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Methodology (c )
+ Applying advanced data assimilation techniques to distributed modeling lll. Gridded SAC-SMA / Kinematic-wave Routing Models of HL-RDHM
holds great potential for improving operational streamflow forecasting,
particularly in light of increasing computing power and the availability of
remotely sensed data with high spatial and temporal resolutions.

Baseflow—  Channel routing

* The objectives of this work are to 1 YooY
1) Integrate an ensemble-based data assimilation framework (i.e. Surface runoff S:A '“‘:“:‘ S‘a‘esl . .
Ensemble Kalman Filter (EnKF)) within the National Weather Service | ineror gauges o
(NWS) Hydrology Lab’s Research Distributed Hydrologic Model (HL-

RDHM);

2) Assess the performance of this ensemble framework in estimating flows
as compared to observed flows, flows derived from stand alone HL-RDHM
and from a deterministic DA technique (i.e. four dimensional variational
data assimilation (4DVAR)).
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Gridded forcing/parameters

p d (4km); PE:
SAC-SMA parameters: Derived from STATSGO data
Routing parameters: Derived from DEM and hydraulic data
(Koren et al., 2004; Smith et al., 2004)

map

Hillslope routing

Channel connectivity map

a) Focus c) Sensitivity test (15t event)
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Left: Eldon basin (ELDO2)

Biggest four events of the dataset
1t June 21-23, 2000 (Queq = 1549 cms )
204 April 22-26, 2004 (Qpqqy = 1255 cms )

Baseline setting (BS):
Precipitation uncertainty variance (C,): 0.5mm?2
Flow measurement error variance (C,,): (Q/60)*
Ensemble size (N): 50

31 April 6-12, 2002 (Qpeqy = 445 cms)

4th: Dec.15-21, 2001 (Qpeq = 368 cms) Scenarios
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Step 2: Minimize
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x»]’kl[zfu (X, X, X,)]  Z: flow measurement
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+%[ZU —Hy, (X, X, X Ry[Z, —H (X, X, X,)] Zy: soil moisture meas.

* The EnKF is configured with the setting of Baseline scenario and applied in flow simulation.

1. Flow simulation
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