
Constraining Land Surface and Atmospheric Parameters of a Locally Coupled Model
Using Observational Data

YUQIONG LIU, HOSHIN V. GUPTA, SOROOSH SOROOSHIAN,* LUIS A. BASTIDAS,� AND

WILLIAM J. SHUTTLEWORTH

Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona

(Manuscript received 4 May 2004, in final form 9 September 2004)

ABSTRACT

In coupled land surface–atmosphere modeling, the possibility and benefits of constraining model param-
eters using observational data bear investigation. Using the locally coupled NCAR Single-column Com-
munity Climate Model (NCAR SCCM), this study demonstrates some feasible, effective approaches to
constrain parameter estimates for coupled land–atmosphere models and explores the effects of including
both land surface and atmospheric parameters and fluxes/variables in the parameter estimation process, as
well as the value of conducting the process in a stepwise manner. The results indicate that the use of both
land surface and atmospheric flux variables to construct error criteria can lead to better-constrained pa-
rameter sets. The model with “optimal” parameters generally performs better than when a priori param-
eters are used, especially when some atmospheric parameters are included in the parameter estimation
process. The overall conclusion is that, to achieve balanced, reasonable model performance on all variables,
it is desirable to optimize both land surface and atmospheric parameters and use both land surface and
atmospheric fluxes/variables for error criteria in the optimization process. The results also show that, for a
coupled land–atmosphere model, there are potential advantages to using a stepwise procedure in which the
land surface parameters are first identified in offline mode, after which the atmospheric parameters are
determined in coupled mode. This stepwise scheme appears to provide comparable solutions to a fully
coupled approach, but with considerably reduced computational time. The trade-off in the ability of a model
to satisfactorily simulate different processes simultaneously, as observed in most multicriteria studies, is
most evident for sensible heat and precipitation in this study for the NCAR SCCM.

1. Introduction

The ever-growing large family of land surface
schemes (e.g., Sellers et al. 1986; Dickinson et al. 1986,
1993) has initiated a suite of intercomparison and
evaluation projects, such as the Project of Intercom-
parison of Land Surface Parameterization Schemes
(PILPS; Henderson-Sellers et al. 1995) and the Global
Soil Wetness Project (GSWP; Dirmeyer et al. 1999).
These offline (or stand-alone) studies allow the evalu-
ation of performances of land surface schemes without
the complications associated with the errors in the at-

mospheric components of global climate models. More
recently, with the increasing availability of global ob-
servations from ground- and space-based systems, of-
fline land surface modeling studies have matured into
interesting projects such as the Global Land Data As-
similation System (GLDAS; Rodell et al. 2004) and
the North American Land Data Assimilation System
(NLDAS; Cosgrove et al. 2003), which are capable of
producing reliable, high-resolution estimates of land
surface water and energy fields to facilitate predicting
weather and climate. Regardless all of these benefits,
offline studies prevent the investigation of the interac-
tions and feedbacks between the land surface and the
atmosphere, leaving unanswered questions regarding
the relevance of these offline applications to the fully
coupled land–atmosphere system and the suitability of
the land surface schemes validated in an offline mode
to operational numerical weather forecasting and cli-
mate prediction models. A few studies have suggested
that offline experiments can lead to misleading results
and thus do not provide reliable information on the
performance of a land surface scheme in global climate
models (e.g., Koster and Eagleson 1990; Dolman and
Gregory 1992; Pitman et al. 1993; among others).
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As the performance of a land surface model is inevi-
tably affected by the choice of model parameters, simi-
lar questions also arise regarding how feedbacks within
the coupled system affect the identification of “opti-
mal” model parameters and whether parameter values
estimated via offline methods are suitable to the
coupled land–atmosphere system. Sen et al. (2001) re-
ported statistically significant changes in the simulated
temperature and precipitation fields of a global climate
model when “optimal” values of some vegetation pa-
rameters derived from an offline calibration of the land
surface model were applied, indicating that the choice
of surface parameter values can significantly influence
the surface climate simulated by a global climate
model. It is, then, of interest to examine whether the
parameter estimations for a coupled system are consid-
erably affected by model-generated surface climate. Up
to the present, little or no attention has been paid to the
estimation of parameters of land–atmosphere models in
a coupled mode, where the effects of land–atmosphere
interactions on the identification of optimal parameters
can be taken into account, and calibration can be per-
formed on both land and atmospheric parameters. Fur-
ther, as indicated by Gupta and Sorooshian (1985), the
quantity and quality of data play a critical role in de-
termining the success of the parameter estimation pro-
cedure, and the informativeness of the data is far more
important than the length and amount used for param-
eter estimation. In the coupled environment, data re-
lated to both land surface and atmospheric fluxes/
variables can be used to facilitate more effective extrac-
tion of information from the observations to constrain
the estimation of model parameters.

Over the past two decades, the issue of model cali-
bration has received substantial attention within the hy-
drological and land surface modeling community. For
example, Sellers et al. (1989) calibrated the Simple
Biosphere Model (SiB; Sellers et al. 1986) to five
2-week periods of field data via manual adjustment of
nine model parameters. More recently, Lettenmaier et
al. (1996) reported at the PILPS-2c workshop that sub-
jective manual calibration of some model parameters
led to significantly improved model performances. Sub-
stantial research has also been devoted to the develop-
ment of automatic methods, such as the shuffled com-
plex evolution algorithm (SCE-UA; Duan et al. 1992)
and the multiobjective complex evolution algorithm
(MOCOM-UA; Yapo et al. 1998). Sorooshian et al.
(1993) employed the global optimization algorithm
SCE-UA to successfully calibrate the Sacramento Soil
Moisture Accounting model (SAC-SMA; Burnash et al.
1973), while Gupta et al. (1998, 1999) and Xia et al.
(2002) used MOCOM-UA to conduct multiobjective
calibrations for the SAC-SMA, the Biosphere–
Atmosphere Transfer Scheme (BATS 1e; Dickinson et
al. 1993), and the Chameleon Surface Model (CHASM;
Desborough 1999), respectively. These calibration stud-

ies, although all conducted in an offline mode, can pro-
vide valuable guidance for parameter estimations in a
coupled system as is performed in this study.

In light of the current infeasibility of optimizing all
the parameters directly within a fully coupled global
model, this study investigates the application of a mul-
ticriteria parameter estimation method to the locally
coupled environment of a single-column model (SCM),
with attention given to the parameters and fluxes/
variables of both the land and atmospheric components
of the model. The primary goal is to explore the feasi-
bility and effects of performing model calibration in a
locally coupled environment, and the manner in which
different types of observational data can be used to
constrain parameter and simulation uncertainties. In
section 2, the locally coupled SCM and land surface
model used in this study are introduced briefly, along
with a brief description of the data used to drive and
evaluate the models. The parameter estimation proce-
dure is presented in section 3. Analyses of the results
from a set of single-step coupled optimization cases fol-
low in section 4. The results from three additional step-
wise cases are presented and compared in section 5,
while section 6 is devoted to discussions and concluding
remarks.

2. Models and data

The locally coupled National Center for Atmo-
spheric Research Single-column Community Climate
Model (NCAR SCCM, hereinafter referred to as the
SCCM), and the offline version of the land surface
model coupled to the SCCM, the NCAR Land Surface
Model (NCAR LSM, hereinafter referred to as the
LSM), were used in this study.

a. The LSM

The LSM is a one-dimensional, time-dependent
model describing the momentum, energy, water, and
CO2 flux exchanges and interactions between land sur-
faces and the atmosphere (Bonan 1996). The model
allows for multiple surface types in a single grid cell,
accounting for ecological differences among 12 differ-
ent vegetation types, and takes into account the optical,
thermal, and hydraulic differences among 8 different
soil types with different combinations of percentages of
sand, silt, and clay. The atmospheric forcing terms re-
quired to drive the model include incident direct and
diffuse solar radiation, incident longwave radiation,
convective and large-scale precipitation, specific hu-
midity, temperature, pressure, wind, and reference
height. When driven by these forcing terms, which can
be generated by an atmospheric model or specified
from observations, the LSM calculates diffuse and di-
rect surface albedos, zonal and meridional momentum
fluxes, constituent fluxes (H2O and CO2), surface-
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emitted longwave radiation, surface sensible and latent
heat fluxes, soil and vegetation temperatures, and soil
moisture contents. For details of the model physics, in-
terested readers are referred to Bonan (1996), in which
a comprehensive description about the model is pro-
vided.

The LSM has been used in a number of ecological,
hydrological, and atmospheric studies. For example,
Bonan et al. (1997) and Lynch et al. (1999) compared
the LSM-simulated surface fluxes to the observations
for the boreal forest sites in Canada and the tundra
ecosystems in Alaska, respectively; Lynch et al. (2001)
used a multivariate reduced form model to investigate
the sensitivity of the LSM to perturbations in climate
forcing. Other LSM-related studies include Bonan
(1995a) and Craig et al. (1998), in which the LSM was
used to investigate the land–atmosphere CO2 ex-
changes; Bonan (1995b), in which the sensitivity of a
GCM simulation to the inclusion of inland water sur-
faces was explored; and Bonan (1997, 1999), in which
the effects of land cover changes on the climate of the
United States were studied.

In this study, the parameterization of canopy evapo-
transpiration of the LSM was slightly adjusted to allow
for more reasonable simulations of latent and sensible
heat fluxes. In the original LSM, the canopy evapo-
transpiration is calculated based only on energy avail-
ability, with no constraint of water availability, resulting
in unrealistic surface energy partitions. For details, in-
terested readers are referred to Liu et al. (2003), where-
in an effective parameterization adjustment was made
with a maximum canopy evaporation constraint, lead-
ing to significantly improved model performances.

b. The SCCM

The SCCM is a single-grid column model developed
from the NCAR global climate model Community Cli-
mate Model Version 3 (CCM3). The physical param-
eterizations in the SCCM, such as those of radiation,
clouds, deep and shallow convection, large-scale con-
densation, and boundary layer processes, are the same
as those in the CCM3. Kiehl et al. (1996) provided more
details on the physical parameterization of the CCM3.
The advantage of using the SCCM instead of the fully
coupled CCM3 is that single-column model applica-
tions can avoid huge computational expenses and the
difficulty of separating the effects of specific parameter-
izations from those of other complicated interdepen-
dent processes (Xu and Arakawa 1992; Randall et al.
1996). The SCCM, however, lacks the horizontal feed-
backs available in the more complicated three-
dimensional CCM3, making it necessary to prescribe
the horizontal advective tendencies using observations
or analysis data. Interested readers may refer to Hack
et al. (1999) and Randall and Cripe (1999) for informa-
tion about specifying the effects of neighboring col-
umns in the SCCM.

c. Data

In this study, both the offline LSM and the locally
coupled SCCM were driven and evaluated using an in-
tensive operational period (IOP) dataset from the
southern Great Plains (SGP; http://www.arm.gov/docs/
sites/sgp/sgp.html) Clouds and Radiation Testbed
(CART) of the Atmospheric Radiation Measurement
(ARM; www.arm.gov) Program. The data have previ-
ously been subjected to a constrained variational analy-
sis (Zhang and Lin 1997; Zhang et al. 2001), with all
relevant variables representing areal means over an
SCM domain enclosed by 12 facilities centered around
a central facility (36.61°N, 97.49°W; 320 m above sea
level). This IOP dataset extends for 17.5 days from 0530
UTC 18 July 1995 (0030 local time) to 1730 UTC 4
August 1995 (1230 local time) and represents various
summer weather conditions, including several intensive
precipitation periods.

The IOP dataset contains both single-level variables,
such as surface heat fluxes, ground temperature, sur-
face net downward radiation, precipitation, surface
pressure, and surface winds, and multilayer fields, such
as temperature, specific humidity, winds, vertical veloc-
ity, and horizontal and vertical advective tendencies for
temperature and specific humidity. To be consistent
with the default time step length (20 min) of the SCCM
and the LSM, all the variables available in this IOP
dataset were interpolated1 at 20-min intervals based on
the original 3-h observational data using cubic spline
interpolation.

3. Parameter estimation procedure

The purpose of parameter estimation is to constrain
the space of model parameters to those exhibiting be-
haviors that are consistent with the available observa-
tional data. This problem can be presented in the form
of a mathematical optimization problem where one or
more model responses are optimized to become consis-
tent with their corresponding observations. Duan et al.
(1992) presented an effective global optimization
scheme, the SCE-UA, for single-criterion calibration
problems, while Yapo et al. (1998) introduced the
MOCOM-UA, which produces of a set of mutually
nondominated Pareto solutions (Goldberg 1989) or pa-
rameter sets for multicriteria calibration problems.

Besides the MOCOM-UA, distinct Pareto solutions
can also be obtained sequentially using classical multi-
objective optimization techniques, such as the weight-
ing method which transforms a multiobjective optimi-
zation problem into an equivalent single-objective op-
timization problem by allocating different weights to
the multiple objectives. In conjunction with the weight-
ing method, the single-objective algorithm SCE-UA

1 Done by John Pedretti as indicated in the NetCDF data file.
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can be used to solve multiobjective model calibration
problems as described in Gupta et al. (1998). To illus-
trate the weighting method, we consider a multiobjec-
tive optimization problem having n objectives { fj(�), j �
1, . . . , n} to be minimized simultaneously, where � rep-
resents the parameter set to be optimized. By allocating
a weight to each of the n objectives, the multiobjective
optimization problem can be converted into a single-
objective optimization problem as follows:

Minimize F ��� � �
j�1

n

wjfj��� subject to � ⊂ �, �1�

where wj (j � 1, . . . , n) are the weights and w1 � w2

�—� wn � 1, and � is the physically feasible param-
eter space; F(�) is a scalar objective function. This prob-
lem is easily solved using standard single-objective op-
timization algorithms such as the SCE-UA. An ap-
proximate Pareto set can be obtained by running the
optimization algorithm using different weight combina-
tions for the n objectives. For example, by allocating
equal weights {wj � 1/n, j � 1, . . . , n} to the objectives,
a compromise solution (i.e., the midpoint of the Pareto
set) can be obtained. Although it is relatively time con-
suming to approximate the entire Pareto space using
this weighting method, some studies (e.g., Yan and
Haan 1991; Leavesley et al. 1983) have reported that it
can achieve better model performance than pure single-
objective optimization algorithms.

In practice, because the objectives to be minimized
are usually in different units, the weighting method pre-
sented above cannot be applied directly. For example,
for a land surface model, it is usually necessary that at
least one surface heat flux (such as latent heat) and one
state variable (such as ground temperature) be simul-
taneously optimized to achieve desirable results (Gupta
et al. 1999). In this case, some transformation must be
performed on the different objectives to place them in
commensurable units (or make them unitless) so that
the objectives can be weighted and summed up to cre-
ate a single-objective optimization problem. One
simple and common approach is to normalize the ob-
jectives within reasonable lower and upper bounds. The
optimization problem can then be stated as

Minimize F ��� � �
j�1

n

wjf �j��� subject to � ⊂ �, �2�

with f �j��� �
fj��� � f j

min

f j
max � f j

min , �3�

where f min
j and f max

j are arbitrarily estimated minimum
and maximum objective function values for the jth ob-
jective.

In this study, because the complicated interactions
between the land surface and the atmosphere makes
the multiobjective algorithm MOCOM-UA somewhat
cumbersome, SCE-UA, combined with the modified

weighting method mentioned above, was used for the
parameter estimation for the SCCM. SCE-UA starts
with the random initial selection of a “population” of
points from the feasible parameter space, and the ob-
jective function values for each point are calculated.
The population is then partitioned into several com-
plexes based on the corresponding objective function
values. After evolving separately for a prescribed num-
ber of times based on the downhill simplex search al-
gorithm, the complexes, each containing new points
(offsprings), are unpacked back into a single group and
the “population” is shuffled and partitioned into new
complexes. The evolution and shuffling steps are re-
peated until a prescribed convergence criterion is sat-
isfied. The details about the SCE-UA can be found in
Duan et al. (1992). In this study, when weighting each
objective using Eq. (3), the ƒmin was set to zero and the
ƒmax was set to the corresponding objective function
value computed with the a priori or “default” param-
eters. To save computational time, the entire Pareto
front was not sought. Instead, equal weights were as-
signed to each objective and a Pareto ranking was per-
formed on the final optimal solutions to identify a sub-
set of Pareto optimal points (parameter sets) in the
region of the compromise point to analyze the optimi-
zation results.

4. Parameter estimation in a locally coupled mode

a. Case design

A locally coupled land surface–atmosphere model
consists of two important components (or submodels):
an atmospheric column and a land surface part. In the
case of the SCCM, the two parts are coupled with an
explicit time-stepping procedure: the land surface part
is driven by the calculated state of the atmosphere (pre-
cipitation, shortwave and longwave downward radia-
tion, air temperature, specific humidity, surface pres-
sure, zonal and meridional winds); the atmospheric part
is then updated with surface energy (latent and sensible
heat), constituents (H2O and CO2), momentum, and
radiative fluxes computed by the land surface part.
Hence, from the point of view of model parameter es-
timation, observations on both land surface and atmo-
spheric fluxes/variables (such as precipitation, radia-
tion, and air temperature) can be used to constrain the
selection of parameter sets. Further, both land surface
parameters ({�}) and atmospheric parameters ({	}) can
be adjusted during the parameter estimation process.

In this study, observations on two land surface fluxes
(latent heat 
E and sensible heat H), a land surface
state variable (ground temperature Tg), and three at-
mospheric forcing variables (precipitation Pcp, net
downward radiation at the surface Rnet, and air tem-
perature Ta) were used for parameter estimation. These
variables were selected based on the observations avail-
able and their expected critical importance in the land–
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atmosphere interface. In all cases, the root-mean-
squared error (rmse) of the residuals (differences be-
tween the observed and simulated quantities at each
time step) was used as the objective function. In the
case of precipitation, however, the rmse was computed
using the accumulative precipitation depth (millime-
ters) during a 6-h period (18 time steps) instead of the
average instant precipitation rate (meters per second)
over a single 20-min time step. Based on a previous
parameter sensitivity analysis study (Liu et al. 2004), 23
land surface parameters and 8 atmospheric parameters
(Table 1) were selected for optimization.

To explore different mechanisms and strategies for
parameter estimation in a locally coupled environment,

a series of cases was designed. The experiments were
categorized into 1) group A, in which only land surface
parameters {�} were optimized, while the atmospheric
parameters {	} were fixed at default values {	def}; 2)
group B, in which only atmospheric parameters {	}
were optimized, with {�} fixed at default values {�def};
and 3) group C, in which both land surface and atmo-
spheric parameters were optimized simultaneously.
Each group (A, B, or C) was further divided into 1) a
“first” case in which only land surface fluxes/variables
(including 
E, H, and Tg) were used for optimization,
2) a “second” case in which only atmospheric variables
(including Pcp, Rnet, and Ta) were used for optimiza-
tion, and 3) a “third” case in which both land surface

TABLE 1. Land surface and atmospheric parameters selected for optimization.

Parameter Default Lower Upper Description (units) Case D3

Nine parameters associated with vegetation (vegetation type � 11, crop) {�ofl}
1 ZOMVT 0.06 0.01 0.1 Momentum roughness length of vegetation (m) 0.09
2 ZPDVT 0.34 0.2 0.4 Displacement height (m) 0.30
3 RHOL2 0.58 0.35 0.58 Leaf reflectance in NIR 0.38
4 TAUL2 0.25 0.1 0.25 Leaf transmittance in NIR 0.14
5 XL �0.3 �0.4 0.6 Leaf orientation index 0.45
6 CH2OP 0.1 0.05 0.5 Maximum intercepted water per unit leaf area

index (lai) � stem area index (sai) (mm)
0.07

7 HVT 0.5 0.35 1 Top of canopy (m) 0.59
8 AVCMX 2.4 1 3 Temperature sensitivity parameter for

carboxylation
1.00

9 COVER 0.85 0.3 0.98 Vegetation cover fraction (%) 0.55

12 parameters associated with soil (soil color � 8)
10 RLSOI 0.05 0.004 0.1 Roughness length of soil (m) 0.028
11 WATSAT 0.435 0.33 0.66 Volumetric soil water content at saturation

(porosity)
0.643

12 HKSAT 4.19E-03 1.00E-05 0.1 Hydraulic conductivity at saturation
(mm H2O s�1)

0.056

13 SMPSAT �207 �750 �30 Soil matrix potential at saturation (mm) �345
14 BCH 5.772 3 10 Clapp and Hornberger “b” 6.01
15 WATDRY 0.122 0.02 0.3 Soil water content when evapotranspiration

stops
0.06

16 WATOPT 0.331 0.2 0.8 Optimal soil water content for
evapotranspiration

0.583

17 TKDRY 0.15 0.1 3 Thermal conductivity, dry soil (W m�1 K�1) 0.102
18 CSOL 2.20E�06 2.00E�05 5.00E�06 Specific heat capacity, soil solids (J m�3 K�1) 1.1E�06
19 ALBSAT1 0.05 0.05 0.12 Saturated soil albedo in visible (VIS) 0.116
20 ALBSAT2 0.1 0.1 0.2 Saturated soil albedo in near-infrared (NIR) 0.132
21 DZSOI1 0.1 0.05 0.2 Thickness for the first soil layer (m) 0.196

Two initial soil moisture conditions
22 H2OSOI1 0.3 0.01 0.4 Initial volumetric soil water content, first layer 0.182
23 H2OSOI2 0.3 0.1 0.5 Initial volumetric soil water content, second layer 0.28

Eight atmospheric parameters associated with deep convection and cloud fraction {	} Range
24 CAPELMT 70 0.01 3000 Threshold value of CAPE for deep convection

(J kg�1)
1471–1630

25 TAU 7200 2400 9600 Adjustment time scale for CAPE consumption
(s)

6360–6910

26 FMAX 0.0002 0.0001 0.0005 Max fractional entrainment rate of updrafts .0004–.0005
27 ALFA 0.1 0.01 0.5 Proportionality factor for downdraft mass flux

profile
0.26–0.31

28 RHMINL 0.9 0.7 0.98 Min relative humidity for low cloud formation 0.75–0.76
29 RHMINH 0.9 0.7 0.98 Min relative humidity for midlevel and high

cloud formation
0.97–0.98

30 CCONV 0.035 0.01 0.06 Coefficient for calculating column convective
cloud

0.012–0.016

31 RHCCN 0.1 0.05 0.3 Reduction on RHMINL for CCN rich land areas 0.29–0.30
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variables (
E, H, Tg) and atmospheric variables (Pcp,
Rnet, Ta) were used for optimization; the purpose was to
examine the relative usefulness of the atmospheric data
as compared to land surface observations for constrain-
ing parameter and simulation uncertainties. As a result,
nine cases were established: A1, A2, A3, B1, B2, B3, C1,
C2, and C3 (Table 2). The results from each case were
examined and compared in terms of the final “optimal”
parameter sets, the corresponding objective function
values, and the time series of the evaluation variables
(
E, H, Tg, Pcp, Rnet, and Ta).

b. Optimal parameter sets

The optimal land surface parameter sets are shown in
Fig. 1a for cases A1 (red), A2 (green), and A3 (blue)
and in Fig. 1b for cases C1 (red), C2 (green), and C3

(blue), while the optimal atmospheric parameter sets
are presented in Fig. 1c for cases B1 (red), B2 (green),
and B3 (blue) and in Fig. 1d for cases C1 (red), C2

(green), and C3 (blue). In A cases and B cases, the a
priori or default values were used for atmospheric and
land surface parameters, respectively, and thus are not
shown in these figures. Each line going from left to right
across the plot corresponds to a different parameter set,
with the parameters (land or atmospheric) listed on the
x axes and the � axes corresponding to the parameter
values normalized by the ranges between the lower and
upper bounds of the parameters (Table 1). The default
parameter set is also plotted in black for comparison.
For each parameter estimation case, instead of picking
a single representative solution to analyze the results,
the Pareto set from the final members is shown. The
individual points of each parameter set are connected
to help visualize the constraining of parameter estima-
tions in each case.

It is not surprising to notice from Figs. 1a–d that,
because of land–atmosphere parameter interdepen-
dences, the optimal land surface parameters estimated
in the A cases and the optimal atmospheric parameters
estimated in the B cases tend to be different from those
obtained in the C cases. Overall, Figs. 1a–d show that,

for most of the land surface and atmospheric param-
eters, the optimal values estimated by the parameter
estimation procedures are typically different from the
default values. For example, in groups A and C, the
optimal values of XL (leaf orientation index), ALB-
SAT1, and ALBSAT2 (soil albedos) have all converged
to higher values in the parameter space compared to
the default values. For the atmospheric parameters
(Figs. 1c and 1d), the optimal values of rhminl (the
threshold of relative humidity for low cloud formation)
tend to be low compared to the default value (rhminl �
90%), while those of rhccn [the reduction on rhminl for
(cloud condensation nuclei) CCN-rich land areas] tend
to be high compared to the default value (rhccn �
10%). This indicates that, in the SCCM, the prescribed
threshold value of relative humidity for low cloud for-
mation over land areas (i.e., 80%) may be too high for
the model to simulate the observed cloud amounts.
This is consistent with the results from Somerville and
Iacobellis (1999), who pointed out that ARM observa-
tions indicate that the actual maximum relative humid-
ity when clouds are present is less than 80%, suggesting
that the use of 80% as critical relative humidity for
cloud formation over land areas in many GCMs may
need to be reexamined. Also, the default value of the
threshold of convective available potential energy
(CAPE) for deep convection (CCONV) tends to be
small compared to the estimates from most of the ex-
periments.

To minimize simulation uncertainties associated with
parameter uncertainties, well-constrained optimal pa-
rameter sets are desired. As shown in Figs. 1a and 1b,
for the land surface parameters, all cases in groups A
and C tend to provide fairly well constrained (or
grouped) parameters sets. However, the parameter sets
in the second and third cases (green and blue) appear to
be more tightly constrained than in the first cases (red)
for both A and C groups, particularly for several soil
parameters, including WATSAT, HKSAT, CSOL, and
ALBSAT1. This is also true for most vegetation param-
eters (the first nine parameters in Figs. 1a and 1b), and
especially for XL (leaf orientation index). Note that the
second and third cases include atmospheric variables
(Pcp, Rnet, and Ta) in the parameter estimation proce-
dure (while the first cases include only land surface
fluxes/variables), indicating the value of using observa-
tions on atmospheric variables to help constrain the
values of the land surface parameters. Figure 1d shows
that, in the C group, wherein both land surface and
atmospheric parameters are optimized, the use of at-
mospheric variables as calibration criteria in C2 (green)
and C3 (blue) can also help to better constrain the at-
mospheric parameters compared to C1, especially for
RHMINH. However, when only atmospheric param-
eters are optimized in the procedure (group B; Fig. 1c),
it seems insufficient to use only atmospheric variables:
several atmospheric parameters are poorly constrained
in case B2 (green), including alfa, RHMINL, rhminh,

TABLE 2. The single-step cases.

Case
Evaluation
variables

Land surface
parameters

(�)

Atmospheric
parameters

(	)

A cases A1 
E, H, Tg Optimized Default
A2 Pcp, Rnet, Ta
A3 
E, H, Tg, Pcp,

Rnet, Ta
B cases B1 
E, H, Tg Default Optimized

B2 Pcp, Rnet, Ta
B3 
E, H, Tg, Pcp,

Rnet, Ta
C Cases C1 
E, H, Tg Optimized Optimized

C2 Pcp, Rnet, Ta
C3 
E, H, Tg, Pcp,

Rnet, Ta
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and rhccn; these parameters, however, are better con-
strained in cases B1 and B3 (especially B3) when some
land surface fluxes/variables were used. Collectively,
these results support the intuitive notion that using
both land surface and atmospheric fluxes/variables can
help to better constrain the parameter sets, thereby re-

ducing the uncertainty associated with the parameter
estimates.

c. Objective function values

The rmse criterion was used as the objective function
in this study. Shown in Figs. 1e–g are the trade-offs

FIG. 1. Comparison of parameter estimates and final objective function values for different cases: (a)
normalized land surface parameter estimates for the A cases (black � default, red � A1, green � A2,
blue � A3); (b) same as (a) but for the C cases; (c) normalized atmospheric parameter estimates for the
B cases (black � default, red � B1, green � B2, blue � B3); (d) same as (c) but for the C cases; (e)
objective function values (rmses) for the A cases [same color code as in (a); (f) same as (e) but for the
B cases; and (g) same as (e) but for the C cases. Values shown in the bottom and top of (e)–(g) provide
the ranges used to plot the rmses.
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between the six variables (
E, H, Tg, Pcp, Rnet, and Ta)
in the multicriteria space for A, B, and C cases, respec-
tively, with the same color code as in Figs. 1a–d. The
variables are listed along the x axes, while the y axes
correspond to the rmses; the numbers shown at the top
and bottom of each figure provide the ranges used to
plot the rmses of the six variables. In these plots, each
line going from left to right corresponds to a solution
(i.e., a different parameter set in Figs. 1a–d). If a line
representing a solution falls entirely below (above) that
of a different solution, the former can be considered to
be absolutely superior (inferior) to the latter from the
multicriteria point of view, otherwise, if the two lines
cross each other, the two corresponding solutions are
considered as noninferior to each other in a multicrite-
ria sense.

As shown in Figs. 1e–g, solutions from the experi-
ments A1, B1, C1, and C3 are superior to the default
case; for the remaining, nonsuperior cases (A2, A3, B2,
B3, and C2), sensible heat flux is the only variable that
has higher errors than in the default case. This indicates
that the parameter estimations in the locally coupled
environment are reasonably successful, considering
that the model structure is not perfect and may unfa-
vorably affect the results to a certain degree. Although
some of the optimal parameter sets are not well con-
strained in some cases, as shown in Figs. 1a–d (e.g., case
B2), very similar objective function values have been
achieved within each group, reflecting, at least partially,
the well-known “nonuniqueness” or “equifinality”
functional behavior noted in many modeling studies
wherein different parameter sets in the parameter
space lead to very similar model responses (Franks and
Beven 1997; Beven and Franks 1999). Generally speak-
ing, with the inclusion of some atmospheric parameters,
B and C cases have achieved much lower errors (except
for sensible heat) than A cases, for which only land
surface parameters are used.

In the A cases (Fig. 1e), including atmospheric vari-
ables in the parameter estimation procedure (cases A2

and A3) achieves lower errors of air temperature, but
results in higher latent heat and sensible heat errors,
while performances on the other three variables (Tg,
Pcp, and Rnet) remain almost the same; also, there is
little difference between cases A2 and A3 for all six of
the variables, which reflects the dominant influence of
atmospheric forcing variables in the optimizing land
surface parameters. In the B cases wherein only atmo-
spheric parameters are optimized (Fig. 1f), reasonably
low rmses have been achieved for all the six variables
except for sensible heat; in addition, the results from
the three different cases are very similar to each other,
implying that the choice of error criteria has little in-
fluence if only atmospheric parameters are used for
optimization. When both land surface and atmospheric
parameters are used (C cases; Fig. 1g), little difference
is observed between the three cases (C1, C2, and C3) for
four of the six variables (
E, Tg, Rnet, and Ta). How-

ever, there is marked trade-off between the ability of
the model to simultaneously reproduce both sensible
heat and precipitation: the rmse for H is lowest in case
C1 and highest in case C2, while the reverse is true for
the rmse of Pcp. This can also be noted for A cases and
B cases, reflecting the trade-offs that can be detected by
application of multicriteria methods, as has also been
observed in other parameter estimation studies (e.g.,
Gupta et al. 1999). In general, case C3 (blue) appears to
be preferable to all the other cases in that it achieves
reasonably low errors for all the land surface and at-
mospheric fluxes/variables examined.

To examine the rmse improvements for each indi-
vidual variable in comparison to the default case, the
case-average rmses are shown as grouped bar graphs in
Fig. 2 for each variable. The number shown in the title
of each plot indicates the default rmse from a control
run with the default parameters, and the values plotted
on the bar graphs are normalized with respect to the
corresponding default rmses. For each variable, the
bars are grouped into A, B, and C cases, with white,
gray, and black bars representing the first, second, and
third cases, respectively. Similar to Figs. 1e–g, Fig. 2
shows that the rmses of the fluxes/variables after opti-
mization are lower than the default for all variables
except sensible heat. Further, including atmospheric
parameters in the parameter estimation process helps
to achieve lower errors. In general, the results are best
for ground temperature, latent heat, and net radiation
for which the rmse values are approximately 50% of the
default case when atmospheric parameters are included
in the optimization process. The results for sensible
heat tend to be poor, especially in the second cases and
B cases (A2, B1, B2, B3, and C2), in which only atmo-
spheric variables are used for error criteria and/or only
atmospheric parameters are optimized. However, the
lowest rmses of precipitation have been achieved in
cases B2 and C2 with improvements of about 50%,
while high precipitation errors tend to appear in the A
cases, wherein only land surface parameters are opti-
mized, and in case C1, wherein only land surface vari-
ables are used for error criteria. The improvements in
the rmse of air temperature are around 30% for all
cases except A1.

d. Time series

The most meaningful way to evaluate the perfor-
mance of a numerical model is to examine its ability to
satisfactorily reproduce the observed time series of im-
portant model outputs. Figure 3 presents a comparison
between the observations and model simulations from a
control run with the default parameters for the six vari-
ables: latent heat, sensible heat, ground temperature,
precipitation, net radiation, and air temperature. The
time series are shown on the left, with light and bold
lines representing model simulations and observations,
respectively, and the scatterplots are shown on the
right, with x axes and y axes denoting the model-
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computed values and the observations, respectively.
The rmse, correlation coefficient (R), and bias of each
variable are also shown above the corresponding plot.
The time series and scatterplots in Fig. 3 show that the
energy partition of model with default model param-
eters is incorrect: the model consistently overestimates
latent heat and underestimates sensible heat; the model
also considerably overestimates ground temperature,
especially during the continuous raining period near the
end of the simulation. On the atmospheric side, the
model generates too frequent, and too weak, precipita-
tion compared to the observation, and it overestimates
net radiation and air temperature, especially near the
end of the simulation period. The inability of the model
to reproduce these time series, especially precipitation
and air and ground temperatures, can be at least par-
tially attributed to the deficiencies of the convection
triggering function used in the SCCM, which has caused
large thermal biases in the model simulations (Xie and
Zhang 2000).

Considering the strong trade-off observed between
precipitation and sensible heat flux, cases C1 and C2 are
selected as representatives of “good” simulations for
sensible heat and precipitation, respectively, and the
time series are shown in Figs. 4 and 5. The gray shaded
regions represent the modeled ranges corresponding to
the entire set of solutions from case C1 or C2, while in
the scatterplots, the midpoints of the modeled ranges
are used. As can be noted from Figs. 3 and 4, with the
parameter estimates from case C1, the model simula-
tions match the land surface fluxes/variables (
E, H,
and Tg) much better than in the default case; although
only land surface fluxes/variables are used in case C1

for error criteria, the model also performs better on the
simulations of net radiation and air temperature, indi-
cating the significant influence of land–atmosphere in-
teractions. There is, however, no visually detectable im-
provement in the simulation of precipitation, except
that the bias is considerably reduced from 2.1 mm in the
default case to 0.8 mm in case C1. In case C2 (Fig. 5),

FIG. 2. Comparison of the case-average objective function values (rmses) scaled by the
default rmses for (a) latent heat, (b) sensible heat, (c) ground temperature, (d) precipitation,
(e) net radiation, and (f) air temperature. The value shown in the title of each plot is the
corresponding default objective function value.
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wherein only atmospheric variables (Pcp, Rnet, and Ta)
are used for error criteria, the model-simulated precipi-
tation has been significantly improved (rmse � 1.5 mm,
R � 0.86 mm, bias �0.6 mm), matching the major ob-
served rainfall events of the simulation period; the
model also provides reasonably better matching of the
diurnal pattern of variability in the observed net radia-
tion compared to case C1. These, however, are at the
expense of significantly poorer matching of the sensible
heat flux, slightly poorer matching of the latent heat
flux, and somewhat deteriorated performance on
ground and air temperatures for which the amplitude of
diurnal variations are too small to be realistic.

5. Stepwise parameter estimations

Considering that optimizing both land surface pa-
rameters and atmospheric parameters simultaneously
in the coupled environment may make the parameter
estimation process cumbersome and computationally
expensive, three further cases (D1, D2, and D3; Table 3)
were also established to conduct the parameter estima-
tion in a two-step manner. In these cases, the land sur-
face parameters were optimized first in an offline mode
using the LSM to obtain a set of optimal land surface
parameters ({�ofl}; Table 1, last column); the atmo-
spheric parameters ({	}) were then optimized in the

FIG. 3. Comparison of modeled variables (light line) in the control run with the observed
data (bold line). The time series are shown on the left while the scatterplots are shown on the
right. The rmse, correlation coefficient, and bias for each variable are also listed above each
plot.

APRIL 2005 L I U E T A L . 165



locally coupled environment using the SCCM, with the
land surface parameter set {�} fixed at {�ofl}. Because
the land surface parameters and the atmospheric pa-
rameters were successively optimized in an offline
mode and a coupled mode, respectively, these cases are
referred to as stepwise cases, in contrast to the corre-
sponding single-step cases C1, C2, and C3.

Because of the highly sophisticated numerical com-
putations involved in atmospheric modeling, coupled
simulations usually require much more computational

time than offline simulations (8 s for a single coupled
run and less than 1 s for a single offline run in this case).
Also, with all land parameters estimated offline, opti-
mization of only a small amount of atmospheric param-
eters (eight in this case) in the coupled mode needs
much less function evaluations to satisfy a prescribed
convergence criterion. Hence, a stepwise scheme can
save a significant amount of computational time com-
pared to a corresponding single-step scheme (about
50% or 24 h in this case). Accordingly, it is of interest

FIG. 4. Comparison of modeled variables (lightly shaded region) with the observed data
(bold line) for the parameter sets estimated by case C1. The time series on the left show the
modeled ranges corresponding to the entire Pareto solution set while the scatterplots on the
right compare the midpoints of the modeled ranges with the observations.

166 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 6



to examine whether the results from the stepwise cases
are comparable to those from the single-step cases.
Shown in Fig. 6 are the optimal parameter sets obtained
in the D cases compared to those from the correspond-
ing C cases for the land surface (Figs. 6a–c) and the
atmosphere (Figs. 6d–f). It can be noted that the land
surface parameter set {�ofl} used in the D cases is dif-
ferent from those obtained through coupled procedures
in cases C1, C2, and C3, which is not surprising, consid-
ering that the model-generated atmospheric forcing in
the coupled system is quite different from the observa-
tions used for the offline calibration. This also indicates
that the land–atmosphere interactions can have consid-

TABLE 3. The stepwise cases.

Case
Evaluation
variables

Land surface
parameters

(�)

Atmospheric
parameters

(	)

D Cases D1 
E, H, Tg {�ofl}* Optimized
D2 Pcp, Rnet, Ta
D3 
E, H, Tg, Pcp,

Rnet, Ta

* �ofl: An optimal land surface parameter set from offline LSM
calibration.

FIG. 5. Same as Fig. 4 but for case C2.
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erable influences on the estimation of land surface pa-
rameters. Figures 6a–c also show that the land surface
parameter sets from case C1 are less different from {�ofl}
than those from cases C2 and C3 (especially case C2).
This can be attributed to the fact that, in case C1 and
the offline case, only land surface fluxes/variables (
E,
H, and Tg) were used for error criteria, while in the
other two cases some atmospheric variables were used
either instead of (C2) or together with the land surface
fluxes/variables (C3). Further, Fig. 6a shows that the
land–atmosphere interactions seem to have less effect
on the estimation of soil parameters than that of veg-
etation parameters: 5 out of 9 vegetation parameters
(RHOL2, TAUL2, CH2OP, HVT, and AVCMX),
compared to 2 out of 14 for soil parameters (TKDRY
and DZSOI1), have markedly distinct optimal values in

offline and coupled calibrations. This can be at least
partially related to the considerable biases in the
model-generated precipitation (Xie and Zhang, 2000),
which mostly affect vegetation–atmosphere interac-
tions rather than direct soil–air flux exchanges since the
surface is highly vegetated (vegetation cover fraction �
85%). Given that the land surface parameters are dif-
ferent in C and D cases, it would be interesting to ex-
amine how this affects the estimation of the atmo-
spheric parameters. Because the atmospheric param-
eters are well constrained in all D cases, the midpoints
rather than the entire set of solutions are plotted for the
D cases (Figs. 6d–f). As can be noted, most of the at-
mospheric parameters estimated by case D1 are differ-
ent from those in case C1. The same is true for case D2

and C2; cases C3 and D3, however, have resulted in very

FIG. 6. Comparison of the solutions from the stepwise cases (D1, D2, and D3) with those from the
corresponding single-step cases (C1, C2, and C3) for land surface parameters: (a) D1 vs C1, (b) D2 vs C2,
(c) D3 vs C3, and atmospheric parameters: (d) D1 vs C1, (e) D2 vs C2, and (f) D3 vs C3. For the C cases,
the entire Pareto set of solutions are shown (solid line), while for the D cases, only the midpoints of the
solution set are shown (dashed line).
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similar estimations of atmospheric parameters, except
that there is a distinction between the values of
RHCCN in the two cases. The ranges of the atmo-
spheric parameter estimates obtained in case D3 are
also presented in Table 1 (lower-right corner), in which
it can be noted that the atmospheric parameter esti-
mates in this case are well constrained but considerably
different from the a priori values.

For the corresponding objective function values, Fig.
7 shows that cases C1 and D1 have resulted in different
rmses for sensible heat and precipitation, and the same
is true for cases C2 and D2; the other four variables (
E,
Tg, Rnet, and Ta), however, have very close error values
in cases C1 and D1, and also in cases C2 and D2. This
implies that the differences between the land surface
and atmospheric parameters in cases C1 and D1 (or
cases C2 and D2) tend to only affect the model simula-
tions of sensible heat and precipitation, which are the
two variables that the model is unable to simulate well
simultaneously, as noted from the single-step cases pre-
sented in section 4. From the multicriteria point of
view, cases D1 and D2 are preferable to cases C1 and C2

in that the former can provide reasonable performances
on all six variables. It is most interesting to note that the
rmses achieved in cases D3 and C3 are almost identical,
indicating that the atmospheric parameters have a dom-
inant influence on the simulations of a coupled model.
The equivalent performances of cases D3 and C3 can be
further confirmed by the very close time series simu-
lated in these two cases for all the six variables, as
shown in Fig. 8, wherein it can be noted that the time
series from the two cases are highly correlated (R �
0.95) except for ground temperature.

6. Summary and conclusions

Over the last two decades, substantial research has
been devoted to the estimation of parameters of hydro-
logical and land surface models in an offline mode,
while little or no attention has been paid to issues of
parameter estimation in a coupled mode. The latter is,
however, more relevant in the context of parameteriza-
tion evaluations for coupled land–atmosphere models,
a major interest of the Global Land–Atmosphere Sys-

tem Study (GLASS). The study presented here was
motivated by the need to identify feasible and effective
approaches to estimating parameters for coupled land–
atmosphere models that can enable them to provide
relatively unbiased simulations of important fluxes and
state variables. Several schemes were tested using the
locally coupled NCAR SCCM to explore the effects of
including atmospheric parameters and forcing variables
in the optimization process to help constrain parameter
and simulation uncertainties. The value of performing
parameter estimation for a coupled model in a stepwise
manner was also investigated.

Overall, all the schemes tend to provide well-
constrained “optimal” parameter sets and reasonably
low objective function values. In the coupled environ-
ment, the inclusion of atmospheric variables for error
criteria helps to better constrain the land surface pa-
rameters, while the inclusion of land surface fluxes/
variables tends to better constrain the atmospheric pa-
rameters, illustrating the influence of “driving” vari-
ables on the optimization results. Consequently, the use
of both land surface and atmospheric variables as error
criteria can help to achieve reasonably well-constrained
solutions for both land surface and atmospheric param-
eters of a coupled model. In terms of objective function
values and time series, the model generally performs
better with optimal parameters than with the default
parameters, indicating the feasibility and success of pa-
rameter estimations in the locally coupled environ-
ment. In particular, the results tend to be best for
ground temperature, latent heat, and net radiation, and
worst for sensible heat. Also, there is a noticeable
trade-off in the ability of the model to simultaneously
reproduce both observed sensible heat flux and precipi-
tation, making it necessary to explicitly include these
two terms as optimization criteria to achieve acceptable
simulations. When the atmospheric parameters are in-
cluded in the optimization process, the resulting rmses
(except those of sensible heat) are better than when
only land surface parameters are used. This is consis-
tent with the results from the sensitivity analysis study
of Liu et al. (2004), which found the coupled model to
be highly sensitive to changes in these atmospheric pa-
rameters. Accordingly, for a coupled land–atmosphere

FIG. 7. Same as Figs. 6a–c (or Figs. 6d–f) but for the objective function values.
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model, it is desirable to optimize both land surface and
atmospheric parameters simultaneously and use both
land surface and atmospheric fluxes/variables as opti-
mization criteria for parameter estimation. The results
from this study also show that it is practical to optimize
the land surface and atmospheric parameters succes-
sively in offline and coupled modes, respectively, con-
sidering that this stepwise scheme can achieve solutions

comparable to the corresponding single-step cases but
with much less difficulty and computational time. A
stepwise scheme, although preventing the exploration
of the full land–atmosphere parameter space, can also
avoid any negative impacts that biases in model-
generated atmospheric forcing may have on the effec-
tiveness of the optimal values of the land parameters.

Regardless of the site and model-specific tendency of

FIG. 8. Comparison of time series and scatterplots for cases C3 and D3. For case C3, the modeled ranges
corresponding to the entire Pareto solution set are shown for the time series (lightly shaded region),
while only the midpoints of the model ranges are shown for case D3 (dashed line). Scatterplots corre-
spond to the midpoints for both cases.
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the optimal parameter values retrieved via parameter
estimation, this study has demonstrated a feasible and
effective, general framework for constraining the pa-
rameters of a locally coupled model using observational
data, thereby facilitating the broader problem of testing
alternative land surface parameterizations in a coupled
mode. With the availability of high-power computation
resources (e.g., multiprocessor clusters) and an efficient
parallelized software system, this parameter estimation
framework can be extended to applications over larger
domains (e.g., regional scales) within an affordable
time frame. It is worth mentioning that the weighting
method, which has facilitated the application of SCE-
UA to multiobjective parameter estimation in this
study, tends to ignore the impacts of model structural
deficiencies on reproducing each individual flux/
variable. Hence, in future follow-up research it is
worthwhile to explore the application of the multiob-
jective conditioning methodology suggested by Franks
et al. (1999), in which error variances were normalized
by their corresponding minimum values to reduce ef-
fects of structural deficiencies.
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