
Precipitation 
Gridded 
Analysis 

CPC 0.25° Daily 1979-
present       

Gauge-
Based 
Analysis of 
Global Daily 
Precipitation  

CPC 0.50° Daily 1979-
present       

Daily 
Gridded 
Temperature 
Analysis 

CPC 0.50° Daily 1948-
present  (2) (2) (2) (2) (2) 

Climatology-
Calibrated 
Precipitation 
Analysis 
(CCPA) 

NCEP 4-km 6-hr 2002-
2010       

NLDAS-2 
Forcing 

NASA / 
NCEP 1/8° Hourly 1979-

present       

WorldClim 
Global 
Climate Data 

WorldClim 1-km 50-yr 
average 

1950-
2000       

Daymet University 
of Montana 1-km Daily 1980-

1997       
(1) Available in the original dataset, but not yet available for the updated dataset. 
(2) A global analysis dataset for 1979-present is scheduled for completion in 2012 (CPC, personal 

communication, February 2012).   
 
3.5.1 PRISM Datasets 

 
Several gridded precipitation, maximum temperature, and minimum temperature products 

have been created using the Parameter-Elevation Regressions on Independent Slopes Model 
(PRISM) developed at Oregon State University. These products vary in grid mesh from 400-m to 
4-km and in time step from monthly grids to 30-year climatological averages. The finest 
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resolution products are available for the CONUS, although coarser resolution products are 
available for Alaska, Hawaii, Puerto Rico, and portions of Canada. The PRISM system is 
described in more detail in Section 10. 

Riverside has successfully used PRISM datasets to establish the long-term characteristics 
of MAP datasets developed for calibration of hydrologic models, particularly in the 
intermountain west. In this capacity, Riverside has employed the 2-km, 1961-1990 
climatological average grids and has developed climatological average grids for varying 
calibration periods using the 4-km, monthly grids. To date, Riverside has not utilized the 400-m, 
1971-2000 climatological grids.  

 
3.5.2 Maurer et al. and Hamlet/Lettenmaier Datasets 

 
Significant work has been done at the University of Washington and the Santa Clara 

University to develop gridded archives of precipitation, maximum temperature, and minimum 
temperature that have a grid mesh of 1/8° and temporal intervals of three hours, one day, and one 
month. These datasets cover most of the CONUS and portions of Mexico and Canada. The 
methodologies that have been applied to develop these datasets may be useful for developing the 
AOR.  

The precipitation datasets that were developed by Maurer et al. (2002) used daily 
observations at NCDC COOP stations. Outside of the U.S., missing precipitation values were 
filled using the Global Precipitation at One-Degree Daily Resolution from Multi-Satellite 
Observations data (GPCP 1DD; Huffman et al., 2001). The point observations were interpolated 
using the synergraphic mapping system (SYMAP) method (Shepard, 1984). The interpolated 
grids were adjusted using the 1961-1990 climatology grids from PRISM so that the long-term 
averages of the grid cells containing COOP stations are consistent with PRISM. The adjustments 
using PRISM were performed by developing twelve monthly adjustment factors for each grid 
cell. Daily precipitation values were evenly distributed to produce 3-hour values. (Maurer et al. 
[2002] compared uniform disaggregation to stochastic disaggregation, and concluded that the 
assumption of a constant diurnal cycle had minimal effect on the moisture and energy fluxes 
simulated by the variable infiltration capacity [VIC] model.) 

To produce temperature grids, daily observations of maximum and minimum 
temperatures at the COOP stations were interpolated to a grid mesh of 1/8° using the SYMAP 
algorithm. After 1998, the dataset uses the 2-m temperature data from the NCEP/NCAR R1 
reanalysis to fill missing temperature values outside of the U.S. Lapse rates were applied to 
account for differences in elevation. A spline interpolation technique was applied to the daily 
temperature values to produce the 3-hour grids.  

The initial datasets developed by Maurer et al. (2002) were later improved upon by 
Hamlet and Lettenmaier (2005). The Hamlet and Lettenmaier dataset improves upon the Maurer 
et al. dataset by making an adjustment for temporally-varying biases introduced over the period 
of record from changing networks. The additional adjustment is made by comparing the gridded 
precipitation estimates using all the COOP stations to gridded precipitation estimates produced 
solely using HCN gages.  

Both the Maurer et al. and Hamlet/Lettenmaier datasets have been used for hydrologic 
modeling with the VIC model (Maurer et al., 2002; Hamlet and Lettenmaier, 2005). The primary 
limitation of the datasets is that they rely solely upon NCDC COOP observations in the U.S. 
Additionally, for some days, there is a strong discontinuity at the border between Mexico and the 
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U.S. (Maurer, 2011). This is attributed to differences in the data sources between the two 
countries and the sparse station density along the border. Both the Maurer et al. and 
Hamlet/Lettenmaier datasets are being updated to produce longer periods of record for larger 
spatial extents. 

  
3.5.3 NCEP Datasets 

 
The CPC and the Environmental Modeling Center (EMC) within NCEP produce multiple 

gridded precipitation and temperature products based on station observations. These datasets 
have been used as validation datasets and are recommended in this capacity for the AOR (Joyce 
et al., 2004; Sapiano et al., 2008; Rienecker et al., 2011), in addition to having been developed 
using techniques that are relevant to the AOR development. 

The NCEP Stage 2 National Precipitation Analysis includes both hourly and daily gage-
only precipitation products. The hourly products incorporate observations from approximately 
3,000 automated stations that transmit via the ASOS and the Geostationary Operational 
Environmental Satellites (GOES) Data Collection Platform (DCP; Katz, 2002). The daily 
products incorporate observations from more stations than are used in the hourly products, and 
also benefit from quality control that is performed at the RFCs. These precipitation products are 
available for the CONUS.  

The CPC produces daily precipitation products for the CONUS (i.e., 0.25° grid mesh) 
and globally (i.e., 0.50° grid mesh). These products are developed using station observations 
from the World Meteorological Organization (WMO) Global Telecommunications System 
(GTS) and Standard Hydrologic Exchange Format (SHEF) encoded reports from the RFCs, 
Hydrometeorological Automated Data System (HADS), and the NRCS SNOTEL network 
(NWS, 2006; NCEP, 2012). 

The CPC also produces daily grids of maximum temperature and minimum temperature 
on a 0.5° grid mesh for the CONUS. A historical dataset has been developed for the period 1948-
2010 (CPC, 2012a). The historical dataset uses point observations from the COOP Summary of 
the Day reports produced by NCDC. The historical observations underwent both automated and 
manual quality control checks. The point observations were interpolated to the 0.5° grid mesh 
using the Cressman (1959) technique. The CPC reports that limitations in the dataset include 
data smoothing and limited quality in areas with sparse observations (CPC, 2012a). Real-time 
grids are produced using similar techniques for the CONUS (CPC, 2012b). A global temperature 
analysis with a 0.5° grid mesh and a daily time step for the period 1979-present is scheduled for 
completion in 2012 (CPC, personal communication, February 2012).   

The Climatology-Calibrated Precipitation Analysis (CCPA) dataset is another dataset that 
has been developed by NCEP to retain the climatology from the CPC Global Daily Gauge 
Analysis while incorporating the high spatial and temporal resolutions associated with the NCEP 
Stage IV multi-sensor analysis (Hou et al., 2010). 

 
3.5.4 NLDAS-2 Datasets 

 
The North American Land Data Assimilation System (NLDAS) Version 2 utilizes a 

variety of forcing inputs, including precipitation and temperature, which have been prepared 
using a 1-hr temporal interval and a 1/8° grid mesh. The forcing datasets were developed for the 
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period 1979-present and have a spatial extent that covers central North America (NASA, 2011). 
Given the period of record and reasonably high resolution, the NLDAS-2 forcing datasets are 
relevant to the AOR in terms of data sources used and methodologies applied.  

The forcing inputs for NLDAS-2, with the exception of precipitation, were derived from 
the NARR reanalysis dataset (Cosgrove et al., 2003). The 32-km, 3-hr fields from the NARR 
were interpolated to a 1/8° grid and were temporally disaggregated to a 1-hr temporal interval. 
The surface pressure, longwave radiation, air temperature, and specific humidity fields were 
adjusted vertically to account for terrain differences between the NARR and NLDAS. The 
vertical adjustment applied a lapse rate of 0.65°C/100 m for air temperature.  

For the precipitation input to NLDAS-2, the CPC daily precipitation product was used as 
the starting point. The daily estimates were temporally disaggregated using the NCEP Stage 2 
radar product, CMORPH satellite estimates, the CPC hourly precipitation dataset, or the NARR 
precipitation fields (in that order of priority) depending on data availability for specific periods 
of time.  

Since daily and hourly precipitation stations are sparse over Canada, precipitation from 
the NARR was used over Canada within the NLDAS domain. For a 1° swath along the U.S.-
Canada border, the precipitation input to the NLDAS is a weighted combination of the CPC-
derived value and the NARR value. 

 
3.5.5 Other Datasets 

 
A gridded climatological dataset has been produced for Mexico using a similar 

methodology to the PRISM system. The Atlas Climatico Digital de Mexico includes 50-year 
climatological averages for the period 1950-2000 for precipitation, maximum temperature, and 
minimum temperature (UNIATMOS, 2011). Riverside has successfully utilized this dataset to 
establish long-term characteristics for calibration MAPs and MATs developed for the Rio 
Sabinal Basin. 

The WorldClim datasets have been developed on a 1-km grid mesh to represent 
climatological averages for the period 1950-2000. Climatological datasets were developed for 
precipitation and minimum, maximum, and average temperature. Average monthly climate data 
from stations were interpolated using thin plate smoothing splines, with latitude, longitude, and 
elevation serving as independent variables (Hijmans et al., 2005).  

The Numerical Terradynamic Simulation Group at the University of Montana developed 
the Daymet dataset to support plant growth models. Datasets of precipitation, temperature, 
humidity, and radiation were developed on a daily time step for the period 1980-1997 using point 
observations and a digital elevation model (Daymet, 2012). 

An experimental 4-km gridded climatology for monthly average precipitation, minimum 
temperature, and maximum temperature has been provided to OHD staff by NCDC (Russell 
Vose, NCDC, personal communication, 2011). The grids cover the conterminous U.S., southern 
Canada, and northern Mexico. Documentation for the dataset is being developed but is not yet 
available. 
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3.6 Supplemental Data Sources 
 
In addition to the temperature and precipitation data sources included in the data 

inventory, additional data sources may prove beneficial for the AOR for the purposes of 
validation and improved quality control. For example, soil moisture data from stations, satellites, 
and land surface models can be used to validate remotely sensed observations of precipitation 
from radars and satellites. Lightning data can be useful for delineating areas of convective and 
stratiform events. Areas experiencing convective precipitation are likely to show lower spatial 
correlations, which has implications for data quality control, interpolating point observations, 
estimating missing precipitation values, and making bias adjustments to radar and satellite 
observations. 

  
3.7 Criteria for Data Integration into AOR 

 
In developing the data inventory and determining the potential utility of each data source 

for the AOR, Riverside applied the following criteria: 
 
• The data source should have a sufficient record in the historical archive to aid in 

establishing long-term precipitation and temperature characteristics. The required 
length of the historical record varies. For example, a shorter period of observed data 
at a station may be acceptable if a nearby station is highly correlated and has a long 
historical record that can be used to estimate missing values.  

• Data sources that have known quality limitations should be considered for use in 
areas with sparse data coverage.  

• Input data sources produced using a single sensor are favored over multi-sensor 
estimates, if the previously applied data fusion method is not fully transparent. This 
principle is based on the assumption that the AOR will benefit from increased data 
availability and improved quality control methods and multi-sensor merging 
techniques than have been applied historically. 

• The general effort required to collect, reformat, and quality control the data were 
weighed against the potential value of the data source in improving the AOR. 

• In some cases, it may be more efficient to obtain quality-controlled or processed data 
rather than the raw data from source agencies. 

 
Data sources that are recommended for use or for further investigation may require 

spatial or temporal restrictions. For example, certain rain gage networks that lack heating 
elements, or radar data, may not be suitable for estimating frozen precipitation. Regional and 
temporal issues are further explored in Section 11. 

 

4 Data Quality Control 
 
The data sources that are used to produce the AOR must undergo quality control to 

remove erroneous data and to correct for inconsistencies that occur over the historical record. All 
observations are subject to errors. Inconsistencies in a data record may occur due to changes in 
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locations, sensors, or algorithms, or drift if the instrument is not recalibrated sufficiently 
frequently. It is preferable to perform data quality control on the input time series data from 
individual sensors rather than the final output grids (Gibson et al., 2002). 

Data errors and temporal inconsistencies can have a significant adverse impact on 
hydrologic simulations. Data errors can affect soil moisture and snowpack states long past the 
time steps in which the erroneous data occurred. Temporal inconsistencies can produce varying 
biases in the simulated streamflows for different periods of time. While the hydrologic models 
used by the RFCs contain parameters to address long-term biases (i.e., precipitation and 
evapotranspiration multipliers, temperature lapse rates), the parameters cannot be used to make 
seasonal adjustments or to rectify inconsistencies that vary throughout the historical record 
(Anderson, 2002). In addition, it is critical to ensure that biases are minimized between the 
historical inputs used for model calibration and the real-time inputs used for operational 
modeling.  

The SNOW-17 snow accumulation and ablation model and the SAC-SMA soil moisture 
accounting model are sensitive to biased inputs. The effects from biased inputs are nonlinear; a 
given bias in precipitation may cause a larger bias in the simulated streamflows. Small 
temperature errors that are difficult to detect during quality control (e.g., ±2°F) have a significant 
impact on hydrologic model simulations during the snowmelt runoff period (Figure 4). 

 

 
 
Figure 4. Effect of Temperature on Simulated Streamflows for the South Fork Rio Grande at 
South Fork, CO 

 
Manual review of data observations is quite effective; the human eye can spot outlying 

values, periods with reduced or increased variability, or repeating values in a time series quickly 
when plotting multiple time series together. Spatially, anomalous values can be easy to spot as a 
“bull’s-eye,” or a value that is inconsistent with values at nearby locations. Given the intended 
spatial and temporal extent of the AOR, it is desirable to implement a data quality control system 
that is automated to the extent possible. However, because rainfall is highly variable in space and 
time, it is difficult to develop fully automated quality control tools (Kondragunta and Shrestha, 
2006). Typically, automated checks are developed to flag suspicious values, which are then 
automatically removed if the values are clearly erroneous, or manually reviewed if additional 
judgment is required (Angel et al., 2002; Gibson et al., 2002; Fulton, 2005b; Riverside, 2010b; 
Riverside, 2011).  
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In locations where precipitation and temperature data vary dramatically over short 
distances due to elevation changes or proximity to coastlines, it can be difficult to perform data 
quality control. It is always a risk that naturally occurring extreme values may be removed, 
resulting in reduced variance in the final dataset (Seo and Breidenbach, 2002). To minimize this 
outcome, Riverside adheres to the following guidance when developing calibration MAPs and 
MATs: “The underlying rule when making [data] adjustments should be that if there is any doubt 
that the correction should be made, then don’t make the adjustment (Anderson, 2002).” 

 
4.1 Types of Quality Control Checks 

 
Data sources can introduce errors into estimated precipitation and temperature in a 

number of ways: 
  
• Erroneous metadata. Erroneous metadata, including incorrect identifiers, latitude, 

longitude, elevation, sensor equipment, and dates that sensors were reset or 
recalibrated, can cause misrepresentation of weather characteristics for a location. 
Metadata errors are more impactful in areas with steep topographic relief because of 
the variation in weather characteristics over short distances. Incorrect identifiers can 
mask duplicate datasets. Identifiers can also mask the fact that a station was moved, 
or obscure the fact that records associated with multiple identifiers should be 
combined. While station histories contain extremely valuable information regarding 
location changes and changes to sensor equipment or algorithms, it may be too 
laborious to review all metadata in detail prior to developing the AOR. Riverside 
recommends that metadata checks be automated to the extent possible, for example 
by intersecting station locations and a digital elevation model (DEM) to identify large 
differences between the computed and the assigned elevation attributes. Additionally, 
plotting long-term monthly, seasonal, and annual characteristics against elevation can 
help to identify metadata errors. 

• Unreliability. Data sources with large amounts of missing data prevent the reliable 
computation of long-term characteristics. The PRISM system requires a minimum of 
85% non-missing data for a station to be included in an analysis for a given month 
(Daly et al., 2008). In the NCDC temperature validation (TempVal) system, stations 
that are missing nine or more days in a given month, or five consecutive days, are 
excluded to avoid skewing estimated monthly characteristics (Angel et al., 2002). In 
developing calibration MAPs and MATs, Riverside has required a minimum of 5-10 
years of data within the calibration period to estimate long-term climate 
characteristics (Riverside, 2010b; Riverside, 2011). Additionally, Riverside may 
eliminate data sources with significant periods of missing data if a nearby data source 
situated at a similar elevation has a high quality dataset.  

Similarly, hourly observations at SNOTEL stations tend to show high levels of 
variability and inconsistency with daily values. The daily observed values are 
significantly more reliable (NWRFC, personal communication, February 27, 2012). 
The reliability of the observations is improved by the periodic revisions performed by 
the NRCS, typically once or twice per month. Riverside typically uses only the daily 
historical observations from SNOTEL stations in developing calibration MAPs and 
MATs.  
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• Seasonal limitations. Several data sources (e.g., stations with no heating elements, 
radars, satellites) have issues measuring frozen precipitation accurately, typically 
resulting in underestimation of the actual precipitation that occurred. For these data 
sources, it may be necessary to set all data values to missing when air temperatures 
are below freezing. Another common issue is that sensors may fail to register frozen 
precipitation until the precipitation melts, causing the precipitation to be observed 
during the incorrect time interval (CNRFC, personal communication, February 27, 
2012). This type of issue is difficult to detect using automated quality control 
procedures, and will likely result in erroneously removing the precipitation values.  

  
Erroneous data values can be identified using a variety of quality control checks: 
 
• Range checks. The most basic quality control check evaluates each observation 

against a reasonable range of values to identify obvious errors. For example, all 
precipitation values should be greater than or equal to zero. Maximum temperature 
values should be greater than minimum temperature values for the same time interval. 
Additional range checks can be established for combinations of variables, for 
example the ratio of water equivalent to precipitation depth, or the ratio of frozen 
precipitation to total precipitation.  

• Climatological range checks. In addition to basic range checks, data values can be 
evaluated for reasonableness using climatological range checks, or thresholds 
computed from historical climate data. Reasonable ranges will vary by location and 
time of year. In applying climatological range checks, it is assumed that the historical 
climate is a good indicator of future weather characteristics. The climatological range 
checks can be run on multiple time steps, for example both daily and monthly values, 
to reduce the variability in the observed data and to provide confirmation that the 
flagged data are erroneous. 

The PRISM system flags potentially erroneous data using climatological range 
checks. Daily precipitation values that are greater than 115% of the state’s record 
daily precipitation are flagged, while minimum (maximum) temperature values are 
flagged if they are 3°C less (greater) than the state’s record daily values (Daly et al., 
2008). The NCDC TempVal system flags temperature values if they differ 
significantly from climate extremes or climate normals that are computed for stations 
(Angel et al., 2002).  

• Internal consistency checks. Data can be evaluated using internal consistency 
checks, for example checking that daily and hourly precipitation characteristics are 
consistent for a given data source (Riverside, 2011). Maximum and minimum 
temperature characteristics can be plotted against elevation to check that the 
relationships reflect reasonable lapse rates and inversion conditions, and that the lapse 
rates reflect physically-realistic seasonal variations (Anderson, 2002).  

• Spatial consistency checks. Spatial consistency checks are effective for flagging 
anomalous data values, particularly for variables that exhibit high spatial correlations, 
such as temperature and stratiform precipitation. In developing calibration MAPs, 
Riverside has produced automated scripts that flag daily and monthly precipitation 
values that differ significantly from values recorded at surrounding stations 
(Riverside, 2011). For example, daily and monthly precipitation values may be 
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flagged for review if they are a factor of two larger (or smaller) than the precipitation 
values observed at nearby stations. The thresholds are established based on the 
variability in the weather characteristics for the area being modeled.  

Spatial consistency checks are less effective for quality controlling convective 
precipitation, which exhibits low spatial correlations. The NWS OHD has developed 
a real-time technique to retain flagged data values if a lightning strike occurred within 
one hour and 10 km of the station (Kondragunta and Shrestha, 2006). The NSSL 
NMQ/Q2 system utilizes lightning data to delineate areas of convective and 
stratiform precipitation (Vasiloff et al., 2007; NSSL, 2011b). 

• Multi-sensor checks. The development of automated multi-sensor quality control 
checks is an active area of research and development. Multi-sensor quality control 
techniques have primarily been applied for developing precipitation estimates using 
station observations and radar data. However, satellite data and NWP model outputs 
are also being integrated. For each data source, statistical characteristics are computed 
such as the probability of rainfall detection, correlations between data sources, and 
the ratios and differences between paired observations. Thresholds are established for 
the computed statistics to identify and remove questionable data sources and outlying 
data values (Seo and Breidenbach, 2002). Multi-sensor quality control checks are 
often performed separately for the warm and cool seasons.  

In the real-time NWS MPE system, gages are assumed to be malfunctioning when 
radar detects precipitation, but a co-located gage reports no precipitation (Fulton, 
2005b; Kondragunta and Shrestha, 2006). The NCDC precipitation validation 
(PrecipVal) system compares precipitation estimates from multiple station networks, 
WSR-88D radars, GOES satellites, and the Rapid Update Cycle (RUC) NWP model 
to identify data outliers (Urzen et al., 2004).  

• Checks between predicted and observed values. The PRISM system uses spatial 
interpolation and multivariate regression techniques to develop expected values to 
which station observations are compared (Daly, 2006). The process developed for the 
PRISM system (ASSAY_QC) applies cross validation to identify potential data errors 
on a monthly time step. The differences between the predicted and observed values 
are normalized to account for the fact that higher variances are expected for higher 
precipitation values (Gibson et al., 2002). The quality control process is used to set 
the observed values to missing, to replace the observations with the predicted values, 
or to linearly combine the observed and predicted values (Daly et al., 2005). 

• Temporal consistency checks. Repeating data values and temporal inconsistencies in 
the historical record can be identified using temporal consistency checks. While 
weather variables (particularly temperature) are expected to be temporally correlated, 
exact values that repeat for an extended period of time typically indicate quality 
issues. For maximum and minimum temperatures, values that repeat for fewer than 
five days are common and likely naturally occurring, values that repeat for more than 
ten days are typically caused by erroneous data that should be set to missing, and 
values that repeat for 5-10 days are difficult to assess (Daly et al., 2005). The PRISM 
system flags temperature values if the temperature differences are less than 0.1°C 
over a 10-day period. In developing calibration MAPs and MATs, Riverside has 
produced automated scripts that flag values for review if the same station value 
repeats for more than five days or for more than ten hours (Riverside, 2010b). 
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Riverside typically does not remove repeating values from the dataset if the repeating 
value is the minimum reporting level for the data source.  

Double mass analysis can be used to identify inconsistencies in the historical 
record caused by changes in location, sensor equipment, and the surrounding 
environment. Noticeable shifts in the double mass analysis plots can indicate natural 
variability, outlying data, or temporal shifts. Therefore, it is important to review the 
history of the data source before making changes. For example, NRCS SNOTEL 
stations in Colorado and New Mexico underwent changes in temperature sensors in 
the 2000s. This change in instrumentation manifests as a change in slope on the 
double mass analysis plot (Figure 5). 

The results from the double mass analysis should be used to correct 
inconsistencies prior to inputting the data into a hydrologic model, to avoid having 
different biases between one portion of the historical record and another (Anderson, 
2002). The data are typically corrected to make the earlier period consistent with the 
recent period (i.e., the current location and instrumentation), particularly if the data 
source is still in operation. Riverside has established ranges for reasonable correction 
factors applied to individual stations. For example, Riverside has typically avoided 
making precipitation changes larger than a factor of two or temperature adjustments 
larger than ±5°F (Riverside, 2010b; Riverside, 2011). If the double mass analysis 
conducted for individual stations indicates that larger adjustments are required, 
Riverside often chooses to eliminate the station due to suspect data quality prior to 
computing calibration MAPs and MATs. 
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Figure 5. Double mass analysis plot showing the effect of changes in temperature sensors at 
SNOTEL gages 

 
The best quality control approach requires manual review and expert judgment to assess 

the reasonableness of outlying values and to incorporate knowledge about the location, data 
source, and weather event. For example, the PRISM system categorizes flagged data values into 
clear outliers that are automatically removed and questionable values that require manual review 
to determine the appropriate action (Gibson et al., 2002). For developing calibration MAPs and 
MATs, Riverside applies a similar approach, where data values that are flagged using basic range 
checks are automatically set to missing, while data values flagged using other techniques are 
manually reviewed to determine the appropriate action (Riverside, 2010b; Riverside, 2011). The 
extent to which manual reviews are feasible for developing the AOR depends upon available 
resources and the development timeline. 

  
4.2 Considerations Prior to Removing Data 

 
Before removing data values from a dataset that have been flagged during the quality 

control process, the following factors should be considered: 
 



Hydrometeorological Forcings May 2012 35 

• It is difficult to perform quality control on hourly precipitation data due to weather 
pattern movement and high spatial and temporal variability. It may be more effective 
to perform quality control on a daily or monthly time step.  

• Data values that have been flagged by comparing predicted and observed values, or 
using spatial consistency checks, should be considered for retention if large 
differences in distance or elevation exist between the point being evaluated and the 
comparison points, or if the precipitation amounts are small (Gibson et al., 2002). 

• Data values that have been flagged in a data sparse region should be considered for 
retention. It is difficult to provide a high level of quality control in these areas due to 
a lack of corroborating information (Daly et al., 2005). 

• Observation times and reporting times must be accounted for to ensure the data 
values being compared represent the same time interval. Data that are reported from 
manual observing stations often have timestamps in local time observing daylight 
savings. Automated data tend to be reported in standard time with no adjustments for 
daylight savings. It is best to adjust all data to a common time zone, or if this is not 
possible, to perform the quality control using a longer time step (e.g., monthly).  

At times, the data values that are reported with a particular timestamp actually 
apply to the previous day, and may need to be shifted for consistency with other data 
sources. For example, daily maximum and minimum temperature values reported on 
the NRCS website for SNOTEL stations actually apply to the previous day (NRCS, 
2012).  

In the legacy NWSRFS system, the calibration MAP and MAT preprocessors 
account explicitly for station observation times (NWS, 2012). For example, for 
stations with morning observation times, the MAT preprocessor assumes that the 
maximum temperature occurred on the previous day while the minimum temperature 
occurred on the current day. For stations with afternoon observation times, the MAT 
preprocessor assumes that both the maximum and minimum temperatures occurred on 
the current day. The MAP preprocessor distributes precipitation values to the 24 
hours ending at the observation time. The AOR will need to similarly explicitly 
account for observation times. 

• Special data codes that indicate missing data or quality issues should be reviewed 
prior to performing data quality control. It is best to convert all input data to the same 
format and to apply the same data codes. For example, the historical data files for 
NCDC COOP stations use a value of -999 to indicate missing values, while a code of 
-998 indicates that the subsequent precipitation value represents an accumulated total 
over the time intervals indicated with the -998 code.  

In addition, the data codes should be evaluated for potential errors. The NWS 
OHD has found cases where NCDC digital precipitation reports confuse multi-day 
and single-day accumulations due to miscoding of missing report indicators (OHD, 
personal communication, February 12, 2012).  These types of issues might require 
manual effort to identify and correct the errors. 

• The weather conditions should be considered when evaluating flagged data values. It 
is difficult to accurately quality control data when convective activity, inversions, 
warm air advection, strong frontal passages, or wedging along coastlines occur, 
because these phenomena create strong gradients over short horizontal distances 
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(Angel et al., 2002). Spatial consistency checks should be limited under these 
conditions.  

 
4.3 Recommendations for the AOR 

 
For the development of the AOR, it will be important to include as much meaningful 

historical data as possible to satisfactorily estimate temperature and precipitation at high spatial 
and temporal resolutions. Data values that are removed or replaced during the quality control 
process should be archived along with notes about why the data values were removed or altered. 
Data values that were flagged but retained should include notes about the quality issues to 
convey lower confidence in the final estimated values. The raw and the quality-controlled data 
should be made available to users, along with supplemental quality control information such as 
climatological ranges that were applied and time series plots of the raw and final time series 
(Daly et al., 2005). 

Depending on time constraints, it will be potentially difficult to perform significant 
manual review of all inputs. The quality control processes should be automated to the extent 
possible to minimize the need for manual review of flagged values, while acknowledging that 
this approach may permit some bad data values to enter into the AOR. Many organizations, 
including the NWS RFCs and Weather Forecast Offices (WFOs), the National Operational 
Hydrologic Remote Sensing Center (NOHRSC), NCDC, NCEP, NASA, and NSSL have devoted 
significant resources to collecting and quality controlling weather data. To the extent possible, 
the OHD should capitalize on work that has already been performed by collecting historical data, 
metadata, and quality control methods and processes from these organizations. In particular, it 
would be informative to collect information from the RFCs regarding common quality control 
issues that are currently performed manually but could be automated with additional 
development efforts (CBRFC, personal communication, February 22, 2012).  

As automated quality control systems continue to evolve in the future, it is possible that 
the AOR may need to be re-generated to incorporate updates and to maximize consistency with 
the real-time forcings process (Daly et al., 2005). 

 

5 Data Assimilation and Data Fusion 
 
The requirements for the AOR specify high spatial and temporal resolutions over an 

extended period of record. In order to meet the high resolution requirements, the AOR 
development process should incorporate as much data as are available and reasonable to 
capitalize upon the relative strengths and weaknesses of the different data types (Table 9). Each 
data source has varying potential to inform precipitation detection and quantification, 
temperature estimation, and spatial and temporal downscaling processes. 
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Table 9. Strengths and weaknesses of different data sources (reproduced from Vasiloff et al., 
2007) 

 

 
 

This section summarizes various approaches that may be used to combine observations 
from multiple data sources. Data assimilation focuses on the use of a NWP model to perform this 
combination (e.g., reanalysis). Observed data are ingested into a data assimilation system to 
adjust model states and produce model outputs that more closely represent the true value over a 
grid cell. In contrast to data assimilation, data fusion defines a simplified model to merge 
multiple data sources to produce an improved estimate of a variable. The approaches are not 
strictly distinct, as data fusion may utilize outputs from NWP models, which in turn may benefit 
from data assimilation to improve the quality of the NWP model output. 

  
5.1 Data Assimilation 

 
The data assimilation process incorporates information from multiple sensors into a 

combined product by assimilating station, radar, and/or satellite estimates into a NWP model. 
The NWP model represents the underlying physics that control weather and reflects atmospheric 
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characteristics that determine when and where precipitation occurs and how temperature varies 
over a landscape.  

Extensive work has been applied to develop methods that assimilate observations into 
NWP models. The NWP models employed for the different reanalysis products utilize 3- or 4-
dimensional variational data assimilation procedures to incorporate a range of observed values, 
including radiance, sea surface temperatures, and mean sea level pressure. In variational 
assimilation, a least-squares problem is formulated as the minimization of an objective function 
with weights based on error covariances of model variables and observations. The  
4-dimensional variational data assimilation is in effect a smoothing algorithm, because it 
operates over a finite number of model time steps. 

Unlike the aforementioned variables, precipitation observations cannot currently be 
assimilated directly into NWP models because precipitation is a diagnostic model output 
resulting from a combination of model states that represent atmospheric conditions at particular 
locations. Instead, precipitation observations are indirectly assimilated by adjusting other model 
states, such as the latent heat of the atmosphere, in an attempt to force the model to produce 
precipitation at the location and time represented by the observation. Although this form of data 
assimilation can improve the precipitation fields generated by NWP models compared with 
earlier reanalysis products (as was accomplished with the NARR), the precipitation fields are not 
as accurate as the observed fields in locations with gage or radar observations (Bukovsky and 
Karoly, 2006; West et al., 2007; Becker et al., 2009). Research efforts continue to improve the 
indirect assimilation of precipitation observations, but at this point in time, alternative merging 
approaches are required to fully utilize observed data (Colorado State University [CSU], 
personal communication, December 21, 2011). The precipitation outputs from NWP models still 
represent one estimate of the true precipitation, with associated uncertainties that can be used in 
data fusion. If additional high-resolution weather (e.g., WRF) modeling is pursued for the AOR, 
precipitation data may be indirectly assimilated as a part of the modeling to improve the outputs. 
Current versions of the WRF model can indirectly assimilate gage and radar precipitation 
observations (ESRL, personal communication, November 16, 2011). 

 
5.2 Data Fusion  

 
Data fusion combines inputs from multiple sources into a single product, often in a 

stepwise fashion. Typically, the steps include interpolating station observations to produce a grid 
(Section 6) and downscaling grids to equivalent resolutions (Section 7). The merged product can 
be disaggregated to produce grids on shorter time intervals (Section 8). Data fusion can involve 
one or more of the approaches described in the following sections to merge multiple estimates 
into a single product that more accurately reflects the true field. 

  
5.2.1 Bias Adjustments 

 
A basic data fusion technique involves using one dataset (e.g., rain gages) to remove the 

bias associated with a second dataset (e.g., radar precipitation fields). The mean field bias 
adjustments and local bias adjustments for radar estimates based on gage observations are 
described in Section 3.2. Bias adjustment methods applied for satellite precipitation are 
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described in Section 3.3. Similar approaches could be employed to perform bias corrections for 
precipitation estimates from reanalysis datasets. 

 
5.2.2 Simple Data Fusion 

  
The MPE program is used by the RFCs to apply bias adjustments to radar and satellite 

precipitation products (Section 10.6). The program also includes tools to quality control and to 
adjust the final precipitation field. Within the program, various input datasets can be specified for 
subsequent use. Through the use of polygon replacement tools, different input datasets can be 
utilized for regions when the default field is clearly incorrect, resulting in a  
manually-merged precipitation estimate. 

A second example of simple data fusion includes developing weighted averages of 
gridded inputs from different sources, often employing a transformation of the inputs prior to 
merging. 

  
5.2.3 Optimization-based Data Fusion 

  
Although simple data fusion techniques have value, the value of the data fusion process 

can be increased through optimization of weighting parameters and transformation functions. 
Various data fusion methods can be classified as optimization-based methods. Thin plate splines, 
regression-based approaches, and artificial neural networks fall under this broad category of data 
fusion. Equations and parameters relating each dataset are determined through some form of 
optimization to minimize errors in the output dataset. These methods do not require a priori 
specification of error covariances. One limitation of the optimization methods is that they require 
an observed dataset for parameterization purposes. For the AOR, an observed gridded dataset is 
not directly available, though a high-quality input could be treated as the known quantity to 
optimize the merging of other inputs (e.g., using radar data to assess data fusion of satellite and 
NWP model outputs). 

 
5.2.3.1 Artificial Neural Network Framework 

 
Artificial neural networks (ANNs) can be used for various purposes in data fusion, 

including the classification of information from input fields and the optimization of merging 
parameters. ANNs can effectively identify complex relationships and patterns between input 
variables that can be difficult to identify using alternative approaches. ANNs define 
classifications and relationships between variables through a training phase where the inputs are 
compared with a known output. Once the training phase is complete, and the hidden 
transformation layer and weights are optimized, a recognition phase is employed to utilize the 
defined transformations and weights for the remainder of the record. This approach has 
limitations because the true field is unknown, yet the approach could be used to define 
relationships for certain aspects of the final merging technique.  

For example, Chiang et al. (2007) combined MAP estimates derived from gages and from 
satellite data through a simple linear combination of the two inputs. The relative weights 
associated with the MAP estimates were adjusted to optimize the quality of a hydrologic 
simulation within an ANN framework. 
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The PERSIANN-CCS satellite precipitation algorithm employs an ANN to classify 
different cloud types and to calibrate infrared-based precipitation estimates using available 
passive microwave data (Hsu et al., 2010). 

Turlapaty et al. (2010) utilize an ANN in combination with a preliminary vector space 
transformation to merge multiple satellite-based precipitation products developed using different 
estimation techniques. The merged product represented an improvement over the input products 
based on a comparison with the MPE estimates developed at the Arkansas Basin River Forecast 
Center (ABRFC). 

 
5.2.3.2 Variational Assimilation 

 
Variational assimilation can be viewed as an optimization-based data fusion method. The 

major difference from the previously described methods is that variational assimilation requires 
estimates of the model and observation error covariances. Although variational assimilation is 
primarily associated with real-time data assimilation for NWP models, it can be applied as a 
smoothing process as part of a reanalysis. Variational assimilation has been applied for other 
purposes as well. For instance, Seo et al. (2009) apply variational assimilation to adjust soil 
moisture states in the SAC-SMA model through assimilation of precipitation, evapotranspiration, 
and streamflow data. 

 
5.2.4 Uncertainty-based Data Fusion  

 
In contrast to optimization-based approaches, uncertainty-based approaches (e.g., kriging, 

optimal interpolation, and Kalman filtering) utilize explicit definition of error characteristics to 
merge multiple data sources. If the error characteristics can be accurately specified, each of the 
analyses yields an estimate that minimizes the sum of the squared errors. Kriging and optimal 
interpolation are optimal linear estimators that are commonly used for generating gridded 
estimates of gage data. Weights are computed by minimizing the squared error term based on an 
assumed knowledge of the spatial covariance relationships typically estimated from sample data. 

 
5.2.4.1 Kriging 

 
Kriging is a geostatistical interpolation technique that is often applied to the interpolation 

of hydrometeorological data. Several forms of kriging have been developed. Ordinary kriging is 
the most common method. It assumes stationarity in the mean as well as intrinsic stationarity. 
The variogram is used to define the spatial variability of the random field. Universal kriging 
allows the specification of a trend surface for the mean. Cokriging provides the framework for a 
multi-variable approach, and has been used to merge radar and gage data (Krajewski, 1987; Seo, 
1998a; Seo, 1998b; Goovaerts, 2000). 

 
5.2.4.2 Optimal Interpolation  

 
The optimal interpolation framework developed by Gandin (1965) develops a final 

estimate by modifying a first-guess field by the weighted difference between observations and 
the first guess. The weights are defined based on the background and observation error 
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covariance relationships. Optimal interpolation is extensively used for data assimilation into 
NWP models. 

Xie et al. (2007) apply optimal interpolation for the gridding of gage observations as 
described in Section 6. Xie and Xiong (2011) use optimal interpolation to merge satellite 
precipitation estimates with a gage-based precipitation grid. First, the bias in the satellite 
precipitation estimates is removed based on gage data. Then, the bias-corrected satellite dataset 
is combined with the daily gage analysis using optimal interpolation. The process requires 
estimates of errors and the spatial correlation of errors for each input field. The error in the gage 
analysis is specified empirically as a function of station density. The error in the bias-corrected 
satellite data is defined empirically to vary with precipitation intensity. The spatial correlation of 
errors is defined empirically as a correlation-distance function. Luo et al. (2011) are extending 
the work of Xie and Xiong (2011) to an hourly time step over eastern China. Luo et al. (2011) 
are also including radar data in the data merging process as follows: the radar and satellite 
estimates are merged to produce a remotely-sensed data field, which is then bias-adjusted and 
merged with an hourly gage analysis using optimal interpolation. 

Sapiano et al. (2008) applied optimal interpolation to merge satellite precipitation 
estimates with the ERA-40 NWP model reanalysis. Errors associated with each dataset were 
determined empirically through comparison with a third global precipitation dataset. The errors 
were defined as a function of latitude to weight the satellite precipitation estimates more heavily 
in the tropics and the reanalysis estimates more heavily in the polar regions to capitalize on the 
strengths of each input. 

Kummerow and Sapiano are working to improve upon the merging of satellite and NWP 
model precipitation estimates through improved quantification of errors and error correlations, 
and by recognizing that atmospheric conditions affect the errors and error correlations for models 
and observations (CSU, personal communication, December 21, 2011). 

 
5.2.4.3 Kalman Filter Framework 

 
The Kalman filter provides a recursive framework for combining observations with 

model state estimates of a linear system through the computation of a Kalman gain assuming 
Gaussian error distributions. Kalman filtering involves a forecast and an analysis step. In the 
forecast step, a linear state-space model is utilized to compute the state of a variable and the 
associated error variance based on the previous conditions. In the analysis step, observations and 
associated error statistics are used to refine the forecast. Although computationally intensive, the 
Kalman filter provides a direct estimate of the error covariance of the forecasted state.  

The Kalman filter methodology has been applied to non-linear systems using the 
extended Kalman filter approach. The extended Kalman filter uses a local linearization of the 
state-space equations to propagate the state error covariance. More recently, the ensemble 
Kalman filter has been used to estimate the state error covariance for complex non-linear 
modeling systems.  

The mean field bias and local field bias corrections employed in the MPE program 
represent a simplified form of Kalman filtering (Seo et al., 1999; Seo and Breidenbach, 2002; 
Seo, 2003).  

The KF-CMORPH algorithm utilizes a Kalman filter to combine PMW and IR 
precipitation estimates, accounting for differences in error characteristics associated with 
different satellite sensors and the length of time between PMW overpasses (Joyce and Xie, 
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2011). The KF-CMORPH algorithm is a step towards a final goal of developing a pole-to-pole 
product that merges satellite precipitation estimates from PWM and IR sources with NWP model 
outputs, and potentially other sources (Joyce and Xie, 2011; CPC, personal communication, 
December 20, 2011). 

The Multiscale Kalman Smoother algorithm can be used to fuse inputs of different spatial 
or temporal resolutions. Wang et al. (2011) evaluate the use of a Multiscale Kalman Smoother-
based framework to fuse gridded precipitation inputs of different spatial resolutions, and 
investigate the impact of white noise and bias errors through hypothetical experiments. In their 
investigations, Wang et al. found that the data fusion process increases the accuracy of the 
resulting grid both when the output is a coarse-resolution grid as well as when the output is a 
fine-resolution grid. Wang et al. (2011) includes references to multiple applications of the 
Multiscale Kalman Smoother for precipitation data fusion (e.g., Gorenburg et al., 2001; Gupta et 
al., 2006). 

Ebtehaj and Foufoula-Georiou (2011) recognize that precipitation does not have a 
Gaussian distribution in either normal or lognormal space. In order to account for the unique 
characteristics of precipitation, Ebtehaj and Foufoula-Georiou first transform the input data into 
the wavelet domain prior to applying a Kalman filter to merge satellite and radar precipitation 
fields. 

Bowler et al. (2006) describe the Short-Term Ensemble Prediction System, an ensemble-
based probabilistic forecasting system designed to merge advected radar observations with 
forecast outputs from NWP models to produce a precipitation nowcast. The ensemble process is 
used to account for uncertainty in the radar precipitation advection and the NWP model spatial 
downscaling. The radar fields are advected using motion vectors that include a random 
component to characterize the uncertainty. The coarse-resolution NWP model output is 
downscaled using a technique that incorporates stochastically-generated small-scale features to 
represent uncertainty. An ensemble of noise is generated to represent the loss of forecast skill 
moving forward in time. The data fusion process utilizes the ensembles of advected radar fields, 
downscaled NWP model outputs, and noise to produce a forecast ensemble that can be used to 
derive uncertainty information for the merged fields. 

 
5.3 Implications for the AOR 

 
5.3.1 Framework 

 
Riverside recommends that an uncertainty-based approach using optimal interpolation, 

cokriging, or Kalman filtering form the basis for a data fusion framework for the AOR. ANNs or 
other optimization techniques may be employed for specific development aspects, such as 
quantification of uncertainties or error correlations that may be difficult to determine otherwise.  

Uncertainty-based data fusion methods require the quantification of uncertainties. Many 
factors make this quantification difficult. The spatial and serial correlation of weather variables 
varies across space and time depending upon the physiographic characteristics of a region and 
the particular atmospheric conditions occurring at any point in time. Furthermore, the spatial and 
serial characteristics of weather vary depending upon the spatial and temporal scales under 
consideration, with higher variability associated with smaller spatial scales and shorter time steps 
(Daly, 2006). All of these factors affect the spatial and temporal correlations of errors associated 
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with particular sensors. For instance, precipitation recorded at a station in relatively flat terrain 
under stratiform conditions will likely reflect high spatial correlations that decay slowly with 
distance. However, under convective conditions, the spatial correlations for the same station will 
likely show a much steeper degradation with distance. In complex terrain, the spatial correlations 
will vary directionally. Serial correlations are high on an hourly time step, but relatively low on a 
daily time step. Spatial and serial correlations will be stronger in certain directions depending 
upon atmospheric conditions such as the predominant wind direction. 

Multiple factors affect the errors associated with each of the major data sources (Section 
3). For gages, the sensor and observer type, frequency of maintenance, site-specific 
characteristics, and form of precipitation all impact the gage accuracy and representativeness. 
For radars, the radar type, surrounding terrain, atmospheric conditions, precipitation intensity, 
and form of precipitation affect the accuracy of the radar precipitation estimates. For satellites, 
the sensor type, timing and location of PMW overpasses, snow/ice contamination, and other 
factors affect the error associated with the precipitation estimates. For NWP models and 
reanalysis products, the accuracy varies for different atmospheric conditions and terrain 
characteristics, as well as the range of data available for model assimilation. 

Currently, the quantification of uncertainties associated with precipitation observations is 
not well developed and is a major area of ongoing research. For example, Dr. Chris Kummerow 
is working on quantifying observational uncertainties and defining uncertainties as a function of 
atmospheric states (CSU, personal communication, December 21, 2011). However, Sapiano et 
al. (2008) suggests that even with simplistic, empirical uncertainty estimates, fused analyses 
yielded improved precipitation estimates compared with the input datasets. With the ongoing 
efforts to improve error quantification, it seems appropriate to construct the AOR under the 
assumption that information from each of the major data sources will be merged into a single 
product. Although the uncertainty information used to perform this merger may be preliminary 
for the initial AOR development, the framework will permit incorporation of higher-quality 
uncertainty estimates as they become available. 

  
5.3.2 Stepwise Application of Data Fusion 

 
Data fusion is often completed in a stepwise fashion to simplify the computations and 

inputs needed at each step of the process. For instance, rather than directly merging point 
observations with gridded estimates, station data are often interpolated to a grid that is then 
combined with other gridded data sources (e.g., Xie and Xiong, 2011; Luo et al., 2011). The 
order of merging is dependent upon the characteristics of the input datasets and the fields being 
generated. 

Riverside recommends that a stepwise data fusion process be applied for the AOR, rather 
than attempting to merge all inputs in a single processing step: 

 
• Downscale the input radar, satellite, and reanalysis grids to the target grid mesh. 
• Perform bias corrections and merge the downscaled radar, satellite, and reanalysis grids. 
• Grid the point observations to produce the target grid mesh. 
• Merge the gridded gage analysis with the gridded radar/satellite/reanalysis field. 
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Alternatively, uncertainty and correlation characteristics could be defined for individual 
stations so that point observations could be directly merged with the remotely-sensed data, 
eliminating the need to grid the point observations. 

 
5.3.3 Separate Daily and Hourly Data Fusion Processes 

 
Serial correlations can be neglected, or treated in a simplified fashion, on a daily time 

step compared to an hourly time step. The spatial distribution of daily precipitation is much 
smoother than hourly precipitation, with stronger spatial correlations that persist for greater 
distances. Hourly precipitation can be serially correlated across many time steps, but daily data 
typically do not exhibit strong serial correlations.  

In addition to reduced serial correlations and increased spatial correlations, the daily gage 
network is denser than the hourly network. For many users, it will be more important to have 
accurate estimates of daily precipitation, maximum temperature, and minimum temperature than 
hourly estimates. 

For these reasons, Riverside recommends that a daily analysis be completed as a 
preliminary processing step, aggregating all sub-daily data sources to a daily time step. In a 
subsequent step, the daily analysis can be disaggregated to an hourly time step using hourly data 
sources or stochastic techniques. Methods for temporal disaggregation are addressed in Section 
8. 

 

6 Gridding Methods 
 
Few of the existing data sources are available at the intended spatial and temporal 

resolutions of the AOR. Although not a required step, point observations are often transformed to 
gridded estimates prior to merging the point data with other data sources. There are a number of 
factors that need to be considered when developing gridded values from point observations: 

 
• Point observations are affected by sampling errors, most notably catch deficiencies, that 

prevent point observations from being perfectly representative of even the 4-8” diameter 
area being measured.  

• Point measurements can differ significantly from the areal average value of the grid cell 
containing the station. Topographic features cause small-scale variability in weather 
patterns that affect how representative a point value is of the surrounding environment. 
In data-sparse areas, if gages are installed in locations that are not representative, the 
grid estimates created from the point observations may not represent the variation in 
weather characteristics over the larger area. 

• Spatial correlations, serial correlations, and weather patterns are very different for 
different temporal and spatial scales. For example, at monthly time steps, precipitation 
values show relatively smooth patterns of spatial variability that exhibit strong 
relationships with physiographic characteristics. At daily or hourly time intervals, 
precipitation characteristics exhibit high spatial variability that is primarily controlled by 
atmospheric conditions associated with the specific weather event. Likewise, higher 
variability is associated with finer spatial resolutions. Temperature values typically 
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exhibit less variability than precipitation at short time intervals, but can still exhibit high 
variability at fine spatial resolutions. 

 
This section presents an overview of methods to develop gridded estimates from point 

observations.  
 

6.1 Methods that Ignore Physiographic Characteristics and Atmospheric 
Conditions 

 
Gridding methods that do not account for physiographic characteristics and atmospheric 

conditions can yield reasonable results in locations with high station densities and minimal 
climatic gradients. However, these techniques do not account for physiographic characteristics 
(e.g., orographic effects, coastal proximity) or storm-specific atmospheric conditions (e.g., 
moisture content, wind direction) that affect weather processes. Some of these methods retain the 
exact values at the station locations (e.g., thin plate splines), while others do not (e.g., kriging, 
optimal interpolation). 

The most basic type of gridding method estimates cell values from point observations 
considering only gage locations. This category of methods includes inverse distance weighting 
(IDW), which has multiple possible formulations for the distance weighting function, and often 
includes a maximum radius of influence beyond which stations are not weighted. The natural 
neighbor method determines weights based on representative areas, similar to Thiessen polygons 
(Sibson, 1981). Several methods apply techniques to reduce weights on stations in close 
proximity, to avoid over-representing a particular area in developing the grid cell value. For 
example, Shepard (1968) incorporates a directional correction to weight isolated gages more 
heavily than closely-spaced gages. Recent applications of this approach include the SYMAP 
method (Shepard, 1984; Maurer et al., 2002; Hamlet and Lettenmaier, 2005) and the Angular 
Distance Weighting method (Hofstra and New, 2009). The techniques employed by Cressman 
(1959) and Barnes (1964) refine the distance-weighted interpolations using multiple passes, with 
each refinement incorporating finer-resolution information in areas with high gage densities 
(e.g., Chen et al., 2002). Thin plate splines are used to fit a surface through observed point data 
in a manner that prevents sharp breaks at observed data points (Hutchinson, 1993). Parameters 
controlling the smoothness of the resulting surface can be adjusted through optimization to 
minimize cross validation errors.  

A more advanced category of gridding methods, including kriging and optimal 
interpolation, explicitly accounts for the spatial covariance of point observations (Cressie, 1993; 
Gandin, 1965; Daly, 2006; Hofstra et al., 2009). An advantage of these methods is that they 
generate error estimates associated with the interpolated grids. However, the error estimates 
should be used with caution, as the quality of the estimates depends on the validity of the 
assumptions associated with the interpolation approach (Daly, 2006).  

Numerous studies have demonstrated that interpolation methods that account for the 
spatial covariance of observations perform better than methods that consider only the locations 
of gages (e.g., Chen et al., 2002; Hofstra et al., 2008). However, in these studies, approaches 
based on Shepard (1968) were also shown to perform well. 
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6.2 Methods that Incorporate Physiographic Characteristics 
  
Physiographic characteristics influence the distribution of precipitation and temperature 

over an area. Variables such as elevation, aspect, latitude, longitude, and distance from major 
waterbodies have been included in regression-based gridding techniques to capture these 
influences. The relationships between physiographic variables and precipitation or temperature 
can be developed across an entire domain (e.g., generalized operator equations) or within limited 
areas (e.g., regionalized operators) (Glahn et al., 2009; Charba and Samplatsky, 2011a; Charba 
and Samplatsky, 2011b). The challenges of developing regression methods that account for 
physiographic influences include determining predominant controls on weather patterns and 
identifying appropriate transitions between regions with different controlling variables. 

The PRISM system is an excellent example of a method that interpolates point 
observations using regression models that incorporate physiographic effects (Daly et al., 2002). 
The PRISM system accounts for the effects of elevation, aspect, coastal proximity, and station 
clustering, among other variables. The PRISM system has been applied primarily to develop 
monthly precipitation and temperature grids, as well as long-term climatological averages, but 
has also been applied on a daily time step for limited regions (Daly et al., 2007).  

Some gridding methods make use of datasets that have already been developed to 
account for physiographic effects, rather than developing independent relationships. An example 
method is climatology-aided interpolation (CAI), which interpolates point observations using a 
climatology dataset, for example based on historical station data or developed using the PRISM 
system. The general procedure for CAI is as follows: 

 
• For each station, a ratio (or difference) is computed between the observation and the 

climatology value at the station location. Typically, ratios are computed for 
precipitation, while differences are computed for temperature. The ratio (or difference) 
fields are referred to as anomalies.  

• The anomalies are interpolated using basic gridding methods (i.e., those that ignore 
physiographic characteristics and atmospheric conditions).  

• The interpolated anomaly grid is multiplied by (or added to) the climatology grid to 
generate the final interpolated precipitation (or temperature) grid.  

 
Any of the interpolation methods described in Section 6.1 can be applied for CAI. Two 

of the major assumptions of the CAI method are that the anomalies are more spatially 
homogeneous than the point observations and that applying the interpolated anomalies to the 
climatology dataset results in a final interpolated grid that benefits from the information 
accounted for in the climatology grid, such as the effects of physiographic variables. Multiple 
studies have shown that interpolating precipitation anomalies yields improved gridded fields 
compared to interpolating precipitation observations (e.g., Chen et al., 2002; Hofstra and New, 
2009). Additionally, CAI has the benefit of producing interpolated grids that reflect differences 
in average characteristics (as represented by the climatology), even at locations where no 
observations are available.  

CAI can be applied using annual, seasonal, or monthly climatology grids. Variability in 
regional and seasonal weather patterns suggests that monthly climatology grids, such as those 
available from the PRISM system, should be used. However, using monthly climatology grids 
can produce sharp discontinuities at the transitions between months. A possible solution was 
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developed by Xie et al. (2007), who computed climatology grids for each day of the year from 
smoothed average daily precipitation distributions adjusted to the PRISM monthly climatology 
grids. This approach provided a smooth transition across months while maintaining the long-
term monthly characteristics reflected in the PRISM climatology grids. 

The CAI method assumes that the spatial variability on shorter time intervals is the same 
as reflected in the climatology grid. Therefore, the CAI method can be used to reproduce long-
term weather patterns over an area, but this technique does not produce realistic weather patterns 
for individual weather events in the absence of a dense station network. 

Most of the gridding methods that are used to interpolate temperature observations, 
particularly in areas of complex terrain, incorporate lapse rates to account for elevation 
differences between stations and prediction locations. The specified lapse rates can be constant 
values (e.g., 6-6.5°C/km), constant values that vary by month, or dynamic values that are 
computed using observed station data for each time interval. Dynamic lapse rates are 
advantageous in that they capture atmospheric conditions affecting temperature patterns and 
transient conditions such as temperature inversions, but they do not perform well in areas with 
sparse station networks and insufficient high-elevation observations. For example, Stahl et al. 
(2006) found that dynamically computed, local lapse rates outperformed other methods at high 
elevations in recent years, but performed poorly prior to 1965 due to a lack of high elevation 
data. In some applications, the lapse rates are applied to adjust all temperature observations to a 
common elevation prior to interpolation, and are then used to adjust the interpolated values back 
to the local elevations.  

 
6.3 Methods that Incorporate Physiographic Characteristics and 

Atmospheric Conditions 
  
Gridding methods that incorporate physiographic characteristics successfully capture 

typical effects created by relatively static features such as topography. However, dynamic 
atmospheric conditions also affect weather patterns. For example, storm directions influence 
where precipitation occurs. As a result, weather characteristics differ under differing atmospheric 
conditions.  

Numerous applications have incorporated the effects of atmospheric conditions into 
interpolation schemes. One approach is atmospheric classification, which involves identifying 
significant atmospheric classes, categorizing historical observations according to the defined 
classes, and developing interpolation parameters for each classification (e.g., Daly and Taylor, 
2006). A second approach is to develop regression models that incorporate independent variables 
that act as surrogates for the controlling atmospheric conditions (e.g., Glahn et al., 2009; Guan et 
al., 2005). 

  
6.3.1 Atmospheric Classification 

 
The PRISM system has been used to develop “pseudo-climatology” grids, which are 

defined as long-term weather characteristics conditioned on an atmospheric classification (Daly 
and Taylor, 2006). Historical precipitation observations were classified based on the 
predominant wind direction at a specified level over the study area. In a similar fashion, various 
authors have investigated adjusting interpolation parameters (e.g., correlation decay functions) 



Hydrometeorological Forcings May 2012 48 

for different atmospheric classifications (Hofstra and New, 2009; Hewitson and Crane, 2005; 
Tveito, 2002; Courault and Monestiez, 1999). 

Theoretically, pseudo-climatology grids or classification-specific interpolation 
parameters can be utilized in the CAI method to incorporate information on atmospheric 
conditions and to improve the final interpolated grids. However, most studies have found that 
applying atmospheric classifications to gridding techniques resulted in minimal improvements in 
interpolation skill (Hofstra and New, 2009; Courault and Monestiez, 1999). This may be due to 
the selected atmospheric classifications, and demonstrates the difficulty in successfully 
identifying the atmospheric conditions that dominate weather patterns. It also may be a reflection 
of the limitations of CAI. If atmospheric classification approaches are applied to the AOR, they 
will need to be developed regionally, as the relevant classification schemes will vary by region. 

 
6.3.2 Regression Methods 

 
The Auto-Searched Orographic and Atmospheric Effects Detrended Kriging 

(ASOADeK) method is a geostatistical model that has been applied for long-term monthly 
precipitation characteristics in northern New Mexico (Guan et al., 2005). The ASOADeK 
method incorporates independent variables that represent both physiographic and atmospheric 
factors, including elevation, the relationship between moisture flux direction and aspect, and the 
spatial gradient of moisture distribution.  

The gridded model output statistics (GMOS) method is used to develop gridded weather 
forecasts for NWS forecasters (Glahn et al., 2009; Gilbert et al., 2009). Regression relationships 
are developed at point locations using weather variables (e.g., temperature, precipitation) as the 
dependent variables and physiographic variables (e.g., elevation, latitude) and atmospheric 
variables from the Global Forecast system (GFS) NWP model (e.g., wind components, 
divergence of the moisture flux) as the independent variables. The point forecasts are 
interpolated to produce gridded forecast products.  

Personnel at ESRL are working to improve upon the PRISM system by incorporating 
atmospheric variables into the regression models (Hsu et al., 2011). This work includes 
developing a nonlinear, hierarchical model on a daily time step to identify additional controlling 
variables beyond those incorporated into the PRISM system. For example, atmospheric and 
oceanic variables such as vertical motion, sea surface temperature, Froude number, and water 
vapor are being evaluated to determine if they improve upon the general PRISM formulation. 

Clark and Slater (2006) present a locally-weighted regression approach to generate daily 
precipitation grids from daily station values in mountainous terrain. Regression models are used 
at each time step to estimate the conditional distribution of precipitation. Ensembles of 
precipitation grids are generated using stochastically-generated, correlated random fields. Clark 
and Slater suggest that the technique could be extended to merge the ensemble grids with 
precipitation estimates from radar and satellites.  

 
6.3.3 Multi-sensor Approaches 

 
Background fields to guide the gridding of station data, similar to the CAI method, can be 

generated from other gridded data sets, such as radar products, satellite products, or high-
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resolution NWP model outputs. This type of multi-sensor approach could be achieved through 
direct application of point observations in the data fusion process. 

 
6.4 Recommendations for the AOR 

 
A wide range of techniques are available to spatially interpolate point observations. If 

gridding is employed as part of the AOR development, at a minimum the gridding method 
should utilize CAI, with an interpolation method based on the SYMAP algorithm or optimal 
interpolation. Such an approach would account for typical physiographic controls on the 
distribution of precipitation and temperature.  

The SYMAP algorithm based on Shepard (1964) requires no characterization of 
correlation characteristics, yet has yielded comparable results to more complex approaches.  

Optimal interpolation allows differences in correlation characteristics between stations to 
be represented. Since correlation characteristics can be defined independently for each station, 
optimal interpolation provides greater flexibility across the domain compared to kriging. In 
addition, optimal interpolation would yield error statistics related to the interpolation of the 
anomalies that may be useful for developing error statistics for the final interpolated grid. 

The hierarchical regression-based approach of Hsu et al. (2011) also merits further 
investigation for the AOR due to its ability to incorporate non-linear atmospheric effects into the 
interpolation process. 

 

7 Spatial Downscaling 
 
Spatial downscaling is herein defined as the process of creating a higher resolution grid 

from a lower resolution grid. Because most of the gridded precipitation and temperature data 
sources are available at a coarser resolution than the grid mesh desired for the AOR (Table 10), it 
is likely that spatial downscaling techniques will need to be applied during AOR development. 

 
Table 10. Grid Meshes associated with Historical Data Archives 
 
Data Type Nominal Grid Mesh [km]  
Radar (Level III Digital Precipitation Array) 4 
Radar (NMQ) 0.5-1 
Satellite 4-28 
Reanalysis 10-124 
 

Several comprehensive reviews of downscaling techniques have been published in the 
literature (e.g., Wilby et al., 2004; Fowler et al., 2007). These reviews summarize the 
downscaling methods that are available, along with their associated benefits and limitations. 
Many of these articles have been written with a focus on climate change and the need to 
downscale outputs from general circulation models and global climate models. In addition to 
these published references, personnel at the NOHRSC and the ESRL have performed surveys of 
downscaling techniques and have documented their results (Johnson, 2008; Johnson and 
Schneider, 2009; NOHRSC, personal communication, September 8, 2011).  
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In this section, Riverside does not attempt to repeat the extensive work that has been done 
to describe and compare spatial downscaling techniques. Rather, this section is intended to 
provide a brief summary of techniques that are likely to be useful for the AOR development, 
either because they are relatively straightforward to implement, because they are in use 
operationally, or because they have the highest potential to capture weather variability at the grid 
mesh intended for the AOR. 

Downscaling methods and categories are not strictly distinct. Many applications apply 
multiple methods or combinations of methods (Wood et al., 2004; Johnson, 2008). Although the 
published literature varies in how the downscaling techniques are categorized, almost all of the 
references differentiate between statistical and dynamical downscaling techniques. In addition, 
some sources separate interpolation techniques into a third category; Riverside adapts this 
convention rather than including interpolation techniques within the statistical downscaling 
category.  

 
7.1 Interpolation Methods 

 
Basic interpolation methods, such as bilinear interpolation and majority assignment, add 

the least amount of value to downscaled grids because they do not account for topographic and 
atmospheric factors that influence climate (Wood et al., 2004). The value of interpolation 
methods for the AOR depends on the starting resolution of the dataset; the finer the starting 
resolution, the more accurate the downscaled results could be using interpolation methods. 
Likewise, interpolation methods are more suitable when weather gradients are small, as variables 
with less spatial variability can be more accurately downscaled using basic interpolation 
methods.  

Many tools have been developed that include basic interpolation functions for grids: 
 
• ArcGIS: Interpolation options include nearest neighbor assignment, majority 

assignment, bilinear interpolation, and cubic interpolation. 
• NCEP CopyGB utility: Interpolation options include bilinear interpolation, bicubic 

interpolation, nearest neighbor assignment, nearest neighbor averaging, and spectral 
interpolation (Iredell, 2000). 

• Grid Analysis and Display System (GrADS): GrADS includes a function to perform 
bilinear interpolation.  

• NCAR Command Language (NCL): NCL includes multiple functions to perform 
bilinear interpolation.  

• Geographic Resources Analysis Support System (GRASS): Interpolation options 
include nearest neighbor assignment, bilinear interpolation, and bicubic interpolation. 

• R: Interpolation options include nearest neighbor assignment, linear interpolation 
from nearest neighbors, piece-wise cubic hermite interpolating polynomial, cubic 
interpolation, and cubic spline interpolation. 

 
Operational systems that employ interpolation methods typically apply a vertical 

adjustment to account for elevation differences between the coarse resolution grid being 
downscaled and the high-resolution downscaled grid. The vertical adjustments help to introduce 
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variability into the downscaled grid, since basic interpolation techniques tend to produce 
downscaled grids that are relatively smooth.  

There are multiple operational applications within NOAA that apply downscaling 
methods based on interpolation. For example, the NCEP Smart Initializations (SmartInits) 
system downscales NWP model outputs to a nominal mesh of 2.5-5.0 km for the National Digital 
Forecast Database (NDFD). Bilinear interpolation is applied to downscale all weather variables 
from the coarser resolutions used by the NWP models to the higher resolution used by the 
NDFD. In addition, the temperature fields are adjusted using lapse rates and a high-resolution 
DEM to account for elevation differences between the coarse NWP grids and the high-resolution 
NDFD grids (Johnson, 2008).  

Precipitation fields from the RUC NWP model are downscaled from 13 km to 1 km using 
bilinear interpolation for input to the NOHRSC Snow Data Assimilation System (SNODAS; 
NOHRSC, personal communication, July 20, 2011). The temperature inputs to SNODAS also 
originate from the RUC model. The temperature fields are downscaled from 13 km to 1 km using 
two-dimensional bilinear interpolation, and are then adjusted for terrain differences between the 
RUC and SNODAS grids. Lapse rates are computed in real-time based on level 1 and level 4 
temperature fields from the RUC model. The lapse rates are limited to the adiabatic lapse rate. 
Lapse rates are not applied if temperature inversions are occurring. Additionally, the downscaled 
temperature grids are adjusted using station observations prior to input to the SNODAS. 
Anomalies are computed between station observations and the downscaled, terrain-adjusted 
temperature field. The anomalies are interpolated using inverse distance weighting, although 
prior station weights are incorporated in areas with complex terrain. The interpolated anomalies 
are applied to adjust the downscaled temperature field. The assimilation of observations helps to 
capture temperature inversions in the final temperature field that is input to the SNODAS. 

  
7.2 Statistical Downscaling Methods 

 
Statistical downscaling methods rely on developing statistical relationships between 

climate variables on a fine scale and climate, physiographic, and atmospheric variables on a 
coarse scale. These methods add value to the downscaled product by incorporating spatial 
variability from higher resolution fields that capture physiographic and/or atmospheric 
influences. Statistical downscaling approaches are particularly useful in areas where climatic 
variables exhibit strong relationships with synoptic-scale factors (Wilby et al., 2004).  

One of the major limitations of statistical downscaling methods is that they tend to 
underestimate variance and to poorly represent extreme weather events. Therefore, techniques 
are sometimes employed to add variability to the downscaled weather variables (Fowler et al., 
2007). 

 
7.2.1 Spatial Disaggregation 

 
Spatial disaggregation techniques are also referred to as anomaly methods, perturbation 

methods, and delta-change approaches. They are analogous to the CAI techniques described for 
gridding station observations in Section 6. Spatial disaggregation methods require two datasets: a 
low-resolution gridded dataset that will be downscaled and a high-resolution gridded dataset with 
more realistic spatial variability. This type of method maintains the long-term characteristics of 
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the coarse grid being downscaled, while introducing spatial variability using a higher resolution 
dataset. For example, spatially disaggregating satellite precipitation grids (i.e., 4-28 km) using 
PRISM climatology grids (i.e., 400 m) will retain the long-term climatology of the original 
satellite precipitation dataset, while introducing spatial variability into the downscaled product 
that reflects the topographic and coastal effects accounted for in developing the PRISM dataset. 
A general description of the spatial disaggregation methodology follows (Wood et al., 2004): 

 
• Use the high-resolution dataset to develop an anomaly field. 

• Compute gridded climatological averages from the high-resolution dataset. 
The climatology can be developed on a monthly, seasonal, or annual basis. 
This step is not necessary if the starting high-resolution dataset represents 
long-term climatological averages (e.g., PRISM).  

• Aggregate the climatological grids to the coarse resolution of the dataset being 
downscaled, and then interpolate back to the original high resolution. 

• Compute an anomaly field between the original high-resolution climatology 
and the interpolated high-resolution climatology. Typically, the anomalies are 
expressed as ratios for precipitation and as differences for temperature. 

• Downscale the low-resolution dataset using the anomaly field. 
• Interpolate the low-resolution dataset to the high resolution using the same 

interpolation procedure that was applied to the climatology dataset.  
• Apply the anomaly fields to the interpolated low-resolution dataset using 

multiplication for precipitation, or addition for temperature, as appropriate.  
 

7.2.2 Bias Correction and Spatial Disaggregation (BCSD) 
 
The bias correction and spatial disaggregation (BCSD) technique improves upon the 

spatial disaggregation technique by incorporating a bias adjustment to the long-term 
characteristics of the coarse resolution dataset. Without the adjustment, biases in the original 
dataset being downscaled will be retained in the downscaled dataset. Though the downscaled 
data may have realistic spatial variability, they can be unsuitable for hydrologic simulations, 
depending on the characteristics of the bias (Wood et al., 2004).  

 A technique for correction of real-time gage-radar hourly analyses using monthly total 
gage-only analyses was demonstrated by Zhang et al. (2011).  The approach succeeded in 
correcting long-term, time-dependent biases due to radar underestimation over the eastern U.S. 

Bias correction techniques such as mean field bias adjustments and local bias adjustments 
have been discussed in Section 3.2. Additional bias correction techniques exist, such as quantile 
mapping, that are intended to better capture the probability distribution function of the weather 
variable so that extreme events, which have been difficult to capture using statistical 
downscaling, are better represented in the downscaled dataset (Wood et al., 2004; Wood et al., 
2006; Hashino et al., 2006; Gutmann et al., 2011). As with the spatial disaggregation technique, 
the bias correction requires two datasets: a low-resolution gridded dataset that will be 
downscaled, and a high-resolution gridded dataset that will be used to compute the bias 
corrections. A general description of a bias correction technique based on quantile mapping is as 
follows (Wood et al., 2004; Hashino et al., 2006): 
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• Develop the cumulative distribution functions for the coarse-resolution dataset being 
downscaled and the high-resolution dataset using gridded climatological averages 
from both datasets.  

• Perform quantile mapping at the coarse resolution, so that the adjustments vary 
spatially by month for each grid cell at the coarse resolution. The quantile mapping 
approach replaces the climatological average for a grid cell in the coarse dataset with 
the value from the high-resolution dataset that has the same non-exceedance 
probability. Mathematical formulations can be used to fit and relate the cumulative 
distribution functions, or a one-to-one mapping between the cumulative distribution 
functions can be applied (Hashino et al., 2006).  

• Apply the bias adjustments to the coarse-resolution dataset being downscaled, using 
multiplication for precipitation, or addition for temperature, as appropriate. Figure 6 
presents an example of applying a one-to-one mapping to the cumulative distribution 
functions, and the effect of the bias adjustments on the time series of gridded values. 

• Once the bias correction has been applied, perform spatial disaggregation as 
described above to introduce spatial variability from the high-resolution dataset. 

 

 
 
Figure 6. Example of Quantile Mapping for Bias Correction (reproduced from Wood et al., 
2006) 

 
7.2.3 Regression Methods 

 
Statistical regression models (also known as transfer functions) can be used to downscale 

temperature and precipitation variables as a function of location, topography, climatological 
averages, and atmospheric variables. The challenge in developing regression models is 
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accurately identifying the variables that control the weather patterns for the area being 
downscaled. The benefit in developing regression models is that additional variables can be 
introduced into the downscaling process that may not be captured in existing datasets.  

A wide variety of statistical techniques can be employed, including multiple linear 
regression, principal components analysis, canonical correlation analysis, and artificial neural 
networks, among others. Common predictor variables include elevation, aspect, latitude, 
longitude, air temperature, humidity, sea level pressure, wind speed, wind direction, dew point, 
dew point temperature depression, geopotential height, moisture flux direction, and the spatial 
gradient of moisture distribution. As the regression models become more complex, incorporating 
more variables as surrogates for physical processes and allowing interactions between variables 
to capture nonlinear processes, the results from the statistical downscaling can be very similar to 
those achieved using dynamical downscaling approaches (Fowler et al., 2007).  

When spatial downscaling is applied to grids, the regression equations are developed for 
grid cells, as opposed to the gridding techniques described in Section 6, which develop 
regression equations for point locations. The regression models can be developed globally, 
regionally, or for individual grid cells. Typically, the statistical power of the relationship 
improves as the development area becomes smaller, but the potential for discontinuities between 
regions increases (Glahn, 2006; Charba and Samplatsky, 2011a). Regional relationships are 
superior to global relationships when the predictors exhibit regional variations in controlling 
weather patterns, or the datasets have regionally-varying biases (Charba and Samplatsky, 2011a).  

Multiple linear regression models are being developed using a research version of the 
GMOS methodology to directly produce gridded forecast products for the National Digital 
Guidance Database (NDGD), including quantitative precipitation forecasts and the probability of 
precipitation (Charba and Samplatsky, 2011a; Charba and Samplatsky, 2011b). The regression 
models incorporate static predictors such as location, elevation, and climatological averages, in 
addition to dynamic predictors based on GFS NWP model outputs. Terms representing the 
multiplicative product between selected static and dynamic predictors are included in the 
regression models to capture nonlinear interactions.  

The regression models are being developed for the geographic regions shown in Figure 
7, which were determined based on geographical variations in precipitation forcing mechanisms, 
regional biases in the GFS fields, assessments of the model performance, and the costs required 
to develop the models. To address discontinuities between the regions, Charba and Samplatsky 
developed a technique to weight the predicted values in overlapping areas, wherein the weights 
are a function of the distance to the regional boundaries (Charba and Samplatsky, 2011a). 
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Figure 7. Geographic Regions used by GMOS for NDGD Forecast Products (reproduced from 
Charba and Samplatsky, 2011a) 

 
7.3 Dynamical Downscaling Methods  

 
Dynamical downscaling methods rely on high-resolution weather models that can 

simulate the physical processes that control weather. The weather models can account for factors 
such as local frontal systems, topographic channeling of flow, and the interplay of atmospheric 
dynamics with hydrometeor microphysics that are difficult to incorporate into statistical 
downscaling methods (Gutmann et al., 2011). The weather models are run using initial and 
boundary conditions from coarse-resolution NWP model outputs. The outputs from the weather 
model are then incorporated into a statistical downscaling framework.  

Dynamical downscaling methods that employ high-resolution weather model outputs are 
typically able to represent regional features, such as orographic precipitation, extreme climate 
events, regional-scale climate anomalies, and non-linear effects (e.g., the El Nino Southern 
Oscillation), better than statistical downscaling techniques (Fowler et al., 2007). The relative 
advantages and disadvantages of statistical and dynamical downscaling methods are summarized 
in Figure 8. 
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Figure 8. Advantages and Disadvantages of Statistical and Dynamical Downscaling Techniques 
(reproduced from Fowler et al., 2007) 

 
The potential advantages of dynamical downscaling techniques for the AOR development 

are directly proportional to the extent that weather models can help to identify important physical 
processes that control weather variability. In some cases, variables representing these controlling 
processes can be incorporated to improve long-term climatological datasets such as those 
developed using the PRISM system. In other cases, the variability for an individual weather 
event cannot be represented well using a long-term climatological dataset.  

Several groups have used high-resolution regional weather models to simulate domains 
with complex terrain in the intermountain west (Hughes et al., 2009; Ikeda et al., 2010; Gutmann 
et al., 2011; Rasmussen et al., 2011; Silverman and Maneta, 2011). These studies have identified 
dynamic atmospheric conditions that significantly affect weather patterns in the west.  

Researchers at NCAR applied the WRF model over Western Colorado for the period 
2001-2008 (Ikeda et al., 2010; Gutmann et al., 2011; Rasmussen et al., 2011). The WRF model 
was run using grid meshes ranging from 2 to 36 km using initial and boundary conditions from 
the NARR reanalysis dataset. The outputs from WRF were used to develop climatological 
averages, which were then compared to the 800-m climatological averages developed using the 
PRISM system for the period 1971-2000. (Although the climatological averages were developed 
for different periods, the researchers felt a comparison was valid because the period 2001-2008 
included wet, dry, and average years.) The WRF and PRISM climatologies represented similar 
patterns of precipitation over Western Colorado, although localized differences existed 
(Gutmann et al., 2011). For example, the WRF and PRISM climatologies had significant 
differences in the maximum precipitation estimated in the San Juan Mountains; recent 
observations seem to support the WRF estimate. Additionally, the researchers found that 
synoptic features such as prevailing wind directions and “up-slope” storms significantly impact 
precipitation patterns (Gutmann et al., 2011). These factors may not be fully represented by the 
PRISM system, although predominant wind directions that vary by season should be captured in 
the monthly climatological grids. In theory, a high-resolution regional weather model should 
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provide better estimates in areas that lack observations than the PRISM system (Gutmann et al., 
2011). 

Researchers at UCLA employed the NCAR Mesoscale Model (MM5) over the 
intermountain west for the period 1995-2006, using a nested domain with grid meshes that 
ranged from 6 km over California (the location of interest) to 54 km (Hughes et al., 2009). The 
MM5 model was run using initial and boundary conditions from a NCEP 40-km Eta model 
reanalysis dataset. The major finding of this work is that orographic blocking substantially 
affects the relationship between precipitation and elevation. Orographic blocking occurs when 
the kinetic energy of airflow approaching a mountain is less than the energy needed to pass over 
the mountain, causing the airflow to decelerate and produce increased precipitation upstream of 
the mountain. The researchers found that the Froude number (i.e., the ratio of the kinetic energy 
of the ambient airflow to the energy required to pass over the mountain) can be used to classify 
the strength of orographic blocking. For example, the results in Figure 9 demonstrate differing 
relationships between precipitation and elevation for two ranges of Froude numbers. When 
blocking is weak (i.e., high Froude number), precipitation increases significantly with elevation. 
When blocking occurs (i.e., low Froude number), precipitation shows little increase with 
elevation. This work is one example of how weather models can be used to identify dynamical 
processes that need to be accounted for when downscaling is applied. Variables such as the 
Froude number that represent the atmospheric conditions could be incorporated into statistical 
downscaling methods that employ regression methods to improve the downscaled outputs. 
Otherwise, regional weather models are needed to capture the physical processes. 

 

 
 
Figure 9. Effect of orographic blocking on precipitation-elevation relationships (reproduced from 
Hughes et al., 2009) 
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7.4 Implications for the AOR 
 
A wide range of spatial downscaling techniques is available. Some of the downscaling 

techniques are simple and easily implemented (i.e., interpolation methods), while others are 
complex and require further investigation and development prior to applying to the AOR 
development (i.e., dynamical methods).  

The interpolation downscaling methods are readily available and easily implemented, 
with several operational applications already taking advantage of these techniques. For the AOR, 
it may be an acceptable minimum to utilize interpolation with terrain adjustments to downscale 
temperature fields, but interpolation methods are not recommended for downscaling precipitation 
fields. 

The spatial disaggregation methods are also reasonably developed and straightforward to 
implement. For the purposes of the AOR, it may be an acceptable minimum to downscale 
precipitation fields using spatial disaggregation with bias corrections.  

Spatial downscaling techniques that employ regression methods are desirable for 
incorporating dynamic atmospheric processes that control weather patterns. However, additional 
development is required to identify controlling variables and to develop suitable relationships for 
different geographic regions. If time and resources permit further investigation for the AOR, the 
GMOS method using reanalysis products and other inputs would be a reasonable starting point to 
develop these relationships. The predictor variables can be used both for gridding point 
observations and downscaling gridded datasets.  

Similarly, dynamical downscaling methods that employ outputs from high-resolution 
regional weather models are desirable for incorporating atmospheric influences. If a high-
resolution weather model can be run to generate a reanalysis dataset for the AOR, it would be 
extremely beneficial in providing a consistent, high-resolution dataset over the full historical 
period and spatial extent. Additional investigation is required to determine if it is feasible to 
complete a WRF reanalysis for the AOR, and to weigh the relative effort and potential benefits. 

  

8 Temporal Disaggregation 
 
Temporal disaggregation methods are needed for the AOR development to downscale 

daily values to an hourly time step. Because weather variables exhibit higher spatial correlations 
and lower serial correlations on a daily time step, and because more historical data are available 
on a daily time step, Riverside recommends developing daily fields before temporally 
disaggregating to an hourly time step.  

Hourly weather characteristics can be difficult to infer depending upon the location and 
period of time. Hourly gages are available over the full period intended for the AOR, although 
the density of gages varies in time and space. Radar data are available in 5-min to 1-hr 
increments from approximately 1996 to present, but the spatial coverage is incomplete and the 
data quality is limited for frozen precipitation. Likewise, satellite estimates are available in 15-
min to 3-hr increments for the recent period, but the uncertainties are relatively high, particularly 
for precipitation estimation over areas covered by snow and ice. The reanalysis products are 
available for the full period intended for the AOR with time steps of 1-6 hr. However, the grid 
meshes of the reanalysis products are relatively coarse, and the uncertainties associated with the 
reanalysis data are also high. 
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8.1 Grid-based Disaggregation Approaches 
 
The radar, satellite, and reanalysis data sources are gridded products that can be used for 

temporal disaggregation. The primary issue in using these data sources for temporal 
disaggregation is that they require spatial downscaling to the target grid mesh (Section 7). The 
downscaled radar, satellite, or reanalysis datasets could be used to temporally disaggregate daily 
grids using the hourly distributions defined by the hourly gridded datasets. For example, Wüest 
et al. (2009) first developed a daily precipitation field from station observations, and then 
disaggregated the daily product using radar data. This approach is limited to the period with 
radar (or satellite or reanalysis) estimates.  

If fields such as those available from the NARR, which are available on a 3-hr time step, 
are used for temporal disaggregation of daily grids, an additional step is required to disaggregate 
from a 3-hr to a 1-hr time step. A simple alternative is to assume a uniform distribution of values 
for every 3-hr interval, although more sophisticated techniques could be developed. Also,1-hr 
radar or satellite precipitation could be used, as is done for the NLDAS dataset (Cosgrove et al., 
2003). 

 
8.2 Station-based Disaggregation Approaches 

 
Temporal disaggregation based on station data could be completed using a variety of 

approaches. Hourly gage observations could be directly interpolated using one of the approaches 
described in Section 6 (e.g., Luo et al., 2011). The temporal distribution from the hourly grids 
could be used to disaggregate daily grids to a 1-hr time step. 

If the hourly station network is relatively dense, station-based disaggregation approaches 
can successfully represent the spatial distribution of events, including the movement of storms 
across a basin. However, spatial distributions will not be well-represented in areas with sparse 
hourly station networks. In these areas, the spatial correlations would be overestimated, resulting 
in overly smoothed datasets (Debele et al., 2007). An alternative approach that better accounts 
for spatial and temporal correlations in the dataset would be preferable. 

 
8.3 Multi-sensor Approaches 

 
Data fusion could be used to integrate information from all available sources into the 

temporal disaggregation process. This could involve developing hourly datasets through the data 
fusion process to incorporate information from all sources of hourly information (i.e., gages, 
radars, satellites, and NWP model outputs), and then scaling the hourly grids so that they 
reproduce the daily values developed in a previous data fusion step. 

Similarly, a multi-sensor approach could be used to characterize the diurnal distribution 
of temperatures. Jin and Dickinson (1999) developed a multi-sensor approach that combines 
satellite and surface observations with NWP model outputs to characterize the diurnal cycle of 
land surface skin temperatures (Figure 10). The authors formulated the diurnal cycle for a 
particular day as a combination of a daily average, a daily periodic component, and a random 
component. The daily average component was characterized using satellite and gage 
observations (depending on cloud cover conditions). The periodic component was characterized 
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using simulated climatologies from the CCM3/BATS model, where the model simulations were 
used to determine typical diurnal patterns for different latitudes, seasons, and vegetation types.  

 

 
 
Figure 10. Determination of the diurnal temperature cycle using NWP model outputs and 
satellite and surface observations (reproduced from Jin and Dickinson, 1999) 

  
8.4 Stochastic Approaches 

 
Stochastic approaches could be employed to temporally disaggregate daily grids. 

Stochastic approaches would not reflect hourly observations for a particular day, but instead 
would attempt to maintain the statistical characteristics of the daily fields.  

Many studies have investigated disaggregation techniques for individual stations, or the 
extension of hourly stations, to maintain statistical characteristics at the station (e.g., Debele et 
al., 2007; Wheater et al., 2005). For a relatively small basin, Wheater et al. (2005) applied the 
disaggregation approach of Koutsoyiannis and Onof (2001) to temporally distribute daily station 
observations to an hourly time step. Subsequently, the researchers used this distribution to 
disaggregate stochastically-generated daily data across the basin. This disaggregation approach, 
particularly on larger scales and in regions with complex terrain, over-estimates the cross 
correlation between locations (Mezghani and Hingray, 2009). Alternatively, individual stations 
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could be stochastically disaggregated using these approaches prior to spatial interpolation; 
however, this would ignore cross correlation of events between stations. 

Weather generation models have been applied to maintain spatial and temporal 
correlations for multiple-site disaggregation and two-dimensional storm generation. Wheater et 
al. (2005) present a generalized linear regression model that represents the development and 
movement of storms and storm cells based on stochastic characteristics of precipitation fields. 
The parameters defining the precipitation field characteristics are determined based on analysis 
of radar precipitation estimates. Although such an approach appears promising, there are major 
limitations. The model is developed on a daily basis because of the added complexities and 
differences in spatial and temporal correlations at finer time intervals. Non-homogeneous 
precipitation characteristics such as orographic effects are not represented in the model. The 
weather generation models have been developed over limited domains. Finally, no mechanism is 
available to adjust the models to observations.  

K-nearest neighbor (K-nn) resampling approaches have been used in multiple 
applications to preserve the statistical characteristics of time series and gridded datasets. With  
K-nn approaches, a database of historical events is developed and similarity criteria are defined. 
Data from the current time step are compared with the historical database to identify appropriate 
historical analogs. An analog is randomly selected from the K number of nearest analog events 
that are weighted based on their similarity to the conditions at the current time step (Buishand 
and Brandsma, 2001). A wide variety of information (e.g., station observations, atmospheric 
states from NWP models) can be combined to define the similarity criteria, as long as the 
information is available for the historical record as well as for the current time step. Brandsma 
and Können (2006) applied K-nn resampling to disaggregate hourly temperature data from 
limited observations collected over a day. Gangopadhyay et al. (2005) used K-nn resampling to 
spatially and temporally downscale precipitation and temperature from the R1 reanalysis. In a 
two-step process, Mezghani and Hingray (2009) statistically downscaled daily precipitation and 
temperature grids from the R1 reanalysis, and then applied K-nn resampling to temporally 
disaggregate the daily grids to an hourly time step. 

Mezghani and Hingray (2009) and Gangopadhyay et al. (2005) summarize the strengths 
and limitations of K-nn resampling. The K-nn approach does not make assumptions regarding 
the underlying probability distributions or joint distributions of the functions. However, the 
cross-correlations of data across space can be represented in the method. The approach may also 
be utilized to select an ensemble of possibilities and to define confidence information based on 
these ensembles (Gangopadhyay et al., 2005). K-nn resampling techniques rely on a 
representative database of historical events that reflect the range of possibilities, and as such 
events cannot be generated that exceed the limits of the historical record. Temporal correlations 
of weather variables may be underestimated with K-nn approaches, although this can be 
overcome in part by including lagged variables in the predictor similarity functions. A K-nn 
resampling approach would ignore hourly observations from gages or other sources. However, 
these data might be used to identify analog events. Although the K-nn approach can produce 
hourly data that are statistically consistent, the hourly distribution on any given day could have 
large errors. 
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8.5 Implications for the AOR 
 
For the AOR development, temporal disaggregation methods based on observations or 

stochastic methods can be employed to develop datasets on a 1-hr time step. The final approach 
will ultimately depend upon available resources, but the following options could be explored: 

 
• Employing data fusion to develop hourly fields using all available hourly data (i.e., 

gages, radars, satellites, and NWP model outputs), and then adjusting the hourly 
fields to be consistent with daily fields developed in previous analysis steps. 
Observation-based distributions are likely to be better in the recent period and in 
locations with hourly gage and radar observations.  

• Developing a K-nn resampling approach using the recent period to populate the 
historical database and to characterize the statistical properties. This method is likely 
to be most applicable prior to 1996.  

• Developing an approach that combines observation-based distributions and stochastic 
distributions based on location, period, data availability, and confidence in the 
available data.  

 

9 AOR Evaluation 
 
An important aspect of the AOR development process is evaluating the quality of the 

precipitation and temperature datasets. An evaluation process is necessary during development to 
compare and adjust potential methodologies. Although inter-comparison studies have been done 
to evaluate specific techniques that may be applied to the AOR, the results of these studies are 
highly dependent upon the input datasets and the climatological characteristics of the area being 
studied. Once the AOR is complete, an evaluation process is necessary to understand the quality 
and uncertainties associated with the datasets.  

This section focuses on evaluation methods that can be used during the AOR 
development process, although the same techniques can be applied to the final datasets. A single 
evaluation approach will not provide definitive conclusions regarding estimation accuracy across 
the entire country for the entire dataset. Therefore, Riverside recommends using multiple 
evaluation techniques to assess the benefits and limitations of different approaches. The 
recommended evaluation methods have been categorized as follows: 

 
• Expert input (i.e., peer reviews) 
• Cross validation against point observations 
• Comparisons with previously developed datasets 
• Comparisons with high-quality datasets from heavily instrumented basins 
• Assessments of simulation quality using hydrologic models 
 

9.1 Expert Input 
 
The AOR development process touches on many fields, including precipitation and 

temperature estimation from gage, radar, satellite, and NWP model sources; automated data 
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quality control; gridding; downscaling; temporal disaggregation; data assimilation; data fusion; 
and uncertainty estimation. The AOR development process will benefit from review and 
feedback by experts in each of these fields. Although expert input can lead to growing or 
conflicting requirements and potential changes in methodology, it can provide invaluable 
guidance to avoid pursuing approaches with limited value (Daly, 2006). In soliciting expert 
input, it will be helpful to manage expectations by conveying an accurate understanding of the 
needs, limitations, and timeline for the AOR development.  

Riverside recommends that expert input be solicited at various points in the development 
process. For this report, Riverside conducted expert interviews in different areas to better 
understand research that has been completed and to solicit recommendations regarding feasible 
approaches. As OHD refines the development plan, Riverside recommends soliciting another 
round of expert input, particularly to help assess the benefits and limitations of each alternative 
method. Once the AOR has been developed, expert review would also be beneficial in assessing 
whether the final dataset reflects reasonable weather patterns. 

 
9.2 Cross Validation against Point Observations 

 
One commonly applied evaluation method is cross validation of the dataset using station 

observations. In this approach, individual stations are withheld from the development process, 
the estimation is completed without the excluded station, and the estimated value at the grid cell 
containing the excluded station is compared to the observed values. This process is repeated for 
all stations. Summary statistics are computed to assess the quality of the applied methodology. 
Cross validation can also be completed by removing groups of stations (e.g., high elevation 
SNOTEL stations) to assess predictive skill under various conditions.  

Cross validation is appealing because it provides a statistical assessment that can be used 
to compare different techniques. Willmott and Matsuura (2006) emphasize the use of the mean 
absolute error and mean bias error in comparing spatial interpolation techniques. Li and Heap 
(2011) provide a summary of the most commonly used statistics to assess the performance of 
spatial interpolation methods. Hofstra et al. (2008) utilize various statistics that emphasize 
differing aspects of the estimation quality, and present the results of the analysis in different 
formats to visualize and interpret the variation in estimation quality across a large area. 

Although cross validation can provide insights into the strength of a chosen methodology, 
Daly (2006) summarized various limitations of cross validation analysis. Station observations are 
not necessarily equal to the areal average associated with a grid cell due to local site 
characteristics, surrounding topographic features, and other factors. Accepting that a station 
observation may be the best estimate for the corresponding grid cell, cross validation only 
provides an assessment of estimation quality where station observations are available. In many 
cases, stations are located at low elevations, so the results of the cross validation analysis may 
not represent the ability of a technique to reproduce values at higher elevations. Importantly, a 
cross validation analysis can only compare different methodologies if equivalent input data 
sources are included in each method. If cross validation statistics are computed with differing 
inputs, the results could be misleading. For example, the addition of stations in topographically 
complex areas will generally improve the precipitation or temperature estimation in these 
regions. However, a cross validation analysis including these stations would tend to yield poorer 
statistical results than an analysis that included only lower elevation stations, since it is more 
difficult to estimate values at high elevations. Thus, it would be inappropriate to use cross 
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validation to assess the value of including or excluding specific station networks. Finally, cross 
validation statistics tend to favor techniques that yield smoother interpolated surfaces that may 
not represent the true variability of the precipitation or temperature field. 

 
9.3 Comparison with Datasets from Highly Instrumented Basins 

 
There are several watersheds around the nation where dense measurements of 

precipitation and temperature have been collected over relatively limited periods of time for a 
variety of purposes. In such cases, the spatial and temporal distributions of precipitation and 
temperature are understood with greater confidence than is possible under typical monitoring 
conditions. The high-resolution precipitation and temperature fields from these locations provide 
a unique benchmarking opportunity for evaluation of the AOR methodologies. Various 
precipitation or temperature inputs could be withheld to represent typical data inputs that would 
be available, similar to the cross validation analysis. Precipitation and temperature fields could 
be generated based on the limited data inputs and compared against the high-resolution 
precipitation or temperature fields derived using all available data inputs. 

The advantage of such an analysis is that the baseline dataset is known to a greater degree 
than in the case of a cross validation analysis based on point observations. The inclusion or 
exclusion of different inputs or the use of different methodologies could be assessed more 
completely. However, there are limitations with this approach as well. The highly instrumented 
basins typically have limited records, so the range of precipitation and temperature conditions, 
storm types, extreme events, and other conditions for the watershed may not be represented in 
the available historical record. Furthermore, although the evaluation may indicate that a 
particular methodology yields superior results for a specific watershed, this may be due to 
region-specific characteristics that may not be representative of a larger area. However, the goal 
for the AOR development would be to identify multiple highly instrumented watersheds located 
in geographically and climatologically distinct regions. In this way, the combined analysis would 
provide insight into the skill under different conditions. 

The following locations have been identified for consideration for this type of analysis: 
  
• ESRL Hydrometeorology Testbed (HMT) locations (e.g., American River, Russian 

River, and HMT Southeast)  
• Distributed Model Inter-comparison Project (DMIP) locations (e.g., Oklahoma) 
• Colorado Basin River Forecast Center (CBRFC) Snow Modeling and Data 

Assimilation (SMADA) Testbed 
 
9.3.1 Evaluation of Techniques for the Early Period of Record 

 
A similar technique could be employed to evaluate different estimation techniques for the 

early period of record before radar data became available (i.e., approximately 1980-1996). 
Gridded precipitation and temperature datasets could be generated for the recent, more highly 
instrumented period of record using the techniques that are determined to be most effective based 
on all available data. This dataset could then be used for comparison of methodologies that will 
be employed for precipitation and temperature estimation for the early period. The data sources 
available only in recent years (e.g., radar data) could be withheld, and precipitation and 



Hydrometeorological Forcings May 2012 65 

temperature grids could be generated without those inputs after 1996. The results could be 
compared against the datasets generated utilizing all available data to provide insight into the 
estimation quality during the early period. 

 
9.4 Comparison with Previously Developed Datasets 

 
It may also be insightful to compare the AOR against other gridded or basin average 

datasets that have been produced. This type of comparison would be beneficial for indicating the 
degree of consistency between methodologies, for identifying errors in the computational 
procedures, and for identifying uncertainties in the estimates. 

Multiple datasets have been developed that could provide insights into the quality of the 
precipitation and temperature datasets developed for the AOR: 

 
• PRISM climatology and monthly grids: The monthly climatological datasets 

developed with the PRISM system are considered the best representation across the 
nation of long-term average precipitation, maximum temperatures, and minimum 
temperatures. These datasets provide an excellent source of information for 
comparison of the AOR at a fine resolution, as the climatology grids are available on 
a 400-m grid mesh across the CONUS. The final methodology for the AOR 
development will likely include adjustments to maintain the long-term means of a 
baseline climatology, which may be the PRISM datasets. However, in some cases, 
Riverside has identified discrepancies between the basin average characteristics from 
PRISM and the precipitation or temperature required to simulate streamflows at NWS 
forecast locations; this indicates that the PRISM values are subject to errors. 
Recognizing that adjustments to the PRISM datasets may be necessary in some 
locations, the PRISM climatology grids should be used as a validation dataset.  

The PRISM system has also been used to generate gridded monthly time series on 
a 4-km grid mesh from 1895 to present. These datasets could be used for validation 
by accumulating the AOR grids to a monthly time step and comparing the results to 
the PRISM grids. This type of analysis could help to identify shifts in the AOR grids 
due to changing inputs or computational procedures. 

• Calibration MAPs and MATs: The NWS RFCs have developed 6-hr MAP and MAT 
time series for the sub-basins in their forecast areas for input into lumped hydrologic 
models. The MAP and MAT time series typically employ observations from major 
national networks (e.g., COOP, SNOTEL, and RAWS). The time series developed 
using station observations typically begin in 1948 or 1978 and extend to the mid 
2000s. Some RFCs have developed historical MAP time series using radar 
precipitation estimates; these time series typically begin in 1996 and extend to the 
mid or late 2000s. The MAP and MAT time series are adjusted during calibration as 
needed to reduce biases in the resulting streamflow simulations at the basin outlets. 
Because of this evaluation, the MAP and MAT time series are likely to reflect the 
long-term basin characteristics reasonably well. Furthermore, the RFCs often 
complete more rigorous quality control on the input data than may be feasible for the 
AOR development.  

A comparison between basin-average time series computed from the AOR and the 
historical MAP and MAT time series would provide valuable information. If 
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significant biases are identified, the AOR procedures may need to be adjusted. 
Furthermore, the degree of difference between the two time series would indicate the 
relative importance of reviewing the hydrologic model calibration prior to employing 
gridded inputs. It is likely that in many cases, recalibration of the hydrologic models 
must be carried out with the new gridded inputs. 

• Long-term stable datasets (e.g., HCN, CRN): Some networks such as the HCN and 
the CRN have been designed and maintained to produce high quality, continuous, 
datasets with long historical records. The characteristics of these stations are well 
known. The long-term precipitation and temperature time series recorded at these 
stations could be used to identify artificial shifts in characteristics in the AOR dataset 
for specific points, aggregations of points, or areas (e.g., Hamlet and Lettenmaier, 
2005).  

• Gridded datasets: Although PRISM is generally accepted as the best gridded 
precipitation and temperature climatology, other datasets (described in Section 3.5) 
have been developed that cover the region of interest and could provide alternative 
comparison information. In addition, several RFCs are currently working to develop 
high resolution, gridded datasets. For example, the APRFC is working to develop a 
10-yr precipitation dataset in Hawaii using gage observations (OHD, personal 
communication, January 31, 2012). The CBRFC is working to develop 30-yr gridded 
precipitation and temperature datasets that are consistent both with their lumped 
calibration forcings as well as their real-time forcings, and documentation on this 
effort is forthcoming (CBRFC, personal communication, February 19, 2012). The 
CNRFC is currently documenting their process for developing gridded forcings for 
input to CHPS; that documentation should be available in April 2012 (CNRFC, 
personal communication, February 27, 2012).  

The available gridded datasets could also serve a secondary purpose related to 
uncertainty estimation. Since each dataset was developed using different 
methodologies and input datasets, the grids have the potential to yield different 
precipitation and temperature characteristics. In areas where there is little difference 
between the PRISM climatology grids and alternative datasets, one would expect the 
values to have a higher level of certainty. On the other hand, if the available 
climatology grids yield widely varying precipitation and temperature estimates for a 
given location, this indicates greater uncertainty. Sapiano et al. (2008) utilized 
differences in precipitation estimates from different sources to quantify the 
uncertainty in NWP model and satellite precipitation estimates. The uncertainties 
were then used to merge the data sources into a single product.  
  A similar approach could be used for the AOR development to quantify the 
uncertainty in the available precipitation and temperature climatology grids at 
different locations. This quantification of uncertainty in the long-term averages could 
be used to determine how much emphasis to place on the selected climatology versus 
the long-term averages from the AOR for determining long-term bias adjustments. 

 
9.5 Hydrologic Simulation 

 
One of the difficulties with evaluating the quality of precipitation and temperature fields 

is the lack of independent meteorological data for the evaluation. Often, the data that could be 
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used for evaluation are also used in the generation of the dataset. Streamflow measurements 
provide an independent means of evaluating the precipitation and temperature fields through 
hydrologic simulations. While other factors can affect observed streamflows, such as regulation 
and groundwater interactions, in many watersheds there is a clear relationship between 
precipitation and temperature and the resulting streamflows that can be represented well in a 
hydrologic model. Various lumped and distributed hydrologic models have been developed and 
calibrated for watersheds across the nation, most notably the hydrologic models employed at the 
NWS RFCs. The VIC distributed hydrologic model has also been widely implemented. Since the 
NWS RFCs are the primary intended recipients of the AOR dataset, and the RFCs have lumped 
hydrologic models calibrated across most of the U.S., the following discussion focuses on 
evaluation using these hydrologic models. Many of the same principles apply using other lumped 
or distributed hydrologic models for evaluation of the AOR. 

 
9.5.1 Potential Applications 

 
An evaluation based on the quality of hydrologic simulations would serve multiple 

purposes. First, the hydrologic models could be used to compare simulation quality between the 
historical MAPs and MATs developed for model calibration and basin-average values computed 
from the AOR. This assessment may necessitate parameter adjustments to tune the models for 
each input. This assessment would help to identify the impact of changing the model inputs, as 
well as to identify potential biases in the AOR datasets. 

A second application is to utilize the existing hydrologic models to test the quality of 
precipitation and temperature inputs developed using different algorithms. Model parameter 
adjustments may be required to provide a fair comparison. This application would provide a 
means to evaluate alternative algorithms before finalizing the methodology for the AOR 
development. 

A third application is to assess the impact of changes in the AOR over the period of 
record. There are distinct periods when the input datasets to the AOR will change significantly, 
such as the incorporation of radar data in the late 1990s. The hydrologic simulations could be 
reviewed across the period of record to assess the impact of changing inputs on the simulation 
quality and biases. 

A fourth application is to use the hydrologic simulations to identify long-term biases in 
the precipitation and temperature datasets, and to use this information to make adjustments to the 
underlying methods or data inputs. Acceptable ranges have been developed for the hydrologic 
model parameters. If the models require parameter adjustments beyond these ranges, that finding 
would suggest the input time series are biased. The biases identified based on the hydrologic 
simulations could be used to make adjustments to the inputs for the AOR, for example adjusting 
the background climatology that was used to determine the long-term characteristics of the AOR 
datasets. The specific adjustments should be made based on the confidence associated with the 
hydrologic simulations, and should be based on the hydrologic simulations for larger groups of 
basins. 
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9.5.2 Evaluation Approach 
 
Evaluation of the AOR using hydrologic simulations will provide valuable feedback 

regarding the input and output datasets, resulting in improved methodologies and outputs that 
better meet the needs of the hydrologic modeling community, in particular the RFCs. In the past, 
various RFCs have conducted inter-comparisons of different precipitation and temperature inputs 
and their impact on hydrologic simulation quality, such as comparisons of gage-only and gage-
radar precipitation inputs. However, such analyses have been limited and have varied in 
approach and detail between RFCs. The AOR could potentially result in a significant change in 
the approach used for historical precipitation and temperature estimation. There is an opportunity 
with the AOR development to apply a systematic evaluation approach based on hydrologic 
simulations.  

First, the RFCs could identify basins in their jurisdiction that meet the following criteria: 
 
• No (or minimal) streamflow regulation. Ideally, the basins will be undisturbed to 

prevent anthropogenic influences from impacting the results. However, some basins 
with urban development should be included in the evaluation. 

• Consistent simulation results using historical MAPs and MATs. Basins should not 
be selected if shifts in runoff characteristics have occurred during the period intended 
for the AOR. For example, changes in baseflow characteristics due to groundwater 
pumping can interfere with the evaluation. 

• Identifiable local runoff contribution. Both headwaters and local areas should be 
selected if the local runoff response can be identified.  

• Full range of hydrologic responses. The basins that are selected should represent the 
range of hydrologic conditions, for example both rainfall-runoff basins and 
snowmelt-runoff basins should be selected, as well as basins with a wide range of 
times of concentration.  

• Full range of simulation quality. Basins should be selected where the hydrologic 
models perform well, as well as problematic basins where the simulation quality can 
be improved from better precipitation and temperature inputs. 

 
While the number of basins included in the analysis will depend upon available 

resources, a sufficient number should be selected so that the evaluation results are representative. 
If only a few basins are considered, the validity of any conclusions may be limited, since various 
external factors and basin-specific issues could impact the results. A larger number of basins 
would require a more automated, optimization-based approach to the evaluation process. In this 
case, it may be more difficult to evaluate the results and to draw common, clear conclusions. The 
best approach may be to include a sufficiently large sample that represents the range of 
hydrologic conditions and reduces the impact of basin-specific issues, yet allows a detailed 
analysis of the results at each location.  

The number of basins could also vary based on the stage of development at which the 
evaluation is completed. During initial development, the purpose of the evaluation is to provide 
guidance for selecting appropriate methodologies. In this case, a smaller sample may suffice. 
Once the final methodology is selected, a larger sample may be used, for example to identify bias 
adjustments to the inputs.  
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Once the basins have been identified, the following steps could be used to evaluate the 
simulation quality: 

 
1. Set up the hydrologic models with plots and statistical outputs, for example using the 

NWSRFS calibration files and the Interactive Calibration Program (ICP). 
2. Establish baseline simulations using the hydrologic models and the historical MAP and 

MAT time series. 
3. Change the inputs to the hydrologic models to be MAP and MAT time series computed 

from the AOR datasets.  
4. Assess the initial modeling results, which have been produced using identical model 

parameters.  
a. This initial assessment provides an indication of the potential biases in the input 

time series, and the degree to which the hydrologic simulations are impacted by 
the change in inputs. 

b. The statistics used to assess the simulation quality will vary by region. For 
instance, seasonal volumes may be most important in snowmelt-runoff areas, 
whereas peak flow statistics may be more critical in rainfall-runoff areas.  

5. Adjust a limited number of model parameters to improve the simulation quality.  
a. The parameters that need to be changed would vary based on the hydrologic 

regime and the simulation sensitivities for a region.  
b. The parameter changes could be done using manual calibration or an optimizer 

tool such as the NWSRFS OPT3 program. The use of an optimization tool may be 
less labor intensive, but can yield results that are more difficult to interpret. 
Automated optimization should employ multi-objective criteria for the best results 
(CBRFC, personal communication, February 22, 2012). If parameter changes are 
limited to major model parameters, manual calibration could also be completed 
relatively quickly.  

6. Assess the adjusted modeling results using the same statistics as were employed in 
Step 4. This assessment provides an indication of the potential benefit from the AOR 
datasets.  
 

It may be possible to use an automated simulation tool, such as the Adjoint Baseline 
Optimizer (AB-OPT; Seo et al., 2009), to execute multiple lumped simulations to assess the 
overall quality of the forcings input. 

Once the AOR datasets are generated for the full spatial extent and historical period, an 
evaluation needs to be conducted across each RFC to identify basins where the changes in 
precipitation and temperature result in significant deterioration in simulation quality, perhaps 
necessitating re-calibration. 

 
9.6 Discussion and Implications for the AOR 

 
As different methods and input datasets are explored for developing the AOR, natural 

questions arise regarding how to evaluate the results of the AOR, to select the most appropriate 
methodologies, and to ensure the results are spatially and temporally consistent. The answers to 
those questions are not simple or straightforward. Even in well-instrumented areas, it is difficult 
to know the average precipitation and temperature values with a high degree of certainty over a 
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1-km area on a 1-hr time step. In poorly instrumented areas, the problem is compounded. 
Although various methods are proposed to evaluate the AOR, each has strengths and limitations. 
A combination of the proposed methods would yield the most comprehensive evaluation of the 
AOR and would help to ensure the best estimate of the true precipitation and temperature values 
over the historical record. 

Several issues require additional exploration to further clarify the evaluation approach. 
The proposed evaluation approach using hydrologic simulations focuses on the lumped 
hydrologic models run at the RFCs because the RFCs will be the primary users of the AOR 
datasets, because the RFC models cover most of the nation, and because significant resources 
have been devoted to calibrate the models. However, given that the AOR datasets will be 
gridded, it may be more appropriate to perform the evaluation using distributed hydrologic 
models to identify problems on a finer resolution. Distributed models may be more sensitive to 
discrepancies in different meteorological inputs. Similarly, the lumped hydrologic models 
developed for the RFCs typically represent relatively large watersheds. Completing an evaluation 
on smaller watersheds may yield different results.  

Another issue concerns the incremental value of including additional data for the AOR 
development. Additional datasets (e.g., citizen-observed networks) increase the spatial and 
temporal resolution of available information. However, the additional data sources may be less 
reliable. At some point, the additional data may increase the noise and uncertainty in the 
resulting datasets. One challenge will involve determining an appropriate point to stop adding 
data due to the need for increasingly complex quality control measures and relatively small gains 
in the resulting accuracy. 

In selecting methodologies, input datasets, and the evaluation approach, the NWS will 
ultimately need to grapple with the larger purpose of the AOR datasets. Various constraints, such 
as available resources, the timeline for completion of the datasets, and the immediate versus 
long-term needs of the datasets, may limit the effort that can be put into developing the datasets. 
However, if the AOR datasets are intended to replace the gridded precipitation and temperature 
datasets that have already been developed, a detailed evaluation is necessary. The evaluation 
would involve significant resources to complete a thorough analysis, however the quality of the 
resulting datasets would be increased, users could be made aware of limitations of the datasets, 
and there would be more confidence in the results. An important outcome from the AOR 
development process is the establishment of a formal evaluation procedure that identifies 
geographically-representative test basins and objective evaluation metrics that can be used to 
quantify the value of new data, inputs, and models (CBRFC, personal communication, February 
22, 2012). 

 

10  Existing Weather Data Management Systems 
 
Significant resources have been devoted by personnel at federal and academic institutions 

to develop systems that collect, quality control, and process weather data. The development 
approach for the AOR should maximize the use of available frameworks, automated processes, 
methodologies, and datasets to reduce the development cost and effort. Many of the relevant 
weather data management systems have been developed within NOAA by the NCDC and the 
NWS (i.e., NOHRSC, NSSL, OHD, and NCEP). Additional development work has been 
performed jointly by the NCEP and NASA to integrate satellite data and NWP model outputs 
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with land surface modeling. Additionally, the PRISM Climate Group at Oregon State University 
has developed one of the most widely used climatological datasets.  

The purpose of this section is to summarize the system features that have potential utility 
for the AOR. The data in Table 11 provide a comparison across the systems based on criteria that 
affect how readily the desired features could be applied to the AOR. The attributes in Table 11 
describe whether the existing systems: 

 
• Are being run operationally. If an existing system is being run operationally, it likely 

has automated pieces that can be adapted for the AOR.  
• Are integrated into the RFC operational systems. Because the AOR is intended to 

support river forecast operations, a system or data source that has been integrated into 
the RFC operations is advantageous.  

• Cover the spatial extent intended for the AOR. If the system has been applied to a 
limited spatial extent, additional development will be required to apply it for the AOR 
development.  

• Meet (or exceed) the spatial and temporal resolution requirements that have been 
defined for the AOR. If the system has been applied using coarser spatial and 
temporal resolutions, additional development will be required to apply it for the AOR 
development. 

• Generates both gridded temperature (T) and precipitation (P) products. Some of the 
systems presented have been developed only for precipitation, not temperature. Some 
of the systems work with maximum and minimum temperature grids, rather than 
average or instantaneous temperature grids.  

• Have the capability to produce multi-sensor temperature (T) and precipitation (P) 
estimates. The AOR is intended to develop multi-sensor precipitation and 
temperature grids so existing data fusion capabilities are advantageous. 
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Table 11. Comparison of Weather Data Management System Attributes 
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NCDC     P P  P  (1) P 
PRISM      P P   (1)  
SNODAS      P    P 
NMQ/Q2  P    P   P (2) P 
Daily QC/ 
Mountain 
Mapper 

       P   

MPE         P (2) P 
CPC  P    P P  P  (1) P 
NLDAS      P     
 System meets this criterion. 
P System partially meets this criterion.  
1 System provides daily maximum and minimum temperature grids, not instantaneous or average temperature grids. 
2 System provides precipitation grids, but not temperature grids. 

 
10.1 NCDC Automated Data Quality Control Procedures 

 
The NCDC is the official federal repository for historical weather data. As such, the 

NCDC has long had responsibility for quality controlling station observations. Historically, the 
quality control process included extensive manual reviews that delayed the publication of data 
(Rennie et al., 2011b). To reduce the amount of effort required for quality control, and to 
eliminate inconsistencies that can result from manual data review, the NCDC has been 
developing automated data quality control systems for point observations that could be useful for 
the AOR.  

In addition to the operational systems that have been developed to quality control 
observations at COOP stations (described below), the NCDC is also developing automated 
procedures to perform quality control on hourly precipitation data in the DSI-3240 dataset. This 
system includes automated checks to identify data spikes, global extremes, gaps, and 
climatological outliers (Rennie et al., 2011b). Once the development work is completed, these 
quality control procedures will replace the current process of manual review and editing for the 
DSI-3240 hourly precipitation dataset. 
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10.1.1 TempVal 
 
An automated temperature validation system (TempVal) has been integrated with the 

operational COOP temperature validation system. The TempVal system uses hourly and daily 
observations at ASOS and AWOS stations to quality control daily observations of maximum and 
minimum temperature at COOP stations (Angel et al., 2002).  

First, a benchmarking dataset is developed using the ASOS and AWOS observations. 
Gridded anomaly fields are developed by computing departures between the maximum (or 
minimum) temperature observations and the station’s climatological value. The anomalies are 
interpolated to a 0.5° grid mesh using inverse distance squared weighted interpolation. The 
gridded anomalies undergo an automated “bull’s-eye” test to compare each grid cell value to the 
average value of surrounding grid points.  

The daily COOP data are also used to develop gridded anomaly fields. The daily 
maximum (or minimum) temperature values at the COOP stations are used to compute 
anomalies from the station’s climatological value, which are then interpolated using the same 
technique applied to the ASOS/AWOS anomalies. If the COOP anomaly for a grid cell differs 
from the ASOS/AWOS anomaly by more than a specified threshold (currently 7°F plus the 
gradient of the ASOS field computed from surrounding cells), the COOP observation is replaced 
by a value that is computed by applying the ASOS/AWOS anomaly to the COOP station’s 
climatological value.  

The TempVal system was run in parallel with the previous operational system to assess 
the performance. NCDC personnel concluded that the automated quality control procedures 
performed better in 90% of the cases where large temperature differences existed (Angel et al., 
2002). However, the TempVal system does not perform well when strong temperature gradients 
exist due to inversions, warm air advection episodes, and strong frontal passages. The NCDC has 
developed a list of stations that are affected by these weather phenomena and therefore undergo 
limited spatial review. Due to a lack of benchmarking data, the TempVal system is not applied in 
Puerto Rico, the Virgin Islands, or other U.S. territories. 

 
10.1.2 PrecipVal 

 
Similar to TempVal, the NCDC has developed an automated quality control process for 

precipitation observations. While the precipitation validation system (PrecipVal) can be applied 
to quality control any data source, it has been applied primarily to the COOP network (Urzen et 
al., 2004). 

The PrecipVal system develops a gridded benchmarking dataset on a 1-hr temporal 
interval and the nominal 4-km grid mesh associated with the HRAP grid. The benchmarking 
dataset is developed using information from multiple data sources, including point observations 
from the ASOS and CRN networks and gridded estimates from the RUC NWP model, GOES 
satellite, and NEXRAD radar network (Urzen et al., 2004). All precipitation layers are compared 
to identify outlying values (i.e., an inter-layer comparison test). For each grid cell, the final 
precipitation estimate is an average value computed from the precipitation estimates that 
survived the inter-layer comparison test. Statistics, including the number of input data sources, 
the standard deviation of the input values, and the inner quartile range of the input values, are 
computed for each grid cell to assign a confidence level to the estimated precipitation value. 
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Point observations are compared to the gridded benchmarking dataset to identify outlying 
data values. Thresholds are applied to determine if the point observations are in agreement with 
the benchmarking dataset. In addition, the statistics computed during the development of the 
benchmarking dataset are used to convey the confidence associated with the validation process.  

 
10.2 PRISM 

 
The PRISM system developed at Oregon State University employs point observations 

and multiple linear regression techniques to develop gridded estimates of precipitation, 
maximum temperature, and minimum temperature (Daly et al., 2002; Gibson et al., 2002). The 
PRISM system includes automated data quality control procedures and gridding techniques that 
may be beneficial for the AOR. In addition, the gridded climatological datasets that have been 
developed using the PRISM system may be useful for gridding point observations using CAI, or 
spatially disaggregating coarse-resolution datasets. 

The PRISM system includes point observations from numerous networks, including the 
COOP, SNOTEL, RAWS, Agrimet, Weather Bureau Army Navy (WBAN), California Data 
Exchange Center (CDEC), and Environment Canada networks. In a given month, a station must 
have at least 85% non-missing data values to be included in subsequent analyses. Due to a lack 
of heating elements, observations from RAWS stations are incorporated into the system from 
May-September only.  

The data quality control features in the PRISM system have been developed to identify 
errors, not catch deficiencies or inconsistencies due to changes in station locations or sensors. 
The PRISM system flags potentially erroneous data using climatological range checks. Daily 
precipitation values that are greater than 115% of the state’s record daily precipitation are 
flagged, while minimum (maximum) temperature values are flagged if they are 3°C less (greater) 
than the state’s record daily values (Daly et al., 2008). The PRISM system also flags temperature 
values if the temperature differences are less than 0.1°C over a ten-day period.  

The PRISM system uses spatial interpolation and multivariate regression techniques to 
develop expected values to which station observations are compared (Daly, 2006). The process 
developed for the PRISM system (ASSAY_QC) applies cross validation to identify potential 
data errors on a monthly time step. The differences between the predicted and observed values 
are normalized to account for the fact that higher variances are expected for higher precipitation 
values (Gibson et al., 2002). The quality control process is used to set the observed values to 
missing, to replace the observations with the predicted values, or to linearly combine the 
observed and predicted values (Daly et al., 2005). 

The PRISM system was developed assuming that elevation is the most important factor 
in distributing temperature and precipitation values in a localized region. Station weights are 
used to control the effects of variables other than precipitation and temperature. In the general 
PRISM formulation, the combined weight of a station is a function of distance, elevation, station 
clustering, coastal proximity, topographic facets, vertical layer effects, and terrain effects. A 
station is weighted less when it is far from the cell being estimated, when it is at a different 
elevation, when it is near other stations, or when it has a different topographic facet.   

Both the significant benefits and some of the drawbacks associated with the outputs from 
the PRISM system stem from the fact that elevation is the primary factor controlling weather 
patterns. Studies have shown that elevation is not always a significant predictor of precipitation 
(e.g., Guan and Wilson, 2005), or that even if elevation is a significant predictor, it may only 
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explain 25% of the variation in winter precipitation (Peck and Schaake, 1990). In addition, the 
quality of the PRISM grids suffers in areas with sparse station networks. In order to maintain a 
water balance on a watershed scale, Riverside has sometimes adjusted the long-term 
characteristics derived from PRISM that were used to develop calibration MAPs, especially in 
small watersheds and in areas with sparse station networks. The CBRFC has developed software 
that can be used to adjust the 800-m climatological grids from the PRISM system based on the 
calibration climatology. For example, the CBRFC has adjusted the temperature climatology grids 
from the PRISM system, with adjustments ranging from 0-4°F, to match the climatology 
developed for their synthetic temperature stations (CBRFC, personal communication, February 
19, 2012). The adjusted climatology grids were then used in the DailyQC program to develop 
historical temperature grids that were input to the Research Distributed Hydrologic Model 
(RDHM). The hydrologic simulations were significantly improved with the adjusted 
climatological grids (CBRFC, personal communication, February 19, 2012). 

Efforts continue by the PRISM Climate Group at Oregon State University and other 
groups to evolve the PRISM system. For example, some work has been done to develop a daily 
time series of PRISM grids for the period 1960-2001 on a 4-km grid mesh over the CONUS 
(DiLuzio et al., 2008). The monthly PRISM grids were the starting point for this application. For 
each station, a daily fraction of the monthly precipitation total was computed. The fractions were 
interpolated using inverse distance weighting, and then were multiplied by the monthly PRISM 
grids to develop daily grids. One limitation of this work is it used only the COOP station 
network.  

Additionally, the PRISM system was used to develop daily grids of minimum 
temperature, maximum temperature, total precipitation, rainfall, snowfall, solar radiation, and 
radiation-adjusted maximum temperature on a 50-m grid mesh for a small watershed in the 
Cascade Mountains in Oregon for the year 2003 (Daly et al., 2007). The quality of the grids, 
particularly precipitation and solar radiation, was affected by data scarcity and data quality 
issues.  

Personnel at ESRL are working to improve upon the PRISM system by incorporating 
atmospheric variables into the regression models (Hsu et al., 2011). This work includes 
developing a nonlinear, hierarchical model on a daily time step to identify additional controlling 
variables beyond those already incorporated into the PRISM system. For example, atmospheric 
and oceanic variables such as vertical motion, sea surface temperature, Froude number, and 
water vapor are being evaluated to determine if they improve upon the general PRISM 
formulation. 

The NCDC recently released climatological averages for the period 1981-2010. It is 
likely that the PRISM system will be used to develop gridded climatological datasets for this 
period as well, though the schedule of this work is unknown (Colorado Climate Center, personal 
communication, October 13, 2011). Because the period 1981-2010 more closely aligns with the 
desired period of record for the AOR, it would be advantageous to have these datasets available 
for the AOR development. 

  
10.3 SNODAS 

 
The SNODAS developed by the NOHRSC employs NWP model outputs, point 

observations, and satellite data to drive a spatially distributed snow model “developed to provide 
the best possible estimates of snow cover and associated variables to support hydrologic 
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modeling and analysis (Barrett, 2003).” The SNODAS is currently run on a 1-km spatial scale 
and a 1-hr temporal scale for the CONUS, although the system will be expanded to cover Alaska 
(NOHRSC, personal communication, July 20, 2011). The SNODAS includes automated data 
quality control procedures, spatial downscaling methods, and data assimilation techniques that 
may be useful for the AOR development.  

The meteorological inputs to the SNODAS include barometric pressure, solar radiation, 
incident longwave radiation, air temperature, wind speed, relative humidity, precipitation type 
and quantity, and cloud coverage. The radiation fields are obtained from the National 
Environmental Satellite, Data, and Information Service (NESDIS) Continental Scale 
International Project (GCIP). The remaining meteorological inputs are obtained from the RUC 
NWP model. The RUC outputs are downscaled from a nominal 13-km grid to the 1-km grid used 
by the SNODAS. The downscaling process is specific to the variable. Precipitation fields from 
the RUC NWP model are downscaled using bilinear interpolation (NOHRSC, personal 
communication, July 20, 2011). The temperature fields are downscaled using bilinear 
interpolation, and are then adjusted for terrain differences. Additionally, the downscaled 
temperature grids are adjusted using station observations prior to input to the SNODAS 
(NOHRSC, personal communication, July 20, 2011).  

Two major components within the SNODAS are a spatially distributed snow model that 
estimates snowpack characteristics and a data assimilation algorithm that adjusts snowpack 
characteristics based on observations. The NOHRSC snow model is a hybrid of SNTHERM and 
the Utah Energy Balance Model (NOHRSC, personal communication, September 2007; USACE, 
2007). The snow model simulates snowpack states and fluxes for each grid cell based on energy- 
and mass-balance principles. During the data assimilation process, the snow water equivalent 
(SWE) states are adjusted using observations of snow cover and SWE in a process referred to as 
“nudging.” The estimates include satellite-derived, airborne, and ground-based observations.  

Eight data products are available from the SNODAS: liquid and frozen precipitation, 
SWE, snow depth, snow pack temperature, snowmelt, snow pack sublimation, and blowing snow 
sublimation. Daily grids are produced for all eight products. Hourly grids are produced for all 
data products except snow pack temperature and blowing snow sublimation.  

The primary limitation with the SNODAS as currently implemented is that the spatial 
downscaling procedure applied to the RUC precipitation field does not make bias corrections or 
account for topographic features that affect precipitation patterns. For example, in a previous 
study, Riverside found that the downscaled RUC precipitation fields showed little variation with 
elevation, tended to underestimate winter precipitation, and tended to overestimate summer 
precipitation (Riverside, 2007). This analysis was performed for selected watersheds in the 
Upper Colorado River Basin and may not be representative of results in other parts of the 
country. 

 
10.4 NMQ/Q2 

 
The NMQ/Q2 system developed by the NSSL produces a national mosaic of radar 

precipitation estimates, in addition to quantitative precipitation estimates and short-term 
quantitative precipitation forecasts. The NMQ/Q2 system is being run in real-time by the NSSL 
with high reliability, but the system will not be considered fully operational until a redundant 
version of the system is implemented at the NCEP. In addition, a separate research version of the 
NMQ/Q2 system is being run at the ESRL. The NMQ/Q2 system is currently being run on a 1-
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km grid mesh and a 5-min temporal interval over the CONUS and portions of Canada and 
Mexico. Future developments will include extending the NMQ/Q2 system to cover Puerto Rico, 
and reducing the grid mesh to 500 m. The NMQ/Q2 system includes automated data quality 
control procedures (particularly convective screening); radar processing, mosaicking, and bias 
correction algorithms; and a framework for data assimilation that may be beneficial for the AOR 
development. 

The NMQ/Q2 system currently ingests precipitation estimates from NEXRAD radars, a 
limited number of TDWR radars, and Canadian radars; GOES satellite data; precipitation 
observations from stations; outputs from the RUC NWP model; and lightning data (NSSL, 
2011b; Zhang et al., 2005). The radar data form the backbone of the NMQ/Q2 system. The radar 
reflectivity data undergo a series of quality control checks to eliminate artifacts (e.g., noise, 
sunbeams, bright bands; Zhang et al., 2005) and to perform corrections based on the vertical 
profiles of reflectivity. Lightning data are used to delineate areas of convective and stratiform 
precipitation. The precipitation estimates from individual radars are used to develop a national 
mosaic of radar precipitation (i.e., NMQ). Station observations are used to develop mean field 
bias-adjusted and local bias-adjusted radar precipitation products, in addition to gage-radar 
multi-sensor products.  

The NMQ/Q2 system has excellent radar quality control and mosaicking methods, 
producing a high quality national radar mosaic. The quality control routines are excellent at 
removing ground clutter, although they sometimes result in the removal of light precipitation that 
is actually occurring (Southeast River Forecast Center [SERFC], personal communication, 
December 14, 2011; Story, 2011). The NMQ/Q2 products suffer from limited radar coverage and 
inaccurate estimation of frozen precipitation.  

Future areas of enhancement include improving the vertical profile of reflectivity 
corrections that were developed in the plains region, to provide corrections that will perform 
better in complex mountainous terrain (ESRL, personal communication, November 16, 2011). 
Although the use of gage and radar data has been good, improvements can be made in the 
application of satellite and NWP model outputs.  

The NCDC and the NSSL might soon generate a 10-yr reanalysis dataset using the 
NMQ/Q2 system, which would improve the potential benefit for the AOR development by 
providing a longer historical record. 

  
10.5 DailyQC/Mountain Mapper 

 
The DailyQC program developed by the CBRFC is used to quality control observations 

of temperature, precipitation, and freezing level on 6-hr and 24-hr time steps (CBRFC, 2009; 
NWS, 2008; NWS, 2009). The DailyQC program was developed to perform quality control in 
areas with complex mountainous terrain, but is also applied in areas with smaller elevation 
gradients. The DailyQC program has been integrated into the MPE and the Mountain Mapper 
programs. The automated data quality control procedures in DailyQC may be useful for the AOR 
development. 

The DailyQC program performs automated spatial and temporal consistency checks to 
flag questionable values. Observations are compared to surrounding observations at nearby 
stations to assess their spatial consistency. A gage whose value is more than a specified number 
of standard deviations different than surrounding values is flagged as questionable (NWS, 2008). 
Temporal consistency checks are used to ensure that the 6-hr and the 24-hr data are consistent. 
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Data values that are flagged by the automated quality control procedures are denoted using a 
quality control flag that is set to “questionable.” These values require subsequent manual review.  

The DailyQC program includes a spatial interface to display the observed values, station 
elevation, station network, sensor type, spatial and temporal consistency metrics, and quality 
control flags (e.g., verified, questionable, estimated, bad, missing) to facilitate the manual review 
process. Additional functions are available through the interface to apply range checks, remove 
precipitation values from stations with tipping bucket gages if the air temperature is less than the 
freezing level, and to review relationships between the observations and the station elevations.  

In the version of DailyQC that has been integrated into the MPE program, the 6-hr 
precipitation values can be disaggregated to a 1-hr time step for use in developing gridded 
precipitation estimates (NWS, 2008). This temporal disaggregation process may be useful for the 
AOR development. In addition, an automated version of the DailyQC program (i.e., 
auto_daily_qc) can be used to generate gridded datasets in a batch, automated fashion (CBRFC, 
personal communication, February 22, 2012). 

The Mountain Mapper system developed by the CBRFC generates gridded precipitation 
totals and instantaneous temperature values in areas of complex mountainous terrain (CBRFC, 
2009; Schaake et al., 2004). The gridding techniques in Mountain Mapper may be beneficial for 
the AOR development. The Mountain Mapper system uses the CAI technique (Section 6) to 
transform point observations into gridded estimates using monthly climatology datasets from the 
PRISM system or monthly station climatologies. The program weights the closest stations the 
highest, unlike the predetermined station weights employed at most western RFCs using the 
NWSRFS calibration MAP preprocesser (CBRFC, personal communication, February 22, 2012). 
The instantaneous temperature grids need to be adjusted to represent average temperature values 
before being input to the hydrologic models run at the river forecast centers (CBRFC, personal 
communication, February 22, 2012).  

The DailyQC/Mountain Mapper system is in widespread use at the western RFCs, and 
likely will represent a benchmarking system against which the AOR will be compared. For 
example, the NWRFC is using Mountain Mapper to estimate missing precipitation values at 
stations before computing MAPs using predetermined station weights in CHPS (NWRFC, 
personal communication, February 27, 2012). The CBRFC may be redeveloping the DailyQC 
program to use a grid mesh that is smaller than the standard HRAP grid, for example an 800-m 
grid mesh (CBRFC, personal communication, February 22, 2012). 

 
10.6 MPE 

 
The MPE program developed by the NWS OHD develops gridded precipitation estimates 

on a 1-hr temporal interval and a nominal 4-km grid mesh for an RFC service area (Seo, 2003; 
Fulton, 2005a; Fulton, 2005b; NWS, 2008; NWS, 2009). The MPE program is run at the RFCs 
as part of their river forecast operations. The MPE program generates multiple precipitation 
grids, from which the RFC personnel choose the best representation to input into their 
operational hydrologic models. In addition, the DailyQC and Mountain Mapper programs 
(described above) have been integrated into the MPE program to facilitate quality control of 
point observations and grid generation using climatological datasets. However, the MPE 
program does not generate gridded temperature fields. The MPE program includes automated 
data quality control, bias correction, and multi-sensor precipitation features that that may be 
beneficial for the AOR. 
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The MPE program ingests the Digital Precipitation Array (DPA) products from the WSR-
88D radars, satellite precipitation estimates, and station observations. These data are used by the 
MPE program to generate the following precipitation grids: 

 
• A mosaic of radar precipitation (RMOSAIC). This grid is generated by mosaicking 

the DPA rainfall estimates from the radars in the service area. By default, in areas of 
overlapping radar coverage, the rainfall value is selected from the radar that provides 
coverage at the lowest height above sea level that is free of significant beam blockage 
(NWS, 2008; Seo, 2003). Options are available in the MPE program to set the grid 
cell value to the average or the maximum precipitation value from the radars that 
cover the grid cell. If a grid cell is not covered by a radar, then it is assigned a missing 
value. Climatological values developed for each radar are used to quality control the 
precipitation estimates; if a precipitation value for a grid cell is questionable; the cell 
value is set to missing.  

• A mosaic of mean field bias-adjusted radar precipitation (BMOSAIC). The rainfall 
estimates from each radar are adjusted using a mean field bias correction prior to 
mosaicking the radar estimates for the service area (Seo et al., 1999). The mean field 
bias correction value is computed for each radar using stations within the effective 
radar coverage. The mean field bias values are computed for multiple time intervals 
(i.e., sub-hourly, hourly, daily, weekly, monthly, seasonal, and period of record). The 
MPE program selects the best bias correction value among the time intervals that 
have a minimum number of gage-radar pairs. The threshold value is configurable, 
though a minimum value of 10 is the default.  

• A mosaic of local bias-adjusted radar precipitation (LMOSAIC). The radar 
precipitation mosaic (RMOSIAC) is adjusted using a local bias correction (Seo and 
Breidenbach, 2002). A radius of influence (e.g., 40-km) is used to select gage-radar 
pairs for each grid cell. Similar to the mean field bias correction, the local bias 
adjustments are computed for multiple time intervals (i.e., sub-hourly, hourly, daily, 
weekly, monthly, seasonal, and period of record). The MPE program selects the bias 
correction value using the shortest time interval that has a minimum number of gage-
radar pairs. The threshold value is configurable, though a minimum value of 10 is the 
default. The local bias adjustment factors grid can be viewed in MPE. The resulting 
grid of local bias values is applied to the raw radar mosaic to produce the local bias 
corrected radar mosaic.  

• A gridded gage-only precipitation field (GMOSAIC). A precipitation grid based on 
point observations is generated using the Single Optimal Estimator approach (SOE; 
Seo, 1998a; Fulton, 2005b). A radius of influence parameter is used (e.g., 60 km) to 
estimate the precipitation value for a grid cell; if no stations are located within 60 km 
of the grid cell, it is assigned a missing value. This also means that isolated gages can 
produce “bull’s-eyes” in the final grid. If the grid cell is within 60 km of multiple 
gages, the grid cell value is determined by weighting the gage values based on their 
distance from the cell and making a climatological adjustment by comparison of the 
grid cell climatology to the station climatologies. The default climatology datasets 
originate from the PRISM system, although climatological data from other sources 
may be used instead (NWS, 2008).  
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• Gridded gage-radar analyses (MMOSAIC, MLMOSAIC). The default gage-radar 
precipitation grid (MMOSAIC) is generated by linearly weighting the mean field 
bias-adjusted radar mosaic (BMOSAIC) and station observations and then making a 
climatological adjustment (Seo, 1998b). For a grid cell, the final precipitation 
estimate is a function of the BMOSAIC value at the grid cell and observations at 
nearby stations that are weighted as a function of distance from the cell. If the grid 
cell contains a station, it is assigned its observation value; if the grid cell is near 
several stations, their values are heavily weighted compared to the radar precipitation 
value; if the cell is far from stations, the radar precipitation value is heavily weighted. 
If a grid cell has no radar coverage or nearby stations, the estimated precipitation 
value is filled using climatological differences based on the PRISM dataset. The 
MMOSAIC layer is the default layer for the best precipitation estimate unless the user 
changes the settings in the MPE program. 

A gage-radar analysis can also be performed using the local bias-adjusted radar 
precipitation grid (LMOSAIC) rather than the mean field bias-adjusted radar mosaic 
(BMOSAIC). In this case, the multi-sensor precipitation estimate is referred to as the 
local-bias adjusted multi-sensor mosaic (MLMOSAIC).  

 
Satellite precipitation values can be used to generate gridded precipitation estimates using 

the same options described above for radar precipitation. The satellite products are intended 
primarily to provide precipitation estimates in areas that lack radar and station coverage.  

The user interface developed for the MPE program permits interactive quality control for 
the station observations and the precipitation grids. For example, once the RFC has selected a 
precipitation layer as the best estimate of precipitation, the layer can be altered using multiple 
techniques such as substituting precipitation values from other layers for a polygon specified by 
the user.  

Some of the MPE features described above are designed for real-time use. For example 
there is no fully-automated QC of gage or radar input within the package.  However, a more 
flexible, offline version of MPE is under development within OHD, which can ingest other 
inputs. 

Some of the limitations in the MPE program relate to the radar precipitation processing. 
Removing ground clutter from the DPA products can be time-consuming (SERFC, personal 
communication, December 14, 2011). Neither the NEXRAD precipitation processing system nor 
the MPE program include some of the quality control processes for the radar data that are 
included in the NMQ/Q2 system, such as the corrections based on vertical profiles of reflectivity. 

Ongoing improvements to the MPE system are focused on the data quality control 
procedures, including developing additional automated procedures, applying multi-sensor 
techniques, and incorporating lightning and NWP model outputs into the quality control 
procedures.  
 
10.7 CPC 

 
Researchers at the CPC are developing methods that may have relevance for the AOR in 

the following areas (CPC, personal communication, December 21, 2011): 
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• Improving satellite precipitation estimation through development work on the 
IMERG algorithm. 

• Developing historical and real-time precipitation grids on a 1-hr time step for the 
CONUS using gage observations. 

• Developing global historical and real-time temperature grids on a 1-day time step 
using gage observations. 

• Merging satellite estimates and NWP model outputs. 
• Merging satellite estimates, NWP model outputs, gage observations, and radar 

precipitation into a single multi-sensor estimate.  
 
The hourly gage-only precipitation analysis under development will be constructed by 

first interpolating hourly station data to the HRAP grid using optimal interpolation, and then 
adjusting the hourly analysis to match a daily gage analysis (Xie et al., 2007). The dataset will 
initially cover the period 1995-present, with plans to extend the analysis back to 1948. The CPC 
plans to have a prototype of this analysis completed by the end of 2012, and is currently working 
to finalize parameters associated with the interpolation algorithm. 

The pole-to-pole CMORPH project is focused on merging the KF-CMORPH with NWP 
model outputs on a global basis. The CPC has investigated using the CFSR, MERRA, and ERA-
Interim reanalysis datasets for this purpose, and will likely select the CFSR due to the finer 
spatial and temporal resolutions of this product. The initial framework for this merging process 
has been developed; ongoing work is focused on developing appropriate bias adjustments and 
uncertainty estimation techniques. 

An optimal interpolation-based algorithm forms the basis of an ongoing project to 
develop a multi-sensor, merged hourly precipitation analysis (Xie and Xiong, 2011). The product 
will incorporate precipitation data from stations, radars, satellites, and NWP models using the 
HRAP grid over the CONUS for the period 1995-present, and is anticipated to be completed in 
2-3 years. 

The CPC produces daily grids of maximum temperature and minimum temperature on a 
0.5° grid mesh for the CONUS. The real-time analysis uses point observations from the RFCs, 
HADS, and the Climate Anomaly Database (CPC, 2012b). If observations are available at fewer 
than 350 stations, the temperature analysis is not performed for the day. The point observations 
are interpolated to a 0.5° grid mesh using a modified Cressman technique. In 2012, the CPC 
intends to produce a global temperature analysis with a 0.5° grid mesh and a daily time step for 
the period 1979-present (CPC, personal communication, February 2012).   

 
10.8 NLDAS 

 
The NLDAS developed by NASA and NCEP is intended to “construct quality-controlled, 

and spatially and temporally consistent, land-surface model datasets from the best available 
observations and model output to support modeling activities (NASA, 2011).” The NLDAS 
develops forcings datasets to input into multiple land surface models that simulate surface fluxes, 
soil moisture, and snow cover. The NLDAS has automated quality control, gridding, and 
downscaling procedures that may be relevant for the AOR development.  

The forcing inputs to NLDAS, including precipitation and temperature, are generated for 
a 1-hr temporal interval and a 1/8° grid mesh. The forcing datasets have a spatial extent that 
covers central North America (NASA, 2011a). The forcing inputs (except for precipitation) are 
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derived from the NCEP NARR reanalysis (Cosgrove et al., 2003). The 32-km, 3-hr fields from 
NARR are interpolated to a 1/8° grid and are temporally disaggregated to a 1-hr temporal 
interval. The surface pressure, longwave radiation, air temperature, and specific humidity fields 
are adjusted vertically to account for terrain differences between the NARR and the NLDAS. 
The vertical adjustment applies a lapse rate of 6.5 K/km for air temperature.  

For the precipitation input to NLDAS-2, the CPC daily precipitation product (which 
includes an adjustment based on the PRISM climatological grids) is used as the starting point. 
The gage-only daily precipitation analyses are processed to fill missing values. The daily 
estimates are temporally disaggregated using the NCEP Stage 2 radar product, CMORPH 
satellite estimates, the CPC hourly precipitation dataset, or the NARR precipitation fields (in that 
order) depending on data availability for specific periods of time.  

Since daily gage and hourly precipitation data are sparse over Canada, the NARR 
precipitation field was used over Canada within the NLDAS domain. For a 1° swath along the 
U.S.-Canada border, the NLDAS precipitation forcing value is a weighted combination of the 
CPC-derived and the NARR precipitation values. 

 

11  Technical Considerations 
 
This section discusses the temporal and regional influences on data availability and 

quality that will affect the development of a consistent, long-term AOR. 
 

11.1 Temporal Considerations 
 
The AOR is intended to be developed for the period 1979-2010, with eventual extension 

back to 1948. Within this historical period, there are several notable dates that affect the amount 
and quality of the available data: 

 
• 1948: Digital records for the NCDC COOP network become available, representing a 

significant increase in spatial representation. The NCEP R1 reanalysis also begins in 
1948, providing coarse-resolution information on atmospheric conditions. 

• 1978: The major reanalysis products (e.g., CFSR, NARR, and ERA-Interim) become 
available, providing higher quality, higher resolution information on atmospheric 
conditions. These reanalyses use NWP models and data assimilation techniques that 
are consistent over the reanalysis period, although the assimilation inputs may have 
varied over the period. 

• 1979: The NRCS SNOTEL network becomes available, representing a major advance 
in monitoring at high elevations. Western RFCs have experienced difficulty 
estimating MAP and MAT values at high elevations prior to the introduction of the 
SNOTEL network (CBRFC, personal communication, February 19, 2012). 

• 1990s: The number of automated weather stations rapidly increases, representing a 
significant improvement in weather characterization on a sub-daily timescale.  

• 1996: The NCEP NEXRAD Stage 2 hourly radar archive begins, representing a 
significant improvement in the spatial and temporal characterization of precipitation. 

• 1998: The TRMM satellite network was launched, providing significant 
advancements in satellite-based precipitation estimation. 
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• Mid 2000s: Several mesonets and citizen networks begin operation, increasing the 
spatial density of point observations. 

 
Based on these dates, the quality of the AOR is expected to vary among three major 

periods due to differing amounts of historical data (Table 12).  
 

Table 12. Historical Data Availability 
 
Period Available data 
1948-1977 • Daily station data 

• Limited hourly station data 
• R1 reanalysis 

1978-1995 • Daily station data 
• Limited hourly station data 
• SNOTEL high-elevation station data 
• CFSR, NARR, and ERA-Interim 

reanalyses 
1996-2010 • Daily station data 

• Expanded hourly station data 
• SNOTEL high-elevation station data 
• CFSR, NARR, and ERA-Interim 

reanalyses 
• Radar data 
• Satellite data 

 
One of the goals of the AOR is to produce a dataset that has consistent characteristics 

over the period of record. The consistency of the AOR can be characterized using multiple 
metrics: 

 
• Long-term climatology. Any shift in long-term averages should reflect natural or 

anthropogenic changes in climate, and not changes caused by the data networks, datasets, 
or methodologies being applied to the AOR. 

• Daily variability. The variability captured in the AOR should be consistent on a daily 
basis across the period of record.   

• Hourly distributions. The AOR should reflect realistic distributions of precipitation and 
temperature on an hourly time step. This criterion may necessitate the use of stochastic 
methods for the early period when limited hourly data are available to adequately 
characterize weather characteristics at less than a daily time step. The AOR should also 
realistically capture extreme weather events across the period of record. 
 
Temporal consistency for the period 1948-2010 is a significant, if not impossible, 

challenge given the major differences in data availability. Multiple approaches are available to 
help maintain consistency across the period: 

  
• To correct for changes in long-term climatological averages: 
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• After developing the AOR for the period 1996-2010 using all available data 
sources, a second analysis could be completed that uses only data sources that are 
available for the full period of 1979-2010. The differences in characteristics 
between the datasets could be applied to adjust the characteristics of the AOR for 
the period 1979-1996.  

• The AOR could be aggregated to a monthly time step for comparison and 
correction against the long-term climatological datasets developed using the 
PRISM system.  

• To maintain consistent spatial and temporal variability throughout the period of 
record: 
• A reanalysis from a high-resolution regional weather model (e.g., WRF) could be 

used for spatial and temporal disaggregation during the early period to 
compensate for a lack of radar and satellite estimates. 

• A K-nn resampling approach could be applied to temporally disaggregate daily 
precipitation or temperature grids to an hourly time step for the period 1979-1996, 
where the AOR developed for the 1996-2010 period is used as the historical 
development sample.  

 
Following development of the AOR, the limitations of the dataset should be clearly 

described for users, particularly related to the differing data sources and approaches applied for 
each historical period. 

 
11.2 Regional Considerations 

 
Given the regional differences in climate, hydrology, forecast objectives, data sources, 

and data quality, the AOR development process will have to address regional requirements and 
issues. 

  
11.2.1 Alaska 

 
River forecasts for Alaska are produced by the Alaska-Pacific River Forecast Center 

(APRFC). The forecasts are mostly concerned with flooding from multiple sources that varies in 
duration, although APRFC personnel run ESP and have a small water supply component to 
support users, for example related to hydropower (APRFC, personal communication, December 
8, 2011). In addition, low flows are a concern due to barge operations. Alaska experiences 
significant flow contributions from glacier melt, particularly in the month of August. Therefore, 
the APRFC hydrologic models include the glacier model and require MAP and MAT estimates 
for all glacier areas. 

APRFC has historically relied upon seasonal predetermined station weights for both 
calibration and forecast operations. In 2011, APRFC began computing MAPs using the 
DailyQC/Mountain Mapper program for operations and for comparison against the MAPs 
computed using predetermined station weights. Station-based MAP estimates are used 
everywhere except a small area around the city of Fairbanks that employs MAP estimates based 
on the mean field bias-corrected radar product from the MPE program.  
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The major issues in Alaska that will affect the AOR development are data scarcity and 
problems accurately measuring frozen precipitation. Prior to the 1970s, almost no historical 
weather data exist for Alaska. Most of the federal networks, including the NRCS SNOTEL 
network, have some stations in Alaska, but the station density is low. The largest source of 
hourly point observations is the RAWS network, which has a short period of record. The 
operational network is much smaller than the historical network used to compute calibration 
MAPs because many of the stations are located in remote regions and provide aggregated reports 
on an infrequent basis. APRFC estimates approximately 50% of the stations in the historical 
network are in the operational network. None of the satellite products cover Alaska except for 
the small portion south of 60°N. Alaska has limited radar coverage, including 7 WSR-88D radars 
in the south that are operated by the FAA (Figure 11). The radar precipitation estimates are 
adversely affected by terrain blockage and frozen precipitation. Historically, the radar 
precipitation estimates have not been archived in the NCEP Stage 4 product; the historical data 
are solely available from the NCDC archive for individual radar umbrellas (APRFC, personal 
communication, December 8, 2011). Operationally, the APRFC has been using the temperature 
field from the Real-Time Mesoscale Analysis (RTMA). For calibration MAPs, the APRFC has 
utilized the total precipitation field from NARR for remote portions of Alaska and Yukon 
Canada that otherwise have no data. The APRFC has not evaluated reanalysis products other 
than the RTMA and NARR. It is possible that the ASR-Interim product could add value to the 
AOR in this region. 
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Figure 11. FAA WSR-88D Radars in Alaska (ARH, 2011) 

 
Given the data scarcity and data quality issues, reliable gridded climate normals are 

difficult to develop. APRFC has historically relied on station-based climatology (APRFC, 
personal communication, December 8, 2011). APRFC has done some preliminary investigations 
of the long-term MAP characteristics compared to the PRISM climatology. One apparent issue 
that has been identified in the PRISM climatology grids for Alaska is that PRISM-based 
precipitation estimates appear to monotonically increase with elevation to a larger degree than 
may actually occur, and certainly to a larger degree than the MAPs indicate.  

It will be difficult to develop a high-resolution AOR on a 1-km grid mesh and 1-hr 
temporal interval. Due to a lack of data, the AOR in Alaska may be the most consistent over the 
historical 30-yr period, but also may have high uncertainty due to the sparse data network. From 
a hydrologic perspective, the APRFC would benefit from an AOR that has at a minimum a 4-km 
(HRAP) grid mesh and a 6-hr temporal interval, although there are a few flashy rivers that would 
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benefit from hourly precipitation estimates. It may be reasonable to consider developing the 
AOR with limited spatial and temporal resolutions given these constraints. 

  
11.2.2 Hawaii 

 
The watersheds in Hawaii are small and very quick-responding. As a result, no river 

forecasts are issued. The NWS Honolulu WFO solely issues flash flood guidance. The WFO 
assumes most of the forest responsibility, though the RFC is supporting the WFO in 
implementing the RDHM Threshold Frequency (TF) to enhance the flash flood program 
(APRFC, personal communication, December 8, 2011). 

In terms of data coverage, most of the federal networks include some stations in Hawaii. 
There are four WSR-88D radars located in Hawaii that are operated by the FAA. One radar is 
located on Kauai, one radar is located on Molokai, and the remaining two radars are located on 
the Big Island of Hawaii. The radars are adversely affected by terrain blockage. The radar 
precipitation estimates have not been relied upon in the past. The satellite products cover Hawaii, 
including the TRMM precipitation radar, though the temporal interval (i.e., 3 hr) and grid mesh 
(i.e., 4 km) of that product are too coarse to be useful for flash flooding purposes. 

In addition to the complexities of estimating temperature and precipitation for Hawaii in 
areas affected by coastal effects and steep topographic relief, Hawaii also experiences 
temperature inversions associated with the trade winds. 

Given the flash flood focus and a lack of deterministic and probabilistic river forecasts, a 
retrospective AOR would be used for computing the statistics required to implement the RDHM-
TF, requiring at least a 10-yr historical period. Any gridded precipitation estimates developed for 
Hawaii must have a grid mesh of at least 1 km and a temporal interval of at least 1 hr. Finer 
resolution estimates would be beneficial. 

 
11.2.3 Puerto Rico 

 
There are 13 forecast locations in Puerto Rico (i.e., 11 headwater locations and 2 local 

area locations). No deterministic river forecasts are issued by the SERFC. The SERFC computes 
real-time precipitation inputs using the MPE program. The San Juan WFO provides quantitative 
precipitation forecasts (QPF) to the SERFC (SERFC, personal communication, December 14, 
2011). In addition, the SERFC utilizes an experimental 6-hr QPF product from the 
Hydrometeorological Prediction Center (HPC) at NCEP in a qualitative capacity. The SERFC 
creates 1-hr, 3-hr, and 6-hr distributions of QPF, inputs them to SAC-SMA, UNIT-HG, and 
channel routing models, and then publishes the crest heights and times associated with each QPF 
scenario (SERFC, personal communication, December 14, 2011). The SAC-SMA model is 
applied on a 1-hr time step because the watersheds in Puerto Rico are quick-responding; the 
maximum crest travel time is approximately eight hours. Given these hydrologic characteristics, 
the forecasts are more sensitive to precipitation intensity, times of concentration, and channel 
travel times than the initial soil moisture states. 

The data coverage over Puerto Rico is reasonably good, but suffers from quality issues. 
Because of the quick hydrologic response times and the one-hour simulation time step employed 
in the SAC-SMA models, the SERFC relies upon hourly observations from stations in the HADS 
network. The quality of the observations is related to station maintenance, because the tropical 
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environment in Puerto Rico rapidly produces vegetation that interferes with the monitoring 
equipment. The FAA operates one WSR-88D radar and one TDWR radar in San Juan. Despite 
the steep terrain relief in Puerto Rico, the radars are apparently unaffected by terrain blockage. 
However, the WSR-88D radar is considered unreliable by SERFC staff. The SERFC receives 
reflectivity data from the TDWR radar, and is working to get products representing quantitative 
precipitation estimates (QPE). When no radar precipitation estimates are available, the SERFC 
transitions to precipitation estimates that are computed solely based on station observations.  

The SERFC has not evaluated satellite precipitation estimates in Puerto Rico, though they 
are available through the MPE program.  

The NSSL is working to produce the NMQ/Q2 suite of products in Puerto Rico, but the 
status of this work is unclear. The SERFC is not currently receiving NMQ/Q2 products for 
Puerto Rico. 

Climatological grids have been developed for Puerto Rico using the PRISM system. The 
SERFC has performed preliminary comparisons between the MAPs and basin-average values 
computed from the PRISM climatology datasets, but the PRISM climatology is not used in real-
time and is not used to adjust the MAPs. 

The primary technical challenge in computing high-resolution grids in Puerto Rico for the 
AOR is likely to be the steep gradients that result from the elevation changes on the island. The 
SERFC is likely to use the AOR once available to update the SAC-SMA model parameters 
(SERFC, personal communication, December 14, 2011). 

 
11.2.4 Southeast CONUS 

 
The southeast and central plains regions of the CONUS are relatively flat, receive little 

frozen precipitation, and thus have benefited greatly from radar-based precipitation estimates. In 
the southeast of the CONUS, the river forecast objectives are focused on potential flooding. For 
developing calibration MAPs, the SERFC has relied upon station observations that are processed 
into basin averages using the grid point weighting option available in the calibration MAP 
preprocessor in NWSRFS (SERFC, personal communication, December 14, 2011). Because the 
weather characteristics show lower spatial variability than occurs in other areas with significant 
topographic relief, the RFCs, including the SERFC, have not needed to adjust the calibration 
MAPs to an independent data source such as the PRISM climatology grids. Precipitation 
adjustments (via the PXADJ parameter in the SAC-SMA model) are rarely required. Because 
precipitation gradients are smaller, and climatological adjustments have not been applied, the 
RFCs may not have quantified the differences between the calibration and operational MAPs.  

For real-time precipitation estimation, the SERFC switched to the MPE program about 
three years ago. The SERFC staff typically uses the multi-sensor product, but may choose 
different layers depending upon the gage density for a given area. Sometimes the SERFC uses 
the NMQ/Q2 product to replace a polygon in the MPE multi-sensor product, particularly when 
there is too much ground clutter in the MPE product and no rainfall occurred. The SERFC 
sometimes uses the P3 and the gage-only products from MPE in winter in the mountains of NC. 
When using the radar products, the SERFC almost exclusively relies upon the mean field bias-
corrected product. Rarely is the local bias-corrected product used. Historically, the time to 
generate the local bias correction product was prohibitive; however, this restriction may no 
longer be an issue. Overall, the SERFC personnel are pleased with the radar precipitation 
estimates in their area and they rarely use gage-only data. 
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The southeast has very strong data coverage from stations and radars; the satellite and 
reanalysis products are rarely employed or required. Some of the technical issues that complicate 
the development of high-resolution temperature and precipitation grids in the southeast include 
coastal effects, terrain blocking both from the mountains and the coastlines, and accurate 
estimation of frozen precipitation. Along the coast, precipitation estimation is complicated by the 
small, quick-responding coastal watersheds and the sparse station networks. The radar products 
are affected by the sparse station coverage along the coast, as fewer stations are available under 
the radar umbrellas to compute reliable bias adjustments. Moving forward, the deployment of 
dual polarization capability on radars in the southeast will affect radar precipitation estimation 
and the consistency of real-time values with historical values. 

The most significant benefit from the AOR for areas that already utilize gridded 
precipitation estimates from remotely-sensed sources is maximizing consistency with the gridded 
inputs that will be generated in real-time at the National Water Center. In addition, the SERFC 
intends to develop the SNOW-17 model for the forecast locations in the mountains of VA, NC, 
and SC. The intent of these snow models is to take advantage of precipitation typing, and to 
avoid issuing flood forecasts when heavy precipitation occurs as snow rather than rain. The snow 
models are not required to accurately accumulate and deplete snowpacks. However, the 
implementation of these snow models indicates that the temperature grids in the AOR may be 
beneficial for more areas than have employed temperature data in the past. 

 
11.2.5 Intermountain West CONUS 

 
The intermountain west of the CONUS is defined to include the mountainous, snowmelt 

portions of the West Gulf, Missouri Basin, Arkansas-Red Basin, Colorado Basin, California 
Nevada, and the Northwest RFCs. In these areas, long-term seasonal water supply forecasts are 
an important potential application for the AOR. In addition, peak flow forecasts are very 
important in many areas. The primary difficulty in developing high-resolution climate grids is 
the steep gradients that occur over short distances in these areas of sharp elevation differences. 
Gutmann et al. (2011) state the problem very well: "For hydrologic simulations, the inability of a 
10-km forcing dataset to adequately resolve important topographic variations in the Colorado 
Rockies presents serious limitations for snowpack modeling." Fowler et al. (2007) cited a study 
that found that a grid mesh of 0.125° is required for hydrologic simulations of monthly flow in 
mountainous catchments. 

The major issue in developing high-resolution grids for the AOR is orographic effects by 
which moisture is forced by the topography to rise, generally resulting in increasing precipitation 
with elevation and more precipitation on the windward side of topographic features and less 
precipitation on the leeward side. However, orographic effects depend on elevation, topographic 
features, and the moisture flux direction (Guan et al., 2005). Due to complex climatic processes 
such as channeling and convergence, it does not always hold that precipitation increases with 
elevation (Guan et al., 2005; Hughes et al., 2009). 

The primary source for both historical and real-time precipitation estimates has been 
station observations, particularly valuable high-elevation observations recorded at the NRCS 
SNOTEL stations. In some cases, western RFCs (e.g., CBRFC, WGRFC) have limited the period 
of historical forcings due to poor estimation of MAPs and MATs at high elevations prior to the 
introduction of the SNOTEL network (CBRFC, personal communication, February 19, 2012). 
Radar precipitation estimates have not been widely used due to issues with sparse coverage, 
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difficulties in accurately estimating frozen precipitation, and a tendency for the radar beams to 
overshoot precipitation (CNRFC, personal communication, February 27, 2012). Because it is 
more difficult to compute precipitation and temperature characteristics in complex terrain, the 
western RFCs typically have done more work comparing the long-term characteristics of the 
calibration MAPs and MATs to climate normals, typically derived from the PRISM system, and 
also tying the real-time estimates to the same climatology, ensuring higher consistency between 
the historical and real-time estimates.  

The largest potential for benefit from the AOR for the intermountain west is development 
of gridded temperature and precipitation estimates, which have not been in widespread use to 
date. 

 
11.2.6 Canada 

 
The Northwest River Forecast Center (NWRFC) and APRFC have developed hydrologic 

models for the portions of Canada that flow into the U.S. The primary forecast objective for the 
NWRFC is water supply, while the APRFC is more concerned with the potential for flooding. 
For calibration MAPs, the APRFC has utilized the total precipitation field from the NARR 
reanalysis dataset for remote portions of Alaska and Yukon Canada that otherwise have no data 
(APRFC, personal communication, December 8, 2011). 

Environment Canada maintains a network of surface stations as well as a network of 
weather radars. The historical station data can be obtained through an on-line tool, or can be 
ordered through the climate service. Most of the station data have undergone some quality 
control. The historical precipitation values may only be available on a daily time step, whereas 
the temperature data are available on hourly and daily time steps. The weather radar network 
includes 31 radar sites that cover 98% of Canada's populated areas (Environment Canada, 2011). 
The radar precipitation data appear to be available for 10-min increments back to 2007. At least 
some of the station and radar data have been made available through the Advanced Weather 
Interactive Processing System (AWIPS). Many of the satellite products cover most of Canada 
(up to a latitude of 60°N), but may not be high quality due to inaccuracies in determining frozen 
precipitation and location errors due to parallax effects.  

The technical issues in developing the AOR over Canada are likely to be similar to those 
enumerated for Alaska, including data scarcity, poor data quality, difficulty estimating frozen 
precipitation, and difficulty estimating weather in areas of complex terrain. In addition, it may be 
more difficult to obtain the required historical data. The APRFC and NWRFC may have some of 
the historical data archived. 

 
11.2.7 Mexico 

 
The WGRFC is concerned with the potential for flooding on the Rio Conchos and the Rio 

Bravo (i.e., Rio Grande), which impacts downstream forecast locations on the Rio Grande in the 
U.S. in Texas.  

The CONAGUA agency in Mexico maintains multiple station databases, including the 
CLICOM Daily Surface Data Set, the Hydrologic Information System (SIH), and automated 
meteorological stations. The CLICOM Daily Surface Data Set provides a long-term historical 
dataset of point precipitation and temperature values as far back as 1902. There are about 3,300 

http://www.weatheroffice.gc.ca/radar/about-radar_e.html
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stations, of which approximately 900 report daily. However, weekend reporting is poor when 
observers are away from their posts, and missing data are often reported as zero values. The SIH 
is an operational database that extends back to 1995. It is used by CONAGUA for the collection 
of precipitation, temperature, and streamflow data at instantaneous and daily stations. The 
automated meteorological station network includes 136 automated meteorological stations and 
44 automated synoptic meteorological stations. The archived data extend back to 1999 and 
include 10-min precipitation and temperature values. The Mexico Agriculture Automated 
Weather Station Data network maintained by AGROSON provides a full suite of meteorological 
variables in real-time; historical data begin in 2004. The NCAR has a historical dataset from the 
North American Monsoon Experiment (NAME) for the period 2002-2005. CONAGUA also 
maintains a radar network that includes 13 sites, but only small portions of the Rio Conchos and 
Rio Bravo watersheds appear to be covered (Figure 12). 
 

 
 
Figure 12. Mexico’s Radar Network (CONAGUA, 2011) 

 
The biggest challenges in developing a high-resolution AOR over Mexico will include a 

scarcity of data sources and availability of historical weather data. The WGRFC may have some 
of these data archived, but data delivery has been intermittent in the past. The historical data can 
be obtained from various sources, namely by contacting CONAGUA, from the NCAR Earth 
Observing Laboratory, or from websites. 

Mexico has developed climatological grids using a process similar to the PRISM system 
(i.e., the Atlas Climatico Digital de Mexico). Riverside has successfully used the climatological 
datasets to develop calibration time series for the Rio Sabinal. 
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12  RFC Considerations 
 
The AOR is intended for use by the RFCs in their river forecast operations. As such, 

there are implications for the hydrologic modeling that influence a suitable development 
approach for the AOR. For example, the AOR needs to be consistent over the historical period to 
support both model calibration and the Hydrologic Ensemble Forecast System (HEFS). 
Ensemble streamflow prediction (ESP) is one component of HEFS. To the extent that the AOR 
differs from the legacy MAP and MAT forcings used to calibrate the existing models, the model 
inputs or parameters may need to be adjusted during a re-calibration process. Additionally, the 
AOR needs to be consistent with the forcings that will be generated in real-time at the National 
Water Center to avoid introducing biases into the forecasting process. 

 
12.1 Consistency over the Historical Period 

 
The AOR dataset will be developed to be consistent with accepted reference observations 

over the entire historical period to the extent possible. However, because the available data 
sources vary over the historical period, the quality of the AOR will also vary over time if all data 
sources are used. Any change in quality over the historical period affects the utility of the AOR 
for hydrologic model calibration and HEFS. 

The minimum period that is required for model calibration varies by location and is a 
function of the climate variability for that location. The calibration period that is selected should 
include average, wet, and dry years. In regions where the lumped hydrologic models perform 
satisfactorily, 10 years is typically sufficient to adequately capture the variability in conditions 
that affects parameter estimation (Anderson, 2002). In semi-arid regions with infrequent events, 
a 10-yr period may not be adequate for model calibration. Beyond 25 years of record, there is 
little incremental benefit for improving model parameter estimation. Additionally, the longer the 
period, the more likely that the characteristics of the watershed being modeled have changed 
(e.g., urbanization, changes in consumptive use), which can adversely affect the calibration 
results.  

For HEFS, an extended historical record is desirable to capture the range of possible 
future weather conditions, and additional years are needed to estimate the extremes of the 
conditional forecast distribution. The RFCs have typically used a minimum of 30 years of 
historical record for this purpose, although some RFCs are using 60 or more years of historical 
record for producing probabilistic forecasts. Although the AOR may have significant uncertainty 
in the period 1979-1996 in terms of representing the actual temporal and spatial distributions at 
an hourly time step, the dataset should have less uncertainty at six hour and daily time steps, 
which are temporal resolutions of more importance for ensemble prediction. 

It is possible that a shorter period within the AOR may be recommended to the RFCs for 
determining model parameters (e.g., 1996-2010), while the full period is suitable for HEFS. This 
recommendation may vary by region, depending upon the changes in available data inputs and 
the hydrologic characteristics of the region. Alternatively, the RFCs have indicated a desire to 
have access to multiple datasets: one that represents the “best available” dataset and employs all 
available input data sources, and a second “consistent” dataset that employs only the data inputs 
that are available for the full historical period (CBRFC, personal communication, February 22, 
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2012; CNRFC, personal communication, February 27, 2012; NWRFC, personal communication, 
February 27, 2012). 

 
12.2 Consistency with Legacy Forcings 

 
The AOR has the potential to differ from the legacy forcings developed at the RFCs in 

terms of inputs, methods, and spatial and temporal intervals. As a result, the RFCs will need to 
evaluate and understand the differences between the AOR and the forcing datasets that were used 
for model calibration, and the impact of using the AOR on the quality of hydrologic simulations 
in their service areas. Depending on the results of this evaluation, the RFCs may need to make 
adjustments to the model inputs or parameters. 

In terms of input data sources, much of the hydrologic model calibration performed to 
date at the RFCs has been done with gage-based MAP and MAT time series. Some model 
calibration has been done using gage-radar estimates. Satellite-based precipitation inputs and 
NWP model outputs have been used on a limited basis in data sparse areas (such as Northern 
Mexico and Alaska) where alternatives are very limited. Because the AOR may incorporate 
different data sources than have been used historically, it can be expected to have both random 
and systematic biases compared to legacy forcings used to calibrate the hydrologic models.  

Additionally, many of the hydrologic models run at the RFCs utilize a 6-hr simulation 
time step. The RFCs could choose to aggregate the AOR datasets to a 6-hr time series for use 
with their existing models. Alternatively, the RFCs could choose to move to a 1-hr simulation 
time step. Because the parameter values are dependent on the defined spatial and temporal 
scales, a change from a 6-hr time step to a 1-hr time step would necessitate adjustments to the 
model parameters (Smith et al., 1996).  

The NWS OHD could provide several features with the AOR datasets to provide the 
RFCs with maximum flexibility and to minimize the potential disruption to operations. Firstly, 
the RFCs could be provided with a tool to adjust the AOR datasets to an existing climatology 
(CBRFC, personal communication, February 22, 2012). Such a tool would allow the RFCs to 
utilize information from their existing calibrations and to transition to using the AOR datasets 
even if re-calibration of existing models is not immediately feasible. Secondly, the AOR datasets 
could be provided using multiple time intervals, for example ranging from one hr to one day, to 
support different applications (CNRFC, personal communication, February 27, 2012; NWRFC, 
personal communication, February 27, 2012).  

The level of effort to conduct a comprehensive evaluation of the AOR will vary by RFC, 
but could require significant resources. Based on a limited number of discussions with RFC 
personnel, this is a necessary and worthwhile process to address inconsistencies between the 
AOR and legacy datasets, and to ensure consistency between the calibration and real-time 
forcings. Ideally, a mechanism should be established to allow the RFCs to submit feedback to the 
NWS OHD, particularly during the initial AOR development and evaluation process. The RFCs 
could identify deficiencies and suggest changes to inform both the AOR development process 
and the real-time forcing process.  
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12.3 Summary of RFC Requirements 
 
Riverside conducted interviews with the APRFC, SERFC, CBRFC, CNRFC, and 

NWRFC to solicit input on RFC requirements for the AOR. The following notable points were 
identified through those discussions: 

 
• The AOR datasets must be consistent with the real-time forcings and forecast grids provided 

to the RFCs. Consistency includes climatological characteristics, spatial resolution, and 
temporal resolution. For example, the forecast grids from the NDFD are currently provided 
on a 2.5-5.0 km grid mesh; the forecast grids should be provided on the same grid mesh 
intended for the AOR. 

• The RFCs expressed interest in having access to multiple versions of the AOR: a “best” 
dataset that uses all available data, as well as a “consistent” version that uses limited data.  

• The RFCs expressed interest in having access to the AOR datasets at multiple temporal 
intervals that range from one hr to one day. Some locations would benefit from an even finer 
temporal interval, such as 15 minutes, but sub-hourly resolution is not practical for the initial 
AOR development. Regional differences and intended usage affect the appropriate time 
interval.  

• The RFCs would benefit from having historical gridded datasets that expand beyond 
temperature and precipitation to include freezing level, wind speed, relative humidity, etc.  

• The RFCs exhibit regional preferences in using gage and radar data. The framework selected 
to develop the AOR should avoid favoring one data type. This requirement is consistent with 
an uncertainty-based data fusion framework. 

• To strengthen the likelihood that the AOR will be adopted within the RFCs (superceding 
their own forcing datasets), it will be essential to survey the RFCs regarding quality control 
procedures and data networks that are currently incorporated into their forcing analyses, and 
to explore ways that these can be incorporated into the AOR development (CBRFC, personal 
communication, March 7, 2012). 

• The RFCs anticipate that the AOR will evolve as data sources and quality control techniques 
improve. The AOR should be regenerated as new information becomes available and should 
be extended over time to keep the datasets current.  

• The RFCs would benefit from tools that enhance the flexibility of the datasets to meet RFC 
needs, for example a tool that would allow the RFCs to adjust the AOR to a desired 
climatology. 

• Overall, the RFC personnel are enthusiastic about the potential benefit of the AOR datasets. 
The RFC personnel who were interviewed expressed a willingness to work with the OHD to 
provide regional expertise, to provide available data, to evaluate the AOR, and to evaluate 
the need to re-calibrate the existing models.  

 

13  Summary and AOR Recommendations 
 
The NWS OHD intends to prepare a high-resolution, long-term historical archive of 

gridded precipitation and temperature. This AOR will be developed for a ≤1-km grid mesh and a 
1-hr temporal interval for the period 1979-2010, with eventual extension back to 1948. The AOR 
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will include the CONUS, Alaska, Hawaii, Puerto Rico, and the portions of Canada and Mexico 
that drain to the U.S.  

The primary purpose of the AOR is to support the development and calibration of lumped 
and distributed hydrologic models for river forecast operations at the RFCs using CHPS. The 
AOR is also intended to support meteorological and hydrologic applications for other federal 
agencies under the IWRSS initiative. To support these intended uses, the AOR must maintain 
statistical stability over the period of record, as represented by the long-term characteristics, 
daily spatial variability, and hourly temporal variability. The AOR needs to be consistent with 
the real-time forcings process that is being established at the National Water Center to provide 
temperature and precipitation grids to the RFCs in real-time. 

 
13.1 Data Sources 

 
Riverside developed an inventory of data sources that provide historical temperature and 

precipitation data in the CONUS, Alaska, Hawaii, Puerto Rico, Mexico, and Canada (Appendix 
A). The data inventory includes gage, radar, satellite, and reanalysis products. Historical 
precipitation data are available from all of these sources, while historical temperature data are 
limited to gage, satellite, and reanalysis products. Supplemental data sources such as lightning 
observations and additional NWP model outputs can provide useful information on storm 
direction, the presence of convective activity, and other factors that influence the precipitation 
and temperature distributions. 

Historical gage observations are available for the full period of record intended for the 
AOR. However, the amount and quality of available data changes significantly with the 
introduction of digital records (1948), the introduction of high-elevation stations (1978), and 
improved spatial and temporal characterization due to the introduction of automated stations and 
citizen-observed weather stations (1990s-present). Station observations require a significant 
amount of quality control to identify and remove data errors and to ensure temporal consistency 
throughout the historical record. For use in the AOR, daily observations will need to be 
temporally disaggregated, and point observations will need to be transformed to gridded values.  

Historical radar precipitation products became available in the mid 1990s. The RFCs 
have traditionally relied on precipitation estimates from WSR-88D radars in the NEXRAD 
network, although some use has been made of precipitation estimates from the TDWR radars 
operated by the FAA. Most of the historical radar products were produced using the HRAP grid 
coordinate system, which has a nominal grid mesh of 4 km. Therefore, the radar products will 
need to be spatially downscaled, or reanalyzed, to the target resolution intended for the AOR. 
Radar processing algorithms, including quality control, precipitation estimation, and bias 
corrections, have improved over time. Therefore, the historical record of radar precipitation 
needs to be reprocessed to apply common procedures, a task that the NWS OHD has already 
begun. Radar precipitation estimates have not been used widely in the intermountain west of the 
CONUS or in Alaska due to terrain blocking and limitations in accurately determining frozen 
precipitation. The challenges in assessing frozen precipitation rates using radar data remains an 
issue for the AOR.  As noted above, a high-resolution reprocessed dataset for the period 2002-
2010 using the NMQ algorithm might soon be available. OHD staff are also working to generate 
a quality-controlled and bias-adjusted radar dataset for the period 1996-2001. 

Historical satellite data became available in the late 1990s. The precipitation estimates 
have been developed using multiple sensor types, including visible, infrared, passive microwave, 
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and active microwave (precipitation radar) sensors. Like radar precipitation, algorithms for 
quality controlling satellite data and estimating precipitation have improved substantially 
throughout the historical record. The satellite products typically extend to 50-60°N, meaning that 
coverage is limited over Alaska and Canada. However, satellite estimates would have limited 
utility in these areas as they tend to be inaccurate for frozen precipitation. Although satellite 
precipitation algorithms are improving, the quality of the precipitation estimates remains 
relatively low compared to other sources due to the indirect nature of the precipitation estimates 
and other issues. Historically, precipitation estimates from satellite data have been used by the 
RFCs only in areas with very sparse station networks. Of the available historical satellite 
products, the CMORPH dataset appears to have the highest potential for the AOR (including the 
KF-CMORPH dataset that will soon be reprocessed). The 30-min temporal interval makes the 
CMORPH dataset useful for temporal disaggregation of other data sources. However, the 
CMORPH data are available on an 8-km grid that will require spatial downscaling to the target 
grid mesh intended for the AOR. The TRMM precipitation radar dataset may also be beneficial. 

NWP models have been used to develop reanalysis datasets. Most of the reanalysis 
datasets exist for the period 1979-2010, although two datasets begin prior to 1979. Thus, the 
reanalysis datasets are the only data sources besides point observations that exist in the early 
period intended for the AOR. The reanalysis datasets have been produced on relatively coarse 
grid meshes ranging from 10-124 km, indicating they will require spatial downscaling to the 
AOR target mesh. Temporal disaggregation may or may not be required for these datasets, as 
they have been produced using time steps ranging from 1-3 hrs. The challenges in applying the 
reanalysis datasets to the AOR include developing suitable bias correction techniques and 
applying appropriate spatial downscaling methods so that physiographic features influencing 
local weather patterns are captured in the downscaled product. The CFSR reanalysis dataset or 
the NARR reanalysis dataset appear to have the most value for the AOR given the spatial and 
temporal resolutions, recent advances in modeling and data assimilation techniques, and an 
assessment of the dataset performance. In addition, the ASR-Interim dataset may have value for 
developing the AOR in Alaska.  

Existing gridded precipitation and temperature datasets may be useful for the AOR 
development in terms of transferring existing methodologies, using the gridded products to 
establish the long-term characteristics of the AOR, or using the gridded products as validation 
datasets. These datasets include products that have been developed using the PRISM system, the 
Hamlet and Lettenmaier dataset developed at the University of Washington, and the operational 
products produced by the NCEP, among others. 

 
13.2 Data Quality Control 

 
The data sources used to produce the AOR must undergo quality control procedures to 

remove erroneous data and to correct for temporal inconsistencies that can have a significant 
adverse impact on hydrologic simulations. While manual review of data observations is quite 
effective, it is preferable to implement an automated data quality control system given the 
intended spatial and temporal extents of the AOR. 

Automated processes can be applied to identify metadata errors that may cause weather 
characteristics for a location to be misrepresented, to assess the amount of missing data for a 
given data source, and to remove data values that are questionable under specific circumstances 
(e.g., frozen precipitation). Existing systems include automated data quality checks that can be 
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categorized as range checks, climatological range checks, internal consistency checks, spatial 
consistency checks, multi-sensor checks, checks between predicted and observed values, and 
temporal consistency checks. 

Automated techniques in all of these categories should be adapted for the AOR. 
However, the quality control processes for the AOR need to be adaptive to avoid applying 
inappropriate techniques (e.g., spatial consistency checks during convective activity) and to 
avoid removing data values in data sparse regions that cannot be reliably validated. 

 
13.3 AOR Framework 

 
Information from each input data source needs to be merged to produce a combined 

output for the AOR. In data fusion, a model is used to merge multiple data sources to produce an 
improved estimate. This approach has been utilized in a wide range of applications. Figure 13 
presents a generalized framework for the development of a data fusion system:  

 
• In the identification step, the input data sources are characterized (e.g., long-term 

characteristics, biases, uncertainties) and appropriate methods to combine the data are 
defined. The identification step can incorporate information from data mining 
techniques (e.g., ANNs, principal components analysis [PCA]).  

• The estimation step applies the methods to merge the input data sources. The data 
fusion process can be applied to data from individual sources or datasets that have been 
processed.  

• Once the data fusion process is complete, a validation step employs benchmarking 
datasets and a performance assessment to identify weaknesses in the processing.  

• The administration feedback loop incorporates changes into the identification and 
estimation steps to address the weaknesses. 

 

 
 
Figure 13. Conceptual framework for the development of a data fusion system (reproduced from 
Esteban et al., 2005) 
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Figure 14 presents one possible data fusion framework that could be applied to the AOR. 
 

 
 
Figure 14. Potential data fusion framework for the AOR 
 

• In Step 1, a background climatology dataset is selected, recognizing that the 
climatology dataset may be adjusted in an iterative fashion upon evaluating the 
AOR.  

• In Step 2, the input data sources undergo automated data quality control.  
• In Steps 3-5, all data sources are processed to a daily time step and the target grid mesh 

to generate a merged daily product.  
o In Step 3, the daily point observations are transformed to a gridded field using 

gridding methods.  
o In Step 4, all gridded datasets are downscaled to the target grid mesh using spatial 

downscaling methods.  
o In Step 5, the gridded gage fields and the downscaled grids are merged using 

uncertainty characteristics in a data fusion process.  
• In Steps 6-12, temporal disaggregation weights are developed and applied to produce 

grids on the target time interval using temporal downscaling methods.  
o In Step 6, grid sets available on an hourly time step are downscaled to the target 

grid mesh using spatial downscaling methods. 
o In Step 7, the hourly point observations are transformed to a gridded field using 

gridding methods.  
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o In Step 8, the hourly grids are used to compute hourly temporal disaggregation 
weights.  

o In Step 9, the gridded disaggregation weights from each source are merged using 
uncertainty characteristics in a data fusion process.  

o In Step 10, a stochastic process is used to produce hourly disaggregation weights 
that maintain a defined set of statistical characteristics that are determined 
based on the specific approach applied.  

o In Step 11, the disaggregation fractions determined in steps 9 and 10 are merged 
using a data fusion process. The disaggregation fractions computed using 
observations are applied in regions that have dense hourly gage networks or 
radar coverage, while the disaggregation fractions computed using a 
stochastic process are applied in regions with high uncertainties in the 
observed hourly distributions.  

o In Step 12, the hourly disaggregation fractions are applied to the daily analysis to 
produce the final hourly gridded field.  

• In Step 13, the final hourly datasets undergo an evaluation process, which may include 
comparisons (and adjustments) based on long-term climatological datasets, cross 
validation, hydrologic simulation quality, and expert input. If the evaluation process 
reveals weaknesses in the development approach, the process may be refined. 

 
The framework in Figure 14 shows how the data quality control processes, gridding 

methods, spatial downscaling methods, temporal disaggregation methods, data fusion techniques, 
and evaluation methods fit together to produce the AOR. However, the framework in Figure 14 
does not represent the only solution. For example, a separate daily gage-only analysis may not be 
required; gage data could be directly fused with the gridded data sources.  

 
13.3.1 Data Assimilation/Data Fusion 

 
Data assimilation and data fusion methods are used to merge multiple data sources into a 

single product. Data assimilation methods incorporate observations into a NWP model to 
improve the model outputs. Precipitation observations cannot currently be assimilated directly 
into NWP models; precipitation observations are indirectly assimilated by adjusting other model 
states, such as the latent heating of the atmosphere, in an attempt to force the model to produce 
precipitation at the location and time represented by the observation.  

Data fusion uses a statistical model to combine multiple data inputs into a merged 
product. Data fusion techniques can be categorized as multi-sensor bias adjustments, simple data 
fusion techniques, optimization-based techniques, and uncertainty-based techniques, recognizing 
that there is overlap between the categories.  

Quantifying uncertainties for application to data fusion is an active area of research and 
development. Riverside recommends that an uncertainty-based data fusion approach be 
developed for the AOR. Although the uncertainty information used to perform data fusion may 
be rudimentary in the early development stages, simplifying assumptions can be made that yield 
improved results relative to the individual data inputs, and that reflect regional quality 
differences in available data sources. As uncertainty estimates improve, the framework 
developed for the AOR can incorporate this information. It may be possible to utilize an 
optimization-based technique such as ANNs to classify uncertainty based on atmospheric states 
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or otherwise improve the data fusion process. Furthermore, an ensemble-based approach can be 
used for some systems to approximate uncertainties and represent non-linear uncertainty 
information.  

Riverside recommends that a stepwise data fusion process be developed for the AOR that 
includes development of daily merged datasets (i.e., daily precipitation, maximum temperature, 
minimum temperature) using all available data sources prior to producing an hourly dataset. This 
recommendation is based on the differences in weather characteristics at hourly and daily time 
steps, the fact that more historical data are available on a daily time step, and the fact that 
accurate daily estimates are very important for the intended hydrologic applications. 

Some issues merit further investigation through prototyping prior to finalizing the AOR 
development process. For example, given the many available options, the most appropriate 
sequence of data fusion should be tested using prototyping. Existing data fusion frameworks 
should be evaluated prior to finalizing the data fusion sequence. 

 
13.3.2 Gridding Methods 

 
Gridding methods that interpolate point observations to produce gridded estimates can be 

categorized into three groups:  
 
• Methods that ignore physiographic characteristics and atmospheric states.  
• Methods that consider physiographic influences.  
• Methods that consider both physiographic characteristics and atmospheric states.  

 
Most of the approaches in the first group can be modified to account for physiographic 

characteristics through a climatology-aided interpolation approach, where each station 
observation is converted to an anomaly from the climatological normal, the anomalies are 
interpolated, and the interpolated anomalies are multiplied by the background climatology grid. 
Various approaches incorporate atmospheric classifications to modify the interpolation 
parameters and improve the interpolation results.  

Optimal interpolation and kriging incorporate information regarding covariances into the 
gridding techniques. These techniques, applied in a climatology-aided interpolation framework, 
outperform other spatial interpolation techniques. The hierarchical non-linear regression 
technique of Hsu et al. (2011) also seems promising if time and resources permit the 
development of the technique and associated regression relationships. 

 
13.3.3 Spatial Downscaling Methods 

 
The methods available for spatial downscaling can be categorized into interpolation 

methods, statistical downscaling methods, and dynamical downscaling methods.  
The interpolation downscaling methods are readily available and easily implemented, 

with several operational applications already taking advantage of these techniques. For the AOR, 
it may be acceptable to utilize interpolation with terrain adjustments to downscale temperature 
fields, but interpolation methods are not recommended for downscaling precipitation fields. The 
spatial disaggregation methods are also reasonably well-developed and straightforward to 
implement.  
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Spatial downscaling techniques that employ regression methods are desirable for 
incorporating dynamical atmospheric processes that control weather patterns. However, 
additional development is required to identify controlling variables and to develop suitable 
relationships for different geographic regions. If time and resources permit further investigation 
for the AOR, the GMOS method would be a reasonable starting point to develop these 
relationships. The predictor variables can be used to develop methods both for transforming 
point observations to gridded estimates as well as for spatial downscaling of gridded datasets.  

Similarly, dynamical downscaling methods that employ outputs from high-resolution 
regional weather models are desirable for incorporating dynamical atmospheric influences. If a 
high-resolution weather model can be run to generate a reanalysis dataset for the AOR, it would 
be extremely beneficial in providing a consistent, high-resolution dataset over the full historical 
period and spatial extent. Additional investigation is required to determine if it is feasible to 
complete a reanalysis for the AOR, and to evaluate the relative levels of effort and potential 
benefits between regression-based techniques and dynamical downscaling techniques. 

 
13.3.4 Temporal Disaggregation Methods 

 
Temporal disaggregation may be completed using an observation-based approach or a 

stochastic approach.  
Observation-based approaches may use downscaled gridded products (i.e., radar, satellite, 

or NWP model outputs), hourly gage data, or a combination of sources developed through a data 
fusion process.  

Major limitations were identified for most of the stochastic approaches. A form of K-
nearest neighbor resampling may be feasible, where the hourly distribution applied for a grid cell 
is selected from a historical database of hourly distributions based on the similarity with the day 
being disaggregated. A distance function would be defined using characteristics of the daily 
precipitation field, and possibly atmospheric information from NWP models (e.g., moisture 
content, wind direction). The benefit of a stochastic approach is that it would more realistically 
represent the statistical characteristics of the true hourly precipitation distribution when 
insufficient data sources are available on an hourly time step. The limitations of stochastic 
approaches are that a unique solution is not obtained from the analysis procedure (particularly 
relevant if the AOR is reprocessed in the future), and the distributions would not reflect hourly 
observations where available.  

Riverside recommends that a combined approach be taken to develop hourly 
disaggregation factors. In locations and time periods with a dense hourly gage network or radar 
observations, the hourly distribution will be known with higher confidence. In locations isolated 
from hourly gage or radar observations, the uncertainties associated with the observation-based 
hourly distributions will be very high. In these cases, a stochastic approach may be more 
appropriate. A combined approach would utilize stochastic estimates of the hourly distributions 
when uncertainties are high, otherwise observation-based estimates would be used. It may be 
most appropriate to select a particular disaggregation methodology for each region. Prototype 
applications could help identify the feasibility and limitations of the selected disaggregation 
approaches. 
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13.4 Evaluation Methods 
 
Multiple approaches are available to evaluate the AOR for the purposes of evaluating 

competing methodologies, parameterizing algorithms, and assessing the final datasets. The 
evaluation methods include expert review, comparisons with existing datasets, and evaluations 
based on hydrologic models. Each method has benefits and limitations:  

 
• By collecting expert input at different points of the development process, strengths, 

limitations, and pitfalls of different approaches will be identified, helping to guide the 
development process towards an appropriate balance of effort and benefit.  

• Cross validation against point observations can be beneficial if the results are interpreted 
carefully.  

• Multiple watershed studies have incorporated a dense network of gages and high-quality 
radars, allowing for enhanced estimation of precipitation and temperature on a fine 
resolution for a limited spatial extent and time period. These datasets provide valuable 
information for comparison and validation purposes.  

• Many gridded datasets exist, for example climatological datasets developed using the 
PRISM system. These datasets can be used for assessing bias characteristics, temporal 
consistencies, and uncertainties in the AOR.  

• Hydrologic simulations provide important validation information since observed 
streamflows are independent and indirect measures of the impact of precipitation and 
temperature on runoff in the contributing watershed. Since the RFCs are intended as the 
primary beneficiaries of the AOR development effort, it would be appropriate to utilize 
the calibrated models from the RFCs for the evaluation process. In addition to these 
lumped hydrologic models, the NWS OHD may wish to include basins modeled with a 
distributed model to evaluate the AOR using a model that requires gridded inputs. 

 
13.5 Existing Weather Data Management Systems 

 
Significant resources have been devoted by personnel at federal and academic institutions 

to develop systems that collect, quality control, and process weather data. The development 
approach for the AOR should maximize the use of available frameworks, automated processes, 
methodologies, and datasets to reduce the development cost and effort. The following systems 
and features were identified as having potential benefit for the AOR development: 

 
• The NCDC PrecipVal and TempVal systems may provide useful automated data quality 

control procedures for both temperature and precipitation. 
• The PRISM system developed at Oregon State University includes automated data 

quality control procedures and gridding techniques that may be beneficial for the AOR. 
In addition, the gridded climatological datasets that have been developed using the 
PRISM system may be useful for gridding point observations using climatology-aided 
interpolation, or spatially disaggregating coarse-resolution datasets. 

• The SNODAS developed by the NOHRSC includes automated data quality control 
procedures, spatial downscaling methods, and data assimilation techniques that may be 
useful for the AOR development. 
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• The NMQ/Q2 system developed by the NSSL includes automated data quality control 
procedures (particularly convective screening); radar processing, mosaicking, and bias 
correction algorithms; and a framework for data fusion that may be beneficial for the 
AOR development. Additionally, the NCDC and the NSSL plan to generate a 10-yr 
reanalysis dataset using the NMQ/Q2 system, which would improve the potential 
benefit for the AOR development by providing a longer historical record. 

• The DailyQC program, which has been integrated into the MPE and the Mountain 
Mapper programs, contains automated data quality control procedures and gridding 
techniques that may be useful for the AOR development. 

• The Mountain Mapper system developed by the CBRFC uses climatology-aided 
interpolation to transform point observations into gridded estimates. This gridding 
technique may be beneficial for the AOR development. In addition, the Mountain 
Mapper system is in widespread use at the western RFCs, and likely will represent a 
benchmarking dataset against which the AOR will be compared. 

• The MPE program run by the RFCs includes automated data quality control, bias 
correction, and multi-sensor features that that may be beneficial for the AOR. 

• Researchers at the CPC are developing methods that may have relevance for the AOR in 
the following four areas: improving satellite precipitation estimation; developing 
historical and real-time grids on a 1-hr time step for the CONUS using only gage 
observations; merging satellite estimates and NWP model outputs; and merging satellite 
estimates, NWP model outputs, gage observations, and radar precipitation into a single 
multi-sensor estimate. 

• The NLDAS developed by NASA and NCEP has automated quality control, gridding, 
and downscaling procedures that may be relevant for the AOR development. 

 
13.6 Technical Considerations 

 
The AOR is intended to be developed for the period 1979-2010, with eventual extension 

back to 1948. Within this historical period, there are several notable periods that will be affected 
by the amount and quality of the available historical data (i.e., 1948-1977, 1978-1995, and 1996-
2010). Consistency among these periods is desired and will be assessed in terms of long-term 
climatology, daily spatial variability, and hourly distributions.  

The AOR will be utilized to evaluate hydrologic models developed at the RFCs, 
potentially requiring calibration adjustments to improve streamflow simulations. The consistency 
of the AOR over the period of record affects its utility for calibration purposes. It is possible that 
a shorter period within the AOR will be recommended for model calibration, whereas the full 
period will be suitable for climatological forcing of ensemble forecasts. The quality of the 
hydrologic simulations will provide valuable information on the success of the AOR 
development process that could subsequently inform ongoing improvements. 

The AOR is intended to be developed for the CONUS, Alaska, Hawaii, Puerto Rico, and 
the portions of Canada and Mexico that drain to the U.S. Given the regional differences in 
climate factors, hydrology, forecast objectives, data sources, and data quality, the AOR 
development process will have to address regional requirements and issues. The NWS OHD 
must evaluate whether one development approach can address these issues, or whether regional 
development approaches are required. 



Hydrometeorological Forcings May 2012 104 

13.7 RFC Considerations 
 
The following notable points were identified through discussions with selected RFC 

personnel: 
 

• The AOR datasets must be consistent with the real-time forcings and forecast grids provided 
to the RFCs. Consistency includes climatological characteristics, spatial resolution, and 
temporal resolution. For example, the forecast grids from the NDFD are currently provided 
on a 2.5-5.0 km grid mesh; the forecast grids should be provided on the same grid mesh 
intended for the AOR. 

• The RFCs expressed interest in having access to multiple versions of the AOR: a “best” 
dataset that uses all available data, as well as a “consistent” version that uses limited data.  

• The RFCs expressed interest in having access to the AOR datasets at multiple temporal 
intervals that range from one hour to one day. Some locations would benefit from an even 
finer temporal interval, such as 15 minutes, but sub-hourly resolution is not practical for the 
initial AOR development. Regional differences and intended usage affect the appropriate 
time interval.  

• The RFCs would benefit from having historical gridded datasets that expand beyond 
temperature and precipitation to include freezing level, wind speed, relative humidity, etc.  

• The RFCs exhibit regional preferences in using gage and radar data. The framework selected 
to develop the AOR should avoid favoring one data type. This requirement is consistent with 
an uncertainty-based data fusion framework. 

• To strengthen the likelihood that the AOR will be adopted within the RFCs (superceding 
their own forcing datasets), it will be essential to survey the RFCs regarding quality control 
procedures and data networks that are currently incorporated into their forcing analyses, and 
to explore ways that these can be incorporated into the AOR development (CBRFC, personal 
communication, March 7, 2012). 

• The RFCs anticipate that the AOR will evolve as data sources and quality control techniques 
improve. The AOR should be regenerated as new information becomes available and should 
be extended over time to keep the datasets current.  

• The RFCs would benefit from tools that enhance the flexibility of the datasets to meet RFC 
needs, for example a tool that would allow the RFCs to adjust the AOR to a desired 
climatology. 

• Overall, the RFC personnel are enthusiastic about the potential benefit of the AOR datasets. 
The RFC personnel who were interviewed expressed a willingness to work with the OHD to 
provide regional expertise, to provide available data, to evaluate the AOR, and to evaluate 
the need to re-calibrate the existing models.  

 
13.8 Logistical Considerations 

 
NOAA has established best practices for data archives and delivery and format 

requirements for climate data records (Nelson and Semunegus, 2011). These guidelines for 
documentation, data formats, and metadata should be followed for the AOR. 

For the RFCs, the AOR will be delivered using existing NWS data transmission 
processes that have been established for CHPS. However, the data also should be made available 
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to external users, for example on a public website. The website should be developed to include 
subsetting tools based on date and geographic extent so that users can easily access data for their 
areas and periods of interest, rather than downloading the entire AOR, which is likely to be a 
large dataset. The NWS OHD should also consider providing access to the input datasets (raw 
and quality-controlled) along with quality control information.  

Moving forward in time, the NWS OHD intends to append to the AOR using the real-
time process established at the National Water Center. Riverside recommends that data grids 
developed using the real-time process be assigned a preliminary status. After a suitable delay, the 
grids can be updated using all available historical data sources and updated to reflect published 
values. For example, the Mesoscale Analysis Committee (MAC) convened in 2004 envisioned 
that real-time forcings could be available within 30 minutes, with subsequent updates issued with 
one day and one month delays to augment the available data sources (Colman et al., 2005). In 
having preliminary datasets (developed using the real-time process) and published datasets 
(developed using the AOR process) the NWS OHD can evaluate the consistency between the 
methods used and the resulting datasets, and can continue to refine both processes as needed. 
This process would be similar to plans to release a preliminary version of the IMERG satellite 
precipitation dataset, followed by a gage-adjusted dataset with a latency of approximately two 
months (Huffman et al., 2012).  

Additionally, the AOR may need to be periodically regenerated as significant advances 
are made to data inputs (e.g., reanalysis or climatological datasets) or methods (e.g., automated 
quality control). However, the potential improvements in the AOR should be weighed against the 
efforts required at the RFCs to adjust the hydrologic models. 

 
13.9 Next Steps 

 
13.9.1 Parallel Development 

 
The AOR development process will involve a review of efforts underway at various 

agencies, the collection and quality control of large datasets, and coordination among many 
organizations. Although some aspects of the development effort cannot be started without 
selecting a framework, numerous preparatory activities can be initiated: 

 
• Identify primary data sources that will be utilized and begin collecting data from those 

sources. Given the wide range of data sources, particularly for station data, the data 
collection may require a large effort. 

• Begin performing quality control of station data. 
• Continue efforts to quality control and adjust radar data. The NWS OHD has initiated 

this activity, recognizing its importance for the AOR. 
• Identify high-resolution datasets that will be utilized for evaluation purposes and begin 

assembling these data. 
• Identify primary components of existing systems (e.g., software) that may be integrated 

into the processing system.  
• Identify a starting development platform and data fusion framework. Multiple existing 

systems could provide this framework. 
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13.9.2 High-Resolution NWP Model Reanalysis 
 
Currently, there are multiple high-resolution (i.e., 4-5 km grid mesh) NWP models that 

are run in real-time for forecasting purposes (e.g., WRF-NMM, WRF-ARW, and NAM-Nest). 
However, besides limited applications of high-resolution NWP models over limited domains and 
time periods, there are no equivalent high-resolution reanalysis datasets available for input into 
the AOR development process. The reanalysis products available for the period of record 
intended for the AOR are much coarser (i.e., 32 and 38-km grid meshes for the NARR and 
CFSR, respectively), and they employ different algorithms than what is available in real-time. 
These differences constitute one of the more significant inconsistencies between the inputs for 
the AOR and the real-time forcings process. If the AOR is intended to be used to evaluate the 
impact of the real-time forcings on hydrologic simulations, a high-resolution reanalysis would be 
necessary to more completely achieve this requirement. 

A high-resolution reanalysis would provide valuable input into the AOR development for 
gridding and spatial downscaling. A high-resolution reanalysis would provide more realistic 
fields of precipitation and temperature than could be achieved through statistical downscaling of 
the current reanalysis products. In preliminary discussions with the ESRL, it appears that such an 
analysis would be feasible given current computational capabilities (ESRL, personal 
communication, November 16, 2011). If such a reanalysis could be completed for the full period 
of record, it would constitute the only consistent, high-resolution gridded input in the 
development process.  

A high-resolution reanalysis would provide the greatest benefit in areas with complex 
terrain and limited radar coverage. If a complete reanalysis of the entire spatial domain is not 
feasible, it would still be advantageous to perform the reanalysis for a limited domain. Similarly, 
if the reanalysis could not be completed for the full period, it would still be advantageous to 
perform the reanalysis for a limited period. A reanalysis over the later period (e.g., 1996-2010) 
would improve consistency with the real-time forcings process and would provide a better 
sample for stochastic approaches employed for temporal disaggregation in the early period. A 
reanalysis over the earlier period (e.g., 1980-1996) would improve the available information and 
alter the methodology to prioritize observation-based disaggregation weights computed using the 
reanalysis data over stochastic methods. 

Given the widespread use of the NARR reanalysis dataset in research applications, an 
updated, high-resolution reanalysis over North America would be valuable to researchers in 
many disciplines. However, the costs associated with such an effort may be prohibitive. 

 
13.9.3 Prototype Evaluations 

 
Riverside recommends that the NWS OHD conduct prototype evaluations to evaluate and 

test available data sources and methods for the AOR. For example, Riverside recommends 
developing prototypes of the AOR for several regions (e.g., the southeast CONUS and the 
intermountain west) to allow development, testing, refinement, and automation of a proposed 
method. The prototype should include an evaluation phase where the prototype datasets are input 
to existing hydrologic models. Additionally, the quality-controlled individual data sources could 
be input to the hydrologic models as basin averages to assess their utility for the AOR 
development process.  
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GSMaP_MVK+ - Global Satellite Mapping using a Moving Kalman Filter 
GTS - Global Telecommunications System 
HADS - Hydrometeorological Automated Data System 
HCN - Historical Climatology Network 
HEFS - Hydrologic Ensemble Forecast System 
HI - Hawaii 
HMT – Hydrometeorology Testbed 
HPC - Hydrometeorological Prediction Center 
HRAP - Hydrologic Rainfall Analysis Project 
ICP - Interactive Calibration Program 
IDW - Inverse Distance Weighting 
IFLOWS – Integrated Flood Observing and Warning System 
IMERG - Integrated Multisatellite Retrievals for the Global Precipitation Mission 
IR - Infrared 
IWRSS – Integrated Water Resources Science and Solutions 
JMA - Japanese Meteorological Agency 
KF-CMORPH - Kalman Filter Climate Prediction Center Morphing Method 
K-nn - K-Nearest Neighbor 
LMODEL - Lagrangian Model 
MAC - Mesoscale Analysis Committee 
MADIS - Meteorological Assimilation Data Ingest System 
MAP – Mean Areal Precipitation 
MAT – Mean Areal Temperature 
MCP3 - Manual Calibration Program 
MERRA - Modern Era Retrospective-Analysis 
MIT - Massachusetts Institute of Technology 
MM5 - Mesoscale Model 
MODIS - Moderate Resolution Imaging Spectroradiometer 
MOS - Model Output Statistics 
MPE - Multi-sensor Precipitation Estimation 
MRMS - Multi-radar and Multi-sensor 
MX - Mexico 
NAME – North American Monsoon Experiment 
NARR - North American Regional Reanalysis 
NASA - National Aeronautics and Space Administration 
NASA-GMAO - NASA Goddard Global Modeling and Assimilation Office 
NCAR - National Center for Atmospheric Research 
NCDC – National Climatic Data Center 
NCEP - National Center for Environmental Prediction 
NCL - National Center for Atmospheric Research Command Language 
NDFD - National Digital Forecast Database 
NDGD - National Digital Guidance Database 
NESDIS - National Environmental Satellite, Data, and Information Service 
NEXRAD - Next-Generation Radar 
NLDAS - North-American Land Data Assimilation Systems 
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NMQ - National Radar Mosaic 
NMQ/Q2 - National Radar Mosaic/Next Generation Multi-Sensor Quantitative Precipitation 

Estimation 
NOAA – National Oceanic and Atmospheric Administration 
NOHRSC - National Operational Hydrologic Remote Sensing Center 
NRCS – Natural Resources Conservation Service 
NSSL – National Severe Storms Laboratory 
NWP – Numerical Weather Prediction 
NWRFC - Northwest River Forecast Center 
NWS – National Weather Service 
NWSRFS – National Weather Service River Forecast System 
OHD – Office of Hydrologic Development 
OPT3 – Calibration System Automatic Parameter Optimization Program 
PCA – Principal Components Analysis 
PEHRPP - Program to Evaluate High Resolution Precipitation Products 
PERSIANN-CSS - Precipitation Estimation from Remotely Sensed Information using Artificial 

Neural Networks Cloud Classification System 
PMW - Passive Microwave 
PR – Puerto Rico 
PRISM - Parameter-Elevation Regressions on Independent Slopes Model 
PXADJ – Precipitation Adjustment Factor 
QPE – Quantitative Precipitation Estimate 
QPF – Quantitative Precipitation Forecasts 
RAWS - Remote Automated Weather Stations 
RDHM - Research Distributed Hydrologic Model 
RDHM-TF - Research Distributed Hydrologic Model Threshold Frequency 
REFAME - Rainfall Estimation using Forward-Adjusted advection of Microwave Estimates 
RFC – River Forecast Center 
RTMA - Real-Time Mesoscale Analysis 
RUC - Rapid Update Cycle 
SAC-SMA – Sacramento Soil Moisture Accounting Model 
SCAN - Soil Climate Analysis Network 
SERFC - Southeast River Forecast Center 
SHEF - Standard Hydrologic Exchange Format 
SIH - Sistema de Información Hydrométrica 
SmartInits - Smart Initializations 
SNODAS - Snow Data Assimilation System 
SNOTEL – Snowpack Telemetry 
SOE - Single Optimal Estimator 
STEPS - Short-Term Ensemble Prediction System 
SWE – Snow Water Equivalent 
SYMAP - Synergraphic Mapping System 
TDWR - Terminal Doppler Weather Radar 
TMPA - Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis 
TRMM - Tropical Rainfall Measuring Mission 
URL – Uniform Resource Locator 
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US – United States 
USACE – United States Army Corps of Engineers 
USBR – United States Bureau of Reclamation 
USGS – United States Geological Survey 
VIC - Variable Infiltration Capacity 
WBAN - Weather Bureau Army Navy 
WFO – Weather Forecast Office 
WGRFC – West Gulf River Forecast Center 
WMO - World Meteorological Organization 
WRF - Weather Research and Forecasting 
WSR-88D - Weather Surveillance Radar-1988 Doppler 
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