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We present a statistical procedure for generating short-term ensemble streamflow forecasts from single-
valued, or deterministic, streamflow forecasts produced operationally by the U.S. National Weather Ser-
vice (NWS) River Forecast Centers (RFCs). The resulting ensemble streamflow forecast provides an esti-
mate of the predictive uncertainty associated with the single-valued forecast to support risk-based
decision making by the forecasters and by the users of the forecast products, such as emergency manag-
ers. Forced by single-valued quantitative precipitation and temperature forecasts (QPF, QTF), the single-
valued streamflow forecasts are produced at a 6-h time step nominally out to 5 days into the future. The
single-valued streamflow forecasts reflect various run-time modifications, or ‘‘manual data assimilation’’,
applied by the human forecasters in an attempt to reduce error from various sources in the end-to-end
forecast process. The proposed procedure generates ensemble traces of streamflow from a parsimonious
approximation of the conditional multivariate probability distribution of future streamflow given the sin-
gle-valued streamflow forecast, QPF, and the most recent streamflow observation. For parameter estima-
tion and evaluation, we used a multiyear archive of the single-valued river stage forecast produced
operationally by the NWS Arkansas-Red River Basin River Forecast Center (ABRFC) in Tulsa, Oklahoma.
As a by-product of parameter estimation, the procedure provides a categorical assessment of the effective
lead time of the operational hydrologic forecasts for different QPF and forecast flow conditions. To eval-
uate the procedure, we carried out hindcasting experiments in dependent and cross-validation modes.
The results indicate that the short-term streamflow ensemble hindcasts generated from the procedure
are generally reliable within the effective lead time of the single-valued forecasts and well capture the
skill of the single-valued forecasts. For smaller basins, however, the effective lead time is significantly
reduced by short basin memory and reduced skill in the single-valued QPF.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The importance and value of uncertainty information in hydro-
logic forecasts is well known (Krzysztofowicz, 2001; NRC, 2004;
Roulin, 2007; McCollor and Stull, 2008; Muluye, 2011; Verkade
and Werner, 2011; Boucher et al., 2012; Ramos et al., 2012; Dale
et al., 2012). Today, quantifying uncertainty in hydrologic and
water resources forecasts is recognized as one of the most pressing
needs in operational hydrology (NRC, 2006a, 2006b). Because of
numerous sources of uncertainty involved in hydrologic prediction,
however, accurate modeling of the total predictive uncertainty
associated with future streamflow is a major challenge (e.g.,
Krzysztofowicz, 1999; Seo et al., 2006; Pappenberger and Beven,
2006). Broadly, the various uncertainties in hydrologic prediction
may be grouped into two categories, input uncertainty and hydro-
logic uncertainty. The former comprises uncertainties in the input
for hydrologic models, such as precipitation and temperature. The
latter comprises uncertainties in the initial conditions, parameters
and structures of the hydrologic models, and those due to human
control and influences such as flow regulations. Generally speak-
ing, the total predictive uncertainty can be modeled in two ways,
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namely source-specifically or in a lumped fashion, as described
below.

The source-specific approach models the various significant
uncertainties individually and propagate them in time and space
through the hydrologic models, from which the total uncertainty
may be quantified with the addition of the residual uncertainty
modeled stochastically as necessary (e.g., Krzysztofowicz, 1999;
Seo et al., 2006, 2010; Demargne et al., 2013). An example of such
an approach for headwater basins is the Bayesian Forecasting
System (BFS, Krzysztofowicz, 1999, 2002) which models input
and hydrologic uncertainties separately and integrates them via
the total probability law following stratified sampling. The
Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National
Weather Service (NWS) (Demargne et al., 2013) is another
source-specific approach in which input and hydrologic uncertain-
ties are modeled separately and then propagated and integrated
via random sampling. In general, the source-specific approach
may be preferred for modeling the total predictive uncertainty
for the following reasons. The input uncertainty depends greatly
on the lead time whereas, except for the initial condition
uncertainty and the anthropogenic uncertainty, the hydrologic
uncertainty does not. Hence, by modeling the latter separately,
one may attain parsimony in modeling of hydrologic uncertainty.
Also, by modeling the major sources of hydrologic uncertainty
individually, the residual uncertainty may be made stochastically
as structureless as possible, which reduces the data requirement
for and complexity of the stochastic modeling of the hydrologic
residual uncertainty. Because it requires modeling of all significant
sources of uncertainty, however, the source-specific approach is
generally expensive to develop and implement. As an intermediate
solution between the source-specific approach for uncertainty
modeling and the existing single-valued approach which lacks
uncertainty modeling, one may consider generating probabilistic
forecasts from the operationally-produced single-valued stream-
flow forecasts. The aim of this paper is to develop and evaluate
such a technique.

Applying statistical techniques to single-valued numerical mod-
el output to generate probabilistic forecasts has been widely used in
weather forecasting, the prime example being Model Output Statis-
tics (MOS, Glahn and Lowry, 1972). In hydrology, however, there
are only a few published papers on generating probabilistic fore-
casts from single-valued, or deterministic, forecasts by modeling
the predictive uncertainty in the single-valued hydrologic forecasts
(Montanari and Grossi, 2008; Reggiani and Weerts, 2008; Coccia
and Todini, 2011; Bogner and Pappenberger, 2011; Weerts et al.,
2011; Smith et al., 2012). Much research has been focused on pro-
ducing probabilistic forecasts from hydrologic simulations, which
account only for hydrologic uncertainty (Montanari and Brath,
2004; Seo et al., 2006; Chen and Yu, 2007; Hantush and Kalin,
2008; Montanari and Grossi, 2008; Todini, 2008; Bogner and Pap-
penberger, 2011; Zhao et al., 2011; Brown and Seo, 2012). Although
one could apply similar techniques to model each of the hydrologic
and total uncertainties, the same performance may not be expected
because the hydrologic and total uncertainties differ in structure.
For example, the total uncertainty is lead-time dependent whereas
the hydrologic uncertainty, except for the initial condition uncer-
tainty and certain anthropogenic uncertainties, is not. Many tech-
niques that model either hydrologic or total uncertainty convert
streamflow variables into Gaussian space via Normal Quantile
Transform (NQT). The transformation is done mainly because
marginally-normal variables are more likely to satisfy multivariate
normality, under which many statistical estimation techniques are
optimal in the mean square error sense. The modeling techniques
reported in the literature mainly belong to the family of linear
regression or time series modeling techniques. Montanari and
Grossi (2008) divide the forecast error into two types, positive
and negative errors, and develop regression models in the normal
space for each type. The regression models express the forecast er-
ror as a function of the forecast flow, forecast errors at preceding
time steps and observed antecedent precipitation. For a given flow
forecast, an ensemble of errors is produced from the regression
models. The errors are then added to the forecast in proportion to
the climatological frequency of occurrence of the two types of error
to obtain the final ensemble. The authors develop the regression
models lead time-specifically without modeling the time-depen-
dent structure of the errors. As such, the resulting ensemble mem-
bers at successive lead times do not preserve the temporal
correlation of the observed flow. Note that, for applications that
support decisions on how water is to be managed over a range of
time scales, it is important that the ensemble traces possess realis-
tic temporal correlation structure. Reggiani and Weerts (2008) ap-
ply a Bayesian processor and estimate the conditional probability
distribution function of water level forecasts given all information
(upstream observations and deterministic forecasts) at the time of
the forecast. The Bayesian processor combines prior and likelihood
distributions in the normal space, and estimates season- and
forecast lead time-specific posterior distributions of water levels.
Coccia and Todini, 2011 model the joint distribution of forecast
and observed flows in the normal space by considering the entire
data set as one region or dividing the entire normal region into
one or more sub-regions, defined as truncated normal distributions,
and estimate the predictive uncertainty accordingly for each lead
time as a confidence interval. Weerts et al. (2011) estimate the full
probability distribution of forecast error by estimating a set of
quantiles of the distribution via quantile-specific regression equa-
tions. The forecast error distributions specific to lead time are esti-
mated and combined with forecasts to yield the full probability
distribution of forecasts. Smith et al. (2012) modeled observed
flows as a function of deterministic model predictions plus noise
with a simple linear regression model, and model the regression
coefficient or adaptive gain, i.e., time varying correction for the bias
in the model forecast, using time series modeling techniques.
Unlike the above studies, Bogner and Pappenberger (2011) decom-
posed the forecast output into multiple temporal scales using
wavelet transformation and then modeled across scales with a
Vector-AutoRegressive model with eXogenous input (VARX) and
reconstructed back into the original time domain.

The objective of this work is to develop a technique that, given
the operationally-produced single-valued forecast, produces an
ensemble streamflow forecast that is reliable, i.e., probabilities of
predicted events match observed frequencies, and captures the
skill in the single-valued forecast. We refer to this technique as
Hydrologic Model Output Statistics (HMOS). The HMOS technique
is similar to the above-mentioned techniques in that it is based on
bivariate modeling of the observed and forecast flows in the Gauss-
ian space via linear regression, but differs in that it produces
ensemble traces that preserve the serial correlation over successive
lead times. The novel aspects and new contributions of this work
include: (i) the use of the operationally-produced single-valued
forecast which reflects various run-time modifications (see Sec-
tion 2 for details); (ii) parsimonious modeling of the serial correla-
tion in ensemble traces of streamflow at successive lead times; (iii)
parameter optimization that explicitly uses an ensemble forecast
verification metric, i.e., the mean Continuous Ranked Probability
Score (CRPS), and (iv) quantitative assessment of the effective lead
time in the single-valued forecast as a function of its magnitude
and the magnitude of the quantitative precipitation forecast (QPF).

This paper is organized as follows. The problem and its formu-
lation, proposed solution, and technical details, such as the estima-
tion of model parameters, are detailed in Section 2. The study area
and data used are described in Section 3. Categorization of flow and
QPF, and results and analysis of parameters are detailed in
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Section 4. Evaluation of model-generated probabilistic forecasts
and visual examination of example probabilistic forecasts are dis-
cussed in Section 5 followed by concluding remarks in Section 6.

2. Methodology

In this section, we describe and formulate the problem and de-
tail the proposed solution.

2.1. Problem description

The hydrologic forecasters at the National Weather Service
(NWS) River Forecast Centers (RFC) produce streamflow forecasts
by running hydrologic models with quantitative precipitation
and temperature estimates and forecasts (QPE, QTE, QPF, and
QTF). In this forecast process, the forecasters may make various
run-time modifications, or MODs, to the input data, model states,
model output and, if necessary, model parameters based on real-
time hydrologic and hydrometeorological observations and fore-
casters’ knowledge of the basin, the river, the models being used
and their tendencies and biases, and the quality of the data used.
Currently, the short-term river stage forecast produced by the RFCs
is a single-valued prediction of the instantaneous river stage at a 6-
h interval nominally for 5 days into the future. It is considered the
‘‘best’’ single-valued prediction in that it reflects what the forecast-
ers consider to be the best available single-valued forcing esti-
mates and forecasts, and the various MODs they may make.
Given the above single-valued streamflow forecast, our problem
is to produce an ensemble streamflow forecast that is reliable,
i.e., probabilistically unbiased, and that captures the skill in the
single-valued forecast.

Because the operationally-produced single-valued forecasts al-
ready reflect all sources of error in the end-to-end forecast process,
it is not possible to separate input and hydrologic errors. One of the
most often used operations at the RFCs is ‘‘Adjust-Q’’, which inter-
polates streamflow or stage between the most recent observation
and the single-valued forecast valid at some near-future time.
For headwater basins, the effect sought from Adjust-Q on stream-
flow prediction is similar to that of updating the initial conditions
of the rainfall-runoff model by assimilating recent streamflow
observations. With Adjust-Q, however, no adjustments can be
made to the model initial conditions. The proposed procedure uti-
lizes the most recent real-time streamflow observation as an addi-
tional conditioning variable, or predictor, for the Adjust Q-like
effect.

Because QPF and QTF are very large sources of error in stream-
flow prediction, their skill, as well as how the RFC may use them,
greatly impacts the skill in the single-valued streamflow forecast
and its dependence on lead time. At the NWS Arkansas-Red River
Basin River Forecast Center (ABRFC), the area of this study, QPF is
by far the most important forcing. As such, we only consider QPF
for future forcing input in this work. At ABRFC, QPF is usually input
only up to 12 or 24 h into the future and assumed zero thereafter
for single-valued streamflow forecasting. The maximum lead time
of QPF and QTF that are input to the hydrologic model varies from
one RFC to another. Longer-lead QPFs may also be used as neces-
sary, e.g., to produce contingency forecasts. Given the above, we
formulate the problem as modeling the conditional probability dis-
tribution of observed flows at future time steps given the single-
valued streamflow forecasts and QPF valid at those time steps,
streamflow observations valid at the recent time steps, and gener-
ate ensemble traces from the conditional distribution.

2.2. Problem formulation

As posed above, our problem may be stated in generality as esti-
mating the conditional probability, Prob[Qo,k+1,Qo,k+2, . . . ,Qo,k+n|-
Qf = qf, Qo = qo, P = p], where Qo = {Qo,k,Qo,k�1, . . .},
Qf = {Qf,k+1,Qf,k+2, . . . ,Qf,k+n}, P = {Pk+1,Pk+2, . . . ,Pk+n}. In the above, k
denotes the current time step, n denotes the number of 6-h time
steps in the forecast horizon, and Qo,k, Qf,k, and Pk denote the ob-
served streamflow, forecast streamflow and QPF valid at time step
k, respectively. For notational brevity, we shorthand the condition-
ing event {Qf = qf,Qo = qo,P = p} as {Qf,Qo,P} throughout the rest of
this paper. The above conditional probability may be written as:

Prob½Q o;kþ1;Q o;kþ2; . . . ;Q o;kþnjQ f ;Q o;P�
¼ Prob½Qo;kþnjQo;kþn�1; . . . ;Q o;kþ1;Q f ;Q o;P�
� Prob½Qo;kþn�1jQ o;kþn�2; . . . ;Q o;kþ1;Q f ;Q o;P�

..

.

� Prob½Qo;kþ2jQo;kþ1;Q f ;Q o;P�
� Prob½Qo;kþ1jQ f ;Q o;P�

ð1Þ

Under the assumption that the observed streamflow is Markov-
ian, we may approximate the above as:

Prob½Q o;kþ1;Q o;kþ2; . . . ;Q o;kþnjQ f ;Q o;P�
� Prob½Qo;kþnjQo;kþn�1;Q f ;P�
� Prob½Qo;kþn�1jQ o;kþn�2;Q f ;P�

..

.

� Prob½Qo;kþ2jQo;kþ1;Q f ;P�
� Prob½Qo;kþ1jQo;k;Q f ;P�

ð2Þ

Noting that, in Qf, one may expect Qf,k+i to be generally the most
skillful predictor for Qo,k+i, we further approximate the above as:

Prob½Q o;kþ1;Q o;kþ2; . . . ;Q o;kþnjQ f ;Q o;P�
� Prob½Qo;kþnjQo;kþn�1;Qf ;kþn;P�
� Prob½Qo;kþn�1jQ o;kþn�2;Q f ;kþn�1;P�

..

.

� Prob½Qo;kþ2jQo;kþ1;Q f ;kþ2;P�
� Prob½Qo;kþ1jQo;k;Q f ;kþ1;P�

ð3Þ

Because precipitation has a mixed distribution and the relation-
ship between precipitation and the rainfall-to-runoff processes are
highly nonlinear and time-delayed, we do not consider it practical
to directly model the conditional probability distributions in Eq.
(3). Instead, we stratify the conditional probabilities in Eq. (3)
according to the categorical magnitude of QPF in a lead time-
dependent way. In addition to the QPF, the above conditional prob-
ability is also stratified according to the magnitude of the forecast
streamflow similarly to Seo et al. (2006) to reflect the generally dis-
parate temporal correlation structure between high and low flows.
The details on categorization of flow and QPF are given in Sec-
tion 4.1. Below, we describe how Prob½Qo;kþ1jQo;k ¼ qo;k;Qf ;kþ1 ¼
qf ;kþ1; p

j
l 6 Pkþ1 < pj

u�, where pj
l and pj

u denote the lower and upper
bounds for the jth category of QPF, respectively, is modeled.

2.3. Proposed solution

The model used to estimate the conditional probability distri-
bution of observed flow given forecast flow in Eq. (3) and technical
details such as tail modeling and how model parameters estimated
are described in this section.

2.3.1. Model description
We model Prob½Q o;kþ1jQ o;k ¼ qo;k;Q f ;kþ1 ¼ qf ;kþ1; p

j
l 6 Pkþ1 < pj

u�
via a combination of probability matching and linear regression
in the bivariate normal space. The model used is the first-order
autoregressive model with a single exogenous variable, or
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ARX(1,1), in the normal space (Box and Jenkins, 1976). It uses the
prior observation and model forecasts as predictors and constrains
the regression coefficients to sum to unity to achieve unbiasedness
(see the kriging literature, e.g., Journel and Huijbregts, 1978). The
AR(1) model is based on the assumption that the observed stream-
flow is Markovian (Krzysztofowicz, 1999, 2002). It implies that the
streamflow forecast at one-step ahead in the normal space is
dependent on the streamflow at the current time step and inde-
pendent of streamflow at the preceding time steps. In reality, a
higher-order model may be better. Our experience, however, is
that additional complexity of the higher-order model is seldom
justified given the increased data requirements. As noted, usually
only a limited amount of historical operational forecasts is avail-
able in practice. As such, the use of the most parsimonious model,
such as the one used in this work, is often the only practical choice.
There are, however, cases when AR(1), and hence the Markovian
assumption, may not be reasonable such as when the streamflow
is regulated.

The model has the following form:

Zo;kþ1 ¼ ð1� bkþ1ÞZo;k þ bkþ1Zf ;kþ1 þ Ekþ1 ð4Þ

where Zo,k+1 and Zo,k denote the NQT-transformed observed flow at
time steps k + 1 and k, respectively, bk+1 denotes the regression
coefficient at time step k + 1, Zf,k+1 denotes the NQT-transformed
forecast flow valid at time step k + 1, and Ek+1 denotes the residual
error at time step k + 1. At time step k + 1, Zo,k corresponds to the ac-
tual observed streamflow at time step k, whereas time step k + 2 on-
wards Zo,k is the estimated observed value at the preceding time
step, i.e., Zo,k+1, using Eq. (4).

The above model is similar to that used by Seo et al. (2006). Un-
like Seo et al. (2006), however, in which the exogenous variable is
the model-simulated streamflow, here it is the operationally-pro-
duced single-valued streamflow forecast whose skill depends on
a multitude of factors such as the availability and quality of QPF,
the RFC’s choice of the maximum lead time for QPF, the choice
and extent of MODs, etc. As such, the parameter bk+1 in Eq. (4) is
necessarily lead time-dependent in a rather complex way. There-
fore, the one-step transition equation is developed for each lead
time and marched forward until the end of the forecast horizon.

Empirical analysis shows that often significant correlation ex-
ists between Zo,k and Ek+1 in Eq. (4), and that the residual error,
Ek+1, is correlated in time. As expected, the above correlation is
quite strong at large lead times where the basin memory and the
effects of QPF wear off. This temporal dependence is modeled in
this work as first-order autoregressive, or AR(1):

Ekþ1 ¼
rEkþ1

rEk

qðEkþ1; EkÞEk þWkþ1 ð5Þ

where rEkþ1
and rEk

denote the standard deviations of Ek+1 and Ek,
respectively, q(Ek+1,Ek) denotes the serial correlation between Ek+1

and Ek, and Wk+1 represents the white noise. It is assumed that Ek

and Wk+1 are statistically independent. Empirical analysis shows
that AR(1) is not always satisfactory. A more complex model, how-
ever, may not be desirable due to the operational requirement that
the procedure must work reasonably well, even with limited data
availability for parameter estimation. From Eq. (5), we have:

r2
WKþ1

¼ ð1� q2ðEkþ1; EkÞÞr2
Ekþ1

ð6Þ

In reality, the residual error, Ek+1, and the most recently ob-
served flow in the normal space, Zo,k, are correlated. As such, esti-
mated observed flows will not in general preserve the error
variance in the predictand, Zo,k+1. In this work, rather than explic-
itly modeling the dependence between Ek+1 and Zo,k, we scale Ek+1
in such a way that the error variance in Zo,k+1 is preserved. For de-
tails, the reader is referred to Appendix A. This approximation is
motivated by parsimony and algorithmic simplicity.

The conditional mean (and, similarly, conditional variance) of
observed streamflow at future time steps may also be evaluated di-
rectly via numerical integration:

E½Qo;kþ1jQ o;k;Q f ;kþ1;Pkþ1� ¼
Z 1

0
Q o;kþ1f ðQ o;kþ1jQ o;k;Qf ;kþ1;Pkþ1ÞdQ o;kþ1

¼
Z 1

0
NQT�1ðZo;kþ1Þf ðZo;kþ1jZo;k;Zf ;kþ1;Pkþ1ÞdZo;kþ1

where NQT�1() denotes the normal quantile inverse-transformation
of the variable parenthesized, and the conditional probability den-
sity function (PDF) of Zo,k+1, f(Zo,k+1|Zo,k,Zf,k+1,Pk+1), is given by
N((1 � bk+1) Zo,k + bk+1 Zf,k+1, r2

Zo;kþ1
). Eq. (7) is useful for verifying

the ensemble results and for producing ensemble mean forecasts
that are not subject to sampling errors due possibly to limited
ensemble size.

2.3.2. Tail modeling
For Eq. (4), the NQT maps streamflow to the standard normal

space via probability matching. We calculate the empirical cumu-
lative distribution functions (CDF) of streamflow using the Weibull
plotting position (Wilks, 2011). Because the CDFs are empirical, the
deviates of Zo;kþ1 that exceed the historical minima and maxima
will not have corresponding historically observed flow values in
the original space. For this reason, some form of extrapolation of
empirical CDFs is necessary. Bogner et al. (2012) discuss the diffi-
culties involved in extrapolating CDFs and propose a novel ap-
proach. In this study, we used the hyperbolic approximation
(Deutsch and Journel, 1998) for the uppermost-tail end of the dis-
tribution and linear interpolation for the lowermost-tail end as in
Seo et al. (2006). The hyperbolic approximation is very flexible in
that one can easily control the fatness of the tail with a single
parameter.

2.3.3. Parameter estimation
For parameter estimation, the forecasts and the verifying obser-

vations are grouped into predefined categories (see Table 1), for
which separate regression models, i.e., Eq. (4), are developed for
each lead time. Parameter estimation comprises the following
steps for each category and for each lead time:

(1) Calculate the empirical CDF of the observed and forecast
streamflows and transform them into standard normal
deviates.

(2) Select a limited number of different values of bk+1, and for
each bk+1.

(3) Calculate sample mean and variance of Ek+1.
(4) Estimate r2

Wkþ1
via Eq. (6) from the sample statistics of the

terms in the right hand side of Eq. (6).
(5) Generate a random deviate of Wk+1 from Nð0;r2

Wkþ1
Þ.

(6) Generate a trace of Ek+1 via Eq. (5), using the random deviate
of Wk+1.

(7) Generate a trace of Zo,k+1 using Eq. (4) and back-transform
(i.e., inverse NQT) it into the flow space.

(8) Repeat steps 5 through 7 and generate desired number of
ensemble streamflow forecasts.

(9) Generate ensemble streamflow forecasts for all selected lim-
ited number of bk+1 values, calculate the mean CRPS, and
identify the value of bk+1 that minimizes the mean CRPS;
using this value as the best initial guess, optimize bk+1 using
Brent’s method (Press et al., 1988).

The above steps are repeated marching forward in time until
the end of the forecast horizon is reached. Thus, optimal bk+1 values



Table 1
Details of categorization of flow and QPF; Q pm

t is the probability-matched single-valued forecast valid at time t; Q50 is the climatological median of
observed flow; QPF612 is the QPF valid for the first 12 h; QPF624 is the QPF valid for the first 24 h; QPF>12 is the QPF valid for the first 12–48 h of lead
time; all QPFs are in mm.

Category Lead time 6 12 h Lead time > 12 h

High flow, zero QPF Qpm
t P Q50; QPF624 ¼ 0 Qpm

t P Q50; QPF624 ¼ 0
High flow, moderate QPF Qpm

t P Q50; 0 < QPF624 < 12:5 Qpm
t P Q50; 0 < QPF624 < 12:5

High flow, large QPF Qpm
t P Q50; QPF624 P 12:5 Qpm

t P Q50; QPF624 P 12:5
Low flow, zero QPF Qpm

t < Q50; QPF612 ¼ 0 Qpm
t < Q50; QPF>12 ¼ 0

Low flow, moderate QPF Qpm
t < Q50; 0 < QPF612 < 12:5 Qpm

t < Q50; 0 < QPF>12 < 12:5
Low flow, large QPF Qpm

t < Q50; QPF612 P 12:5 Qpm
t < Q50; QPF>12 P 12:5
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are estimated sequentially for each category for all lead times.
Once optimal bk+1 and corresponding error statistics are generated,
above steps 1 through 8 are used to generate ensemble
streamflows.
3. Study area and data used

To evaluate the proposed model, we chose 6 basins in the
ABRFC’s service area. Fig. 1 shows the location of the study basins.
The basins vary considerably in size but experience similar mean
annual precipitation. In this paper, we present the results only
for three basins as they are representative of the other basins
(see Table 2). The single-valued forecasts used are the operational
forecasts produced by the ABRFC for public release by the Weather
Forecast Offices (WFOs). They are at a 6-h interval for 5 days into
the future. The period of record is from February, 1997, to October,
2008. The first 2 years of the archive have forecasts only for 4 days
into the future. River forecasts are typically issued once a day be-
tween 12Z and 18Z. If there is flooding, the forecasts may be up-
dated at every 6 h. In this study, we used only those historical
forecasts that have both forecasts and verifying observations for
at least 4.5 days within the 5-day forecast horizon. This criterion
yielded an approximately equivalent sample size of 6–8 years in
all basins. At ABRFC, the QPF is currently input only for the first
12 h into the future beyond which zero precipitation is assumed.
The RFC began this practice on July 16, 2001. Before then, QPF
was input for the first 24 h of lead time. The river stage forecasts
Fig. 1. Map of the study loca
were converted to discharge forecasts using the current rating
curves, i.e., the relation between discharge and stage, used opera-
tionally at the RFC. In reality, rating curves may change over time
due to, e.g., scouring and deposition of silt. As such, we are neglect-
ing the uncertainties associated with possible changes in the rating
curves in the period of record. Due to lack of data, however, this
and other observational uncertainties (e.g., instrument, reporting
and precision errors) are not considered in this work.
4. Application

Forecasts and verifying observations are grouped into several
categories, and the model is applied for each category and for each
lead time. In this section, we provide details on the categories and
how they are formed, followed by an interpretation of the model
parameters.
4.1. Categorization of Flow and QPF

The ARX(1,1) model of Eq. (4) is conditioned categorically on
the magnitude of the probability-matched single-valued stream-
flow forecast and the magnitude of the appropriate QPF (see Ta-
ble 1). The probability-matched single-valued forecast is obtained
by matching the CDF of the forecast flow with that of the verifying
observed flow (e.g., Hashino et al., 2007). The probability-matched
forecast is used mainly to reduce the impact of forecast biases. In
this study, the climatological median (i.e., 50th percentile) of ob-
tions and drainage area.



Table 2
Selected three locations in the Arkansas-Red Basin River Forecast (ABRFC)’s service area. Basins are sorted by increased drainage area.

Basin Drainage
area (km2)

Annual
rainfall (mm)

# Of days
with held

# Of cross
validation periods

Climatological observed flows exceeding below mentioned
percentiles (cms)

50th 90th 95th

Illinois River near Tahlequah, OK [TALO2] 2484 838 389 7 13 53 88
Illinois River near Watts, OK [WTTO2] 1615 1171 349 8 10 33 54
Blue River near Blue, OK [BLUO2] 1233 1092 354 7 3 11 21
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Fig. 2. Optimal regression constants (i.e., b-values) for all five different flow regimes and for the entire forecast horizon. Each panel corresponds to a flow regime and each
curve corresponds to a specific basin.
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served flow was used to categorize the bias-adjusted (i.e. via prob-
ability matching) forecast flow as low (i.e., below-median) or high
(i.e., above-median). Note that the ‘‘low’’ and ‘‘high’’ designation is
only for categorization only and should not be interpreted literally.

For categorization of QPF, we used three different QPFs in this
work, i.e., the QPF valid for the first 12 h of lead time, labeled
QPF612, the QPF valid for the first 24 h of lead time, labeled QPF624,
and the QPF valid for the first 12–48 h of lead time, labeled QPF>12.
As the current operational practice of using the first 12 h QPF indi-
cates, QPF612 is a skillful predictor of future flow conditions, but
not for large flow conditions that may result from significant pre-
cipitation beyond the first 12 h. These large flow conditions may be
identified by conditioning on QPF beyond the first 12 h. As such, we
include QPF612 and QPF>12 (i.e. QPF valid for 12–48 h ahead) in the
categorical predictor set for low flows for the first 12 h of lead time
and thereafter, respectively. Thus, for low flows, QPF categorization
is lead time-dependent and allows us to use different sets of pre-
dictors depending on the lead time. For large flows, we use QPF624.
The QPF624, i.e., the QPF valid for the first 24-h, is a skillful predic-
tor for large flows that may occur due to the QPF outside the first
12-h window. For large flows, QPF valid over the second 24 h of
lead time, however, loses skill very quickly. Therefore, only the
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Fig. 3. Error variance for all six different flow regimes and for the entire forecast horizon. Each panel corresponds to a flow regime and each curve corresponds to a specific
basin.
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QPF624 is considered. In this study, QPF amounts of 0 mm, between
0 and 12.7 mm, and above 12.7 mm are used as the thresholds for
categorization. Table 1 lists all categories of forecast flow and QPF
used in this work for categorical conditioning of Qf and P in Eq. (3).
4.2. Parameter estimation results

Parameter estimation solves for the regression coefficients and
the associated sample statistics, such as error variance, and pro-
vides information to assist in interpreting the streamflow forecasts.
Below, we interpret the regression coefficients and the error
variance.
4.2.1. Regression coefficients, bk+1

Figs. 2 and 3 show the optimal bk+1 values and the correspond-
ing error variance estimates (i.e., sample variances of Ek+1 in Eq.
(4)), respectively, for the entire 5-day forecast horizon for all six
categories for all three basins. Each panel in the figures corre-
sponds to a specific category of the flow and QPF combination,
and each curve corresponds to a basin. To aid interpretation of
Fig. 2, we examine the qualitative behaviors of bk+1 through its
least-squares solution in the normal space using Eq. (4) (see also
Seo et al., 2006):

bkþ1 ¼
1� qðZo;kþ1; Zo;kÞ � qðZf ;kþ1; Zo;kÞ þ qðZf ;kþ1; Zo;kþ1Þ

2f1� qðZf ;kþ1; Zo;kÞg
ð8Þ

where q(,) denotes the correlation between the two variables in the
argument. If the single-valued forecast has no skill, we have q(Zf,-
k+1,Zo,k+1) = 0 and may assume q(Zf,k+1,Zo,k) � 0, with which Eq. (8)
is reduced to bk+1 � {1 � q(Zo,k+1,Zo,k)}/2. In very high flow situa-
tions, we have q(Zo,k+1,Zo,k) � 0 and hence bk+1 � 1/2, i.e., equal
weights are given to the observed flow at time step k and the model
forecast for time step k + 1. In very low flow situations, we have
q(Zo,k+1,Zo,k) � 1 and hence bk+1 � 0, i.e., no weight is given to the
model forecast. The bk+1 � 1/2 result above is a reflection of the fact
that the constrained optimal solution for combining two indepen-
dent predictions of the same variability with no a priori information
is the arithmetic average of the two (Schweppe, 1973). In the other
extreme, if the single-valued forecast is perfect, i.e., q(Zf,k+1, Zo,k+1) -
� 1, we have bk+1 = 1. In reality, bk+1 is optimized under the mean
CRPS criterion in the original space and the arguments in the corre-
lation coefficients are the regression-predicted observed flow rather
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than the actual observed flow. As such, one may not expect the
above behaviors necessarily to hold. The above observations never-
theless help understand the bk+1 patterns shown in Fig. 2 as ex-
plained below.

Fig. 2 shows that the optimal values of bk+1 range from slightly
below zero to greater than unity. Qualitatively, the general pat-
terns for bk+1 are similar among the three basins, but with excep-
tions. For BLUO2, which is the smallest of the three basins
shown, there are instances where bk+1 spikes up or down rather
abruptly. Examination of the mean CRPS as a function of bk+1

(not shown) indicates that the objective function is often not very
sensitive to bk+1 particularly outside of [0,1], and that many differ-
ent bk+1 values over a wide range may yield ensembles of compa-
rable quality. Given the first of the two observations above, we
might have constrained the feasible region of bk+1 to be [0,1] (see
Gneiting et al., 2005, for example).

The following observations may be made in Fig. 2. For forecasts
in the below-median flow conditions (left panels), the bk+1 values
are consistently small for the first few lead times and large for
longer lead times. Small values of bk+1 indicate a relatively large
contribution from the recently observed flow in the predictand
due to increased persistence in the low flow (i.e. below median)
conditions. As expected, the contribution from persistence is the
strongest for forecasts in the below-median flow conditions with
zero QPF (upper left). With increasing QPF, however, persistence
is either limited only to the first few lead times (middle left) or
nearly absent (lower left). Large values of bk+1 indicate larger con-
tributions from the operationally-produced single-valued forecast;
they are seen at long lead times in the below-median flow condi-
tions (left panels) where the influence of persistence and the effect
of basin memory diminish. For forecasts in the above-median flow
conditions (right panels), the values of bk+1 are consistently close to
unity for the first few lead times. The bk+1 values for BLUO2, which
has the smallest drainage area of the three basins, are generally
smaller due presumably to lower skill in the operationally-pro-
duced single-valued forecast and shorter basin memory. The large
bk+1 values for high flow (i.e. above median) conditions indicate
skill in the single-valued forecast. It is interesting to note that,
for forecasts in the high-flow conditions with zero QPF (upper
right), bk+1 decreases to rather small values at the intermediate
lead times, due presumably to persistence in basin memory in
the absence of significant precipitation forcing. The sudden drop
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in the bk+1 values for the forecasts in the high flow conditions with
large QPF (lower right) is due to the lack of skill in the operation-
ally-produced single-valued streamflow forecast at those lead
times where the zero QPF, assumed beyond the first 12–24 h, takes
effect. For the high flow conditions with moderate QPF (middle
right), the bk+1 values remain large and steady for the entire fore-
cast horizon, an indication that, for this category, the operation-
ally-produced single-valued forecast provides larger skill than
the observed flow at the forecast time except for the smallest ba-
sin, BLUO2.
4.2.2. Sample error variance, r2
Ekþ1

Fig. 3 shows the error variance, r2
Ekþ1

, in the normal space for all
basins and categories. It reflects the normalized uncertainty asso-
ciated with the predictand. Note that, due to sampling uncertainty,
the curves in Fig. 3 are not strictly monotonically non-decreasing.
As one would expect, the zero QPF categories show the largest pre-
dictability; the r2

Ekþ1
values continue to increase with increasing

lead time. As the QPF increases, however, the predictability de-
creases (middle and bottom panels). For the large QPF categories,
the r2

Ekþ1
values plateau well before the nominal maximum forecast

lead time of 5 days is reached. Fig. 3 hence provides categorical
assessment of the effective lead time of the operationally-pro-
duced single-valued forecast. Fig. 3 also shows clearly that predict-
ability increases with basin size and hence the memory of the
initial conditions and the relative skill in the QPF. For flood fore-
casting, the category of high flow and large QPF is the most impor-
tant; the lower right panel shows that the effective lead times of
the operationally-produced single-valued forecast for this category
are approximately 1, 1.5 and 2 days for BLUO2, WTTO2 and TALO2,
respectively.
4.2.3. Parametric uncertainty
Fig. 4 shows the bk+1 estimates for WTTO2 obtained from the

cross validation experiment in which different periods are with-
held (see Table 2 for the number of days withheld). The figure is
useful in assessing parametric uncertainty in bk+1 due to sampling.
For the most part, the bk+1 estimates from the entire data set are
enveloped by the cluster of estimates from cross validation. At cer-
tain lead times, however, the bk+1 estimates from the cross valida-
tion experiment depart greatly from the cluster. As noted above,
these large departures in bk+1 result from rather small variations
in the objective function value and have little impact on the quality
of the ensembles. Fig. 5 shows the error variance, r2

Ekþ1
, values asso-
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ciated with the bk+1 estimates shown in Fig. 4. Note that, compared
to the bk+1 estimates, the error variance values are much more sta-
ble, but that, for certain categories (middle left and lower right, in
particular), significant sampling effects exist in the magnitude of
the uncertainty modeled. The above results suggest that the proce-
dure can benefit from a larger sample size.
5. Performance evaluation

To evaluate the performance of the model, two types of exper-
iments, dependent validation and cross validation, were carried
out. The first experiment used all available data for parameter esti-
mation and ensemble generation. In the second experiment, part of
the data was withheld for parameter estimation and ensembles
were generated only for the withheld period (see Table 2 for the
number of days withheld). This was repeated until the union of
all withheld periods exhausted the entire period of record. The
experiment resulted in 7 cross-validated periods for BLUO2 and
TALO2, and 8 for WTTO2 (see Table 2). The number of ensemble
members generated is 1000 throughout this work; the choice of
the large number is to reduce sampling uncertainties. Ensemble
forecasts are also referred to herein as ensemble hindcasts because
the ensemble forecasts are generated in a hindcasting mode. The
model performance was evaluated by assessing different aspects
of quality of ensemble hindcasts that generated in both dependent
and cross-validation modes. Various aspects of forecast quality are
discussed via calculating both, single-valued and ensemble fore-
cast based verification metrics and visual examination of hydro-
graphs of ensemble forecasts for different hydrologic conditions.

5.1. Single-valued forecast verification

As mentioned in Section 1, one of the objectives of HMOS is to
produce streamflow ensemble forecasts that, in addition to provid-
ing probabilistic forecasts, improve over the operationally-pro-
duced single-valued forecasts in some single-valued sense as
well. To that end, we compare the correlation coefficient (CORR)
and mean error (ME) of the HMOS ensemble mean hindcasts to
those of the operationally-produced single-valued forecasts for
all lead times by conditioning on the verifying observed flow of
varying magnitude, expressed as different percentiles of the clima-
tological observed flows. The ME is calculated as the mean of the
difference between the forecast and the observation. Therefore, a
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positive or negative ME indicates over- or under-forecasting in the
mean sense, respectively. Figs. 6 and 7 show the CORR and ME,
respectively, for all basins for different ranges of observed flow.
The statistics are calculated for all hindcasts from the cross-valida-
tion experiment conditioned on the verifying observed flow
exceeding the 50th, 90th and 95th percentiles of the climatological
observed flow. Fig. 6 shows that the CORR values for the HMOS-
generated ensemble mean forecast is comparable to those of the
operationally-produced single-valued forecast for all basins and
for all categories. We may summarize Fig. 7 as follows. The nega-
tive bias in the operational forecast is small for the first few lead
times, but more pronounced at long lead times for large observed
flow. The very large low bias in the operationally-produced single-
valued forecast at long lead times is due to the zero-QPF assump-
tion beyond the first 12–24 h of lead time. The bias in the HMOS
ensemble mean is substantially smaller, particularly for large
flows. The HMOS-generated ensemble mean forecasts, however,
tend to have a high bias unconditionally (upper left) and for all ver-
ifying observed flows exceeding the climatological median (upper
right). Note also that, while the ensemble mean forecasts substan-
tially reduce the low bias for high flows (bottom panels), they are
still biased low significantly. It illustrates the difficulty of correct-
ing large biases completely.

5.2. Ensemble forecast verification

The quality of ensemble hindcasts is assessed by calculating a
variety of ensemble verification metrics using the Ensemble Verifi-
cation System (EVS) developed by the NWS Office of Hydrologic
Development (OHD) (Brown et al., 2010). Detailed description of
the metrics may be found in Jolliffe and Stephenson (2003) and
Wilks (2011). Here we present only the mean CRPS, reliability dia-
gram and Relative Operating Characteristic (ROC). The mean CRPS
is a summary performance measure that considers the entire dis-
tribution of an ensemble forecast (Hersbach, 2000). It reduces to
the mean absolute error (MAE) for deterministic forecasts, and
hence allows comparison of the HMOS-generated ensemble hind-
casts with the operationally-produced single-valued forecasts.
Fig. 8 shows the mean CRPS of the ensemble hindcasts and the
MAE of the operationally-produced single-valued forecast. Increas-
ing mean CRPS and MAE with increasing lead time indicates
decreasing skill with increasing lead time. Note that the mean CRPS
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of the HMOS-generated ensemble hindcasts is generally smaller
than the MAE of the operationally-produced single-valued fore-
casts at short lead times. At large lead times, however, the mean
CRPS of the ensemble hindcasts is generally larger than the MAE
of the single-valued forecasts unconditionally and for verifying
observations greater than the 95th percentile of the climatological
observed flow. For verifying observations of 99th percentile and
greater, on other hand, the mean CRPS of the ensemble hindcasts
is generally smaller than the MAE of the single-valued forecasts
at large lead times. It may seem counterintuitive that the mean
CRPS of the ensemble hindcasts is not consistently smaller than
the MAE of the single-valued forecasts. The above result arises be-
cause reducing the ME tends to increase the mean square error
(MSE). For large flows, however, the single-valued forecasts are
very much biased on the low side and hence reducing the ME re-
duces the MSE as well.

Fig. 9 shows the reliability diagrams for ensemble hindcasts
from dependent (upper panel) and cross (lower panel) validation
for BLUO2 for thresholds of 50th (left panel) and 95th (right panel)
percentiles of climatological observed flow. Reliability diagrams
measure conditional unbiasedness of the forecast probabilities rel-
ative to the observed frequencies (Wilks, 2011; Jolliffe and
Stephenson, 2003). The diagrams indicate that ensemble hindcasts
are reliable at the 50th-percentile threshold for all 5 days into the
future. The reliability diagrams at the 95th-percentile threshold
indicate that the ensembles hindcasts are generally reliable out
to Day 3. Lack of high forecast probabilities >0.8 beyond Day 3 indi-
cate forecasts with insufficiently high probabilities. This is because
probabilities lose sharpness with forecast lead time and mimic cli-
matology. Note that, at high thresholds, the reliability diagrams are
more likely to be subject to significant sampling errors due to small
sample size. For both thresholds, the histograms of predicted prob-
ability indicate sharp ensemble forecasts (i.e., ‘L’ or ‘U’ shaped). The
above suggest that the probabilistic forecasts are not very reliable
at large lead times and for high thresholds due to very large biases
in the single-valued forecasts. Recall that, beyond the first 48 h, no
precipitation was assumed for QPFs. The resulting bias in stream-
flow forecasts is very large, which makes statistical correction
based on linear regression in the normal space very difficult. Note
that, at these long lead times, not only the single-valued forecasts
are severely biased but they are also without skill, which adds to
the difficulty. Similar reliability diagrams were observed between
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Fig. 9. Reliability plots for 50th and 95th percents of observed flows, for 6-, 24-, 48-, 96- and 120-h forecast lead time, for BLUO2. Top and bottom row corresponds to
dependent and cross validation periods, respectively.
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the two different validation modes, an indication that the period of
record used in this work is reasonable.

The mild ‘‘S shapedness’’ of the diagrams shown in Fig. 9 is due
to the assumption in the regression model used in this work that
the mean and variance of the residual in the normal space are
the same over all ranges of the residual. In reality, however, these
statistics are dependent on the magnitude of the residual. By using
conditional mean and variance, rather than unconditional mean
and variance, it is possible to remove the S shapedness. To reliably
estimate the conditional statistics, however, one needs a much lar-
ger data set which, at least in is not currently available in NWS.

The ROC connects the (false alarm rate [FAR], hit rate [HR])
combinations associated with different levels of forecast probabil-
ity for the user-defined event. The ROC curve measures discrimina-
tory skill, i.e., the forecast’s ability to discriminate between two
different observed outcomes. In the context of short-term hydro-
logic forecasting, the ability to distinguish flood events from non-
flood events, and critical stage levels such as action stage from reg-
ular stages are of the greatest interest. As such, we define two
events of the observed flow exceeding the 95th and the 99.5th per-
centiles of the climatological observed flow for the ROC analysis.
We also calculate the HR and FAR for the single-valued forecast
for both events for comparison. Because, by definition, the dis-
charge levels do not approach the above two thresholds most of
the times, the FAR of almost any forecast would be very small,
thereby rendering comparative evaluation difficult. To reduce the
dominant effect of correctly forecasting low flows, we calculated
the above statistics considering only those data points for which
the verifying observed flow exceeds the 50th percentile of the cli-
matological observed flow. The resulting conditional statistics of
ROC, HR and FAR then assess discrimination under a tougher crite-
rion. Fig. 10 shows that, overall, the ensemble forecasts exhibit
good discrimination out to Day 2 even for large events. Comparison
of the (HR, FAR) positions of the single-valued forecast with those
of the ROC curves suggests better or comparable discrimination by
the ensemble forecast in that the ROC curves encompass or match
the corresponding (HR, FAR) positions for all lead times and for
both thresholds. The ensemble hindcasts from cross validation
(lower panel) exhibit slightly and noticeably decreased event dis-
crimination than those from calibration (upper panel) for the
95th and 99.5th thresholds, respectively, an indication that the
performance may be improved by increasing the sample size.

5.3. Visual examination of hydrographs

The operations concept for the HMOS forecast is to visualize it
alongside the single-valued forecast to provide a measure of the
magnitude and direction of the bias that may be present in the sin-
gle-valued forecast and a sense of the uncertainty bound in the
bias-corrected forecast. Fig. 11 illustrates such a concept. Examples
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of HMOS-produced ensemble forecasts for different hydrologic
conditions are presented in Fig. 11. The single-valued operational
forecast (red) and corresponding verifying observed flow (green),
ensemble members (black), and ensemble mean (blue) are plotted
on the same panels. The future streamflow and precipitation con-
ditions and the corresponding category (see Table 1) are denoted
for each lead time in color-filled circles at the top of each panel.
In general, the ensemble members encompass the verifying obser-
vation reasonably tightly and are able to reproduce the temporal
patterns of variability present in the observed flows. They indicate
that the modeling of the temporal dependence of the forecast error
and the approximations in sequential ensemble generation are rea-
sonable. The ensemble members are tight for the first few lead
times and relatively wider for long forecast lead times, a reflection
of the increased forecast uncertainty with increasing lead time. The
figure also shows dependence of the ensemble spread on the future
conditions. Note, for example, that the ensemble members for low
flow forecasts have a smaller spread than those for high flow
forecasts.
6. Conclusions

While the source-specific approach should generally be pre-
ferred in hydrologic ensemble forecasting, it requires modeling
of all significant sources of uncertainty and hence is a rather
expensive undertaking. Many agencies for operational hydrologic
forecasting have invested greatly in single-valued forecast sys-
tems, for which considerable institutional experience and exper-
tise may exist. As a transitional approach, bridging the above
two, one may consider producing probabilistic forecasts from
single-valued forecasts. To that end, we present a statistical pro-
cedure for generating short-term ensemble streamflow forecasts
from single-valued, or deterministic, forecasts produced opera-
tionally by the U.S. National Weather Service (NWS) River Fore-
cast Centers (RFC). The procedure, referred to as Hydrologic
Model Output Statistics (HMOS), generates ensemble traces of
streamflow from a parsimonious approximation of the condi-
tional multivariate probability distribution of future streamflow
given the single-valued streamflow forecast, the quantitative
precipitation forecast (QPF), and the most recent streamflow
observation. The resulting ensemble forecast provides an esti-
mate of the predictive uncertainty associated with the single-
valued forecast to support risk-based decision making by the
forecasters and by the users of the forecast products, such as
emergency managers. As a by-product, the technique provides
quantitative assessment of the effective lead time of the sin-
gle-valued forecast as a function of the magnitude of the forecast
flow and that of the QPF.
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For parameter estimation and evaluation of the procedure, we
used a multiyear archive of single-valued river stage forecasts for
several basins in Oklahoma, produced operationally by the NWS
Arkansas-Red River Basin River Forecast Center (ABRFC) in Tulsa,
Oklahoma. To evaluate the procedure, we carried out hindcasting
experiments in both dependent and cross-validation modes. The
results indicate that the short-term streamflow ensemble forecasts
generated from the proposed procedure are generally reliable
within the effective lead time of the single-valued forecast and
capture the skill in the single-valued forecast very well. For smaller
basins, however, the effective lead time for flood forecasting is
rather limited due to shorter basin memory and reduced skill in
the single-valued QPF. Recommendations for future research in-
clude improving classification of data, dealing with heteroscedas-
ticity (e.g., Montanari and Brath, 2004; Montanari and Grossi,
2008; Coccia and Todini, 2011; Bogner and Pappenberger, 2011),
and tail modeling (Bogner et al., 2012). It is acknowledged, how-
ever, that limited sample size, which is the norm with archived
operational forecasts, may inhibit some of these objectives.
As implemented here, the HMOS method uses three predictors,
i.e., the single-valued operational forecast, the QPF, and the most
recently observed streamflow. However, other skillful predictors
might be considered, depending on the basin characteristics. For
example, basins in cold regions that are driven by snowmelt may
be augmented by QTF. The proposed method is a generic statistical
method insofar as additional predictors may be considered in other
cases. However, any additional predictors should be selected care-
fully, because they increase the number of parameters to estimate
and hence the data requirements. The conditional distribution of
observed flows can be estimated either by developing a first-order
autoregressive model with multiple exogenous inputs, or by apply-
ing ARX(1,1) model on categories that are formed based on a new
set of predictors. If the relation between streamflow and the addi-
tional variables is complex and nonlinear then, for the same rea-
sons that QPF is not directly included in the regression, the
conditioning variables may be categorical rather than continuous.

The current version of the HMOS prototype is a self-contained
FORTRAN executable wrapped with a JAVA model adapter to oper-
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ate within the Community Hydrologic Prediction System (CHPS).
The software is coded specifically to the variables and classification
schemes used in this study. However, a degree of modularity
should allow the software to be integrated into another system,
and also provides flexibility to modify the code to incorporate
additional variables. The software generates ensemble of stream-
flows provided the parameters and time series of QPF and stream-
flow in the prescribed format. So far, the prototype software has
been successfully piloted at the ABRFC in CHPS.
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Appendix A

The dependence between the error and recent observed values
in the normal space is accounted as below mentioned.

r2
Zo;kþ1

¼ ð1� bkþ1Þ2r2
Zo;k
þ fcr2

Ekþ1
ðA1Þ

where

fc ¼ 1þ 2ð1� bkþ1ÞqðZo;k; Ekþ1Þ
rZo;k

rEkþ1

ðA2Þ

Note that, in terms of variance propagation, Eq. (A1) is equiva-
lent to:

Zo;kþ1 ¼ ð1� bkþ1ÞZo;k þ bkþ1Zf ;kþ1 þ
ffiffiffiffi
fc

p
Ekþ1; fc P 0 ðA3Þ

where Zo,k and Ek+1 are assumed to be independent. If fc is negative,
we assume that there is no white noise being added at the current
time step, and that all uncertainty at the current time step is prop-
agated from the previous time step. This is achieved by adjusting
bk+1 in Eq. (A1) by dbk+1 so that we have for Eq. (A1):

Zo;kþ1 ¼ ð1� bkþ1 � dbkþ1ÞZo;k þ ðbkþ1 � dbkþ1ÞZf ;kþ1 ðA4Þ
r2

Zo;kþ1
¼ ð1� bkþ1 � dbkþ1Þ2r2

Zo;k
ðA5Þ

The adjustment dbk+1 may be calculated by equating the right-
hand side (RHS) of Eq. (A5) with the RHS of Eq. (A1), which yields
for dbk+1:

dbkþ1 ¼ 1� bkþ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� bkþ1Þ2 þ fc

r2
Ekþ1

r2
Zo;k

vuut ðA6Þ

Of the two solutions in Eq. (A6), we chose the one that produces
a smaller dbk+1. Note that Eqs. (A1)–(A6) are only an approximation
in that, while they guarantee the accuracy of r2

Zo;kþ1, they do not
capture the correlation between Zo,k and Ek+1. The motivation for
the above approximation over other techniques such as state aug-
mentation, is that, for HMOS, accurate modeling of r2
Zo;kþ1 is con-

sidered more important than capturing the correlation between
Zo,k and Ek+1.
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