
Provided for non-commercial research and educational use only.
Not for reproduction or distribution or commercial use.

This article was originally published by IWA Publishing. IWA Publishing recognizes
the retention of the right by the author(s) to photocopy or make single electronic

copies of the paper for their own personal use, including for their own classroom use,
or the personal use of colleagues, provided the copies are not offered for sale and

are not distributed in a systematic way outside of their employing institution.

Please note that you are not permitted to post the IWA Publishing PDF version of
your paper on your own website or your institution’s website or repository.

Please direct any queries regarding use or permissions to hydro@iwap.co.uk

Hydroinformatics advances for operational river

forecasting: using graphs for drainage network

descriptions

Zhengtao Cui, Victor Koren, Neftali Cajina, Andreas Voellmy

and Fekadu Moreda

ABSTRACT

Zhengtao Cui (corresponding author)

Victor Koren

Neftali Cajina

Fekadu Moreda

Office of Hydrologic Development,

NOAA National Weather Service,

1325 East-West Highway,

Silver Spring, MD 21043,

USA

E-mail: Zhengtao.Cui@noaa.gov

Andreas Voellmy

Department of Computer Science,

Yale University,

New Haven, CT 06520,

USA

Distributed hydrologic models provide accurate river streamflow forecasts and a multitude of

spatially varied products on basin scales. The distributed elements of the basins are pieced

together using drainage networks. An efficient representation of drainage networks in computer

code is necessary. Graph theory has long been applied in many engineering areas to solve

network problems. In this paper we demonstrate that adjacent list graph is the most efficient

way of presenting the drainage network in terms of development and execution. The authors

have implemented drainage networks using the adjacency-list structure in both the research and

operational versions of the US National Weather Service (NWS) distributed model. A parallel

routing algorithm based on Dijsktra’s shortest path algorithm was also developed using the MPI

library, which was tested on a cluster using the Oklahoma Illinois River basin dataset. Theoretical

analysis and test results show that inter-processor communication and unbalanced workload

among the processors limit the scalability of the parallel algorithm. The parallel algorithm is more

applicable to computers with high inter-processor bandwidth, and to basins where the number of

grid cells is large and the maximum distance of the grid cells to the outlet is short.

Key words | distributed hydrologic modelling, graph theory, parallel computing

INTRODUCTION

Distributed hydrologic models attempt to account for the

spatial variability of land surface features and meteorologi-

cal forcings such as precipitation and temperature. They

accomplish this by disaggregating the geographic area of

interest into a number of small control units. A simplistic

view of this would be if one placed a grid over a map of the

area of interest. Physical features within each individual

grid cell are assumed constant, but vary from cell to cell.

The distributed model then solves the relevant rainfall to

runoff conversion equations in each grid cell.

Such models continue to be developed by many

organizations around the world. They take advantage of

spatial information and data acquired by today’s advanced

technologies such as Digital Elevation Models (DEM) and

precipitation measured by radar and satellites. Recently

the National Weather Service (NWS) implemented a

distributed hydrologic model for operational river fore-

casting. Interested readers are referred to Koren et al.

(2004) for more information regarding this model. In

addition to anticipated benefits for river and flash flood

forecasting, distributed models are viewed by the NWS as

one of the major pathways through which new water

resource forecast products can be provided to the US

(Carter 2002).

doi: 10.2166/hydro.2010.023

& IWA Publishing 2011 Journal of Hydroinformatics 9999 13.2 9999 2011181

A distributed hydrologic model computes runoff and

route flow in each of the control volumes, which are usually

represented by a rectangular grid or Triangulated Irregular

Network (TIN). Most distributed hydrologic models

assume that surface water from a cell flows towards one

and only one of its immediate neighbour cells. The flow

direction is usually defined by steepest slope from a cell to

its neighbours. All the connected flow paths on the grid cells

consist of a drainage network, which is referred to as the

hydrologic connectivity.

Using this hydrologic connectivity, the distributed

hydrologic model can route flows from each of the grid

cells from upstream to downstream. In the real world,

there are situations where multiple flow paths exist from a

grid cell or a pit (flow from one cell does not flow to any

of its neighbours) exists. Nevertheless, the unique flow

direction assumption is valid for most of the applications.

We therefore only discuss the drainage network with a

unique flow path on each of its grid cells and there is no

pit or loop in the drainage network. Usually the drainage

network at coarser resolution is derived from a finer

resolution flow direction grid. Earlier investigators deter-

mined the drainage network directly from DEMs using

the D8 model where the path flows towards one of the

eight directions: north, northeast, east, southeast, south,

southwest, west and northwest (O’Callaghan & Mark

1984; Jenson & Domingue 1988). Later, more sophisticated

algorithms were developed to overcome errors in the flow

directions when the DEM resolution is 30 arc-seconds or

larger (Reed 2003).

Distributed hydrologic models continue to be an active

area of research and development and are applied to larger

and larger geographic domains, increasing the need for

efficient ways to manage the drainage networks in computer

programs. The purpose of this paper is to discuss how to use

graph theory to implement drainage networks and how the

graph approach offers efficiencies for model developers and

subsequent operational implementation. Here, we extend

the work presented by Cui et al. (2006).

The remaining part of the paper is organized as follows.

After the literature review, we present an overview of graph

theory and how to model drainage networks as undirected

graphs. We then discuss two graph algorithms, Preorder

Tree Walk and Postorder Tree Walk and their variations,

for the purpose of visiting each grid cell in a particular

order. We then discuss how to use Dijkstra’s shortest path

algorithm to develop parallel distributed models that can

utilize multiple processors. Finally, a case study that uses

the parallel algorithm is presented.

LITERATURE REVIEW

Many algorithms have been developed to derive hydrologic

drainage networks from DEMs or TINs (Jenson &

Domingue 1988; Fairfield & Leymarie 1991; Smith & Brilly

1992; Reed 2003). Implicit in these efforts, but often without

the details published in the literature, are schemes to

encode drainage networks for efficient computer implemen-

tation. Early pioneering research focused on describing the

channel network in digital formats.

The binary string method was proposed by Scheidegger

(1967) and Shreve (1967). The basic idea of this method is to

travel around the network by starting at the outlet, turn left

at each junction and turn right back at each source, assign a

value of ‘1’ for an exterior link and ‘0’ for an interior link.

The resulting binary string has n 1s and (n 2 1) 0s. Later,

Smart (1970) showed that “the binary string representation

can also be used in processing many other types of

information on channel networks and that the procedures

involved appear particularly suitable for computer retrie-

val”. Coffman & Turner (1971) extended the binary string

method by using a numeric code instead of a binary code to

overcome some restrictions of binary strings, such as loss of

coordinate data.

Verdin (1997) introduced a numbering scheme to code

the global drainage basins and stream networks developed

by Pfafstetter (1989). The drainage area is first subdivided

into four largest tributaries, which are assigned the numbers

2, 4, 6, and 8. Next, the interbasins are numbered 1, 3, 5, 7,

and 9. If a closed basin is encountered, it is assigned the

number 0. A basin or interbasin may be recursively

subdivided by repeating the application of the same rules

to the area within it.

Although these early approaches are efficient, they are

limited because they cannot describe detailed information

about each linkage in the drainage network. As computer

hardware became more capable, graph theory emerged

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011182

as a powerful tool to solve engineering problems

(Kreyszig 1998). Gleyzer et al. (2004) developed a

recursive Strahler stream ordering algorithm by using

graph theory to perform stream network analysis. Mark

(1988) used a two-dimensional matrix that implements a

graph to describe the flow direction grid. A recursive

algorithm was then used to find the drainage accumu-

lation for a given grid cell elegantly and efficiently.

Several researchers have applied graph theory to model

the connectivity of elements in landscapes (Cantwell &

Forman 1993; Reynolds & Wu 1999; Urban & Teitt 2001;

Schroder 2006). Jiang & Claramunt (2004) modelled an

urban street network using graph theory and Gupta &

Prasad (2000) analyzed pipeline networks using linear

graph theory.

A graph-based representation of a flow network

comprised of arcs and nodes was used as a data storage

object defined in the Management Simulation Engine

Network (Park et al. 2005). In this work, graph-based data

objects serve as state and process information repositories

for management processes (algorithms). It provides a

mathematical representation of a constrained, intercon-

nected flow network which facilitates efficient graph theory

solutions of network connectivity and flow algorithms.

Apostolopoulos & Georgakakos (1997) described a

graph approach for the streamflow prediction problem by

using distributed hydrologic models within a shared

memory parallel computing environment. In this work, a

basin is disaggregated into river segments, each of which

consists of a main channel and a number of reaches and

sub-reaches. A hydrologic model is decomposed into

subcomponents such as input, soil water accounting and

channel routing. The reaches are mapped to the edges of

the graph and model subcomponents are mapped to the

vertices of the graph. The graph is then used to determine

the dependencies of the graph vertices (model components)

and the graph edges (river reaches). This approach also

adopted the shared memory parallelism in which the user

has no control on how the workload is allocated among the

processors.

Based on directed trees (a type of graph), Bailly et al.

(2006) introduced a theoretical framework required to

specify geostatistical hypotheses and models. In this frame-

work, for every edge u a river segment linking two vertices is

represented and is naturally directed by water flow from

upstream to downstream.

Because graph theory is widely used in various scientific

areas and must be represented in computer programs, there

is a need for graph libraries to facilitate the use of graph

theory. Lee et al. (1999) first developed the Generic Graph

Component Library (GGCL) which became the Boost

Graph Library (BGL) in 2000 within the Boost Software

License. Just like the Cþþ Standard Template Library

(STL), the BGL was written to be generic: (1) the graph

algorithms of the BGL are written to an interface that

abstracts away the details of the particular graph data-

structure; (2) the graph algorithms of the BGL are

extensible through the visitor concept; and (3) it is

analogous to the parameterization of the element-type in

STL containers. In this work, we used BGL data structures

and graph algorithms to develop and manipulate hydrologic

connectivity by generic programming. Generic program-

ming is a programming technique that uses templates to

abstract away detailed implementation of efficient algor-

ithm, data structures and other software concepts in a

systematic way. Generic programming can produce concise,

efficient, reusable and extensible code.

Our approach presented in this paper has three

distinguishing characteristics: (1) it is suitable for distrib-

uted hydrologic models that disaggregate simulation

domain into grid cells, TIN or hydrologic response units;

(2) the proposed parallelization scheme is based on a

message passing concept in which the user has full control

of the number of processors and how workloads are

distributed among processors and, therefore, the resulting

parallel algorithm is more portable; (3) the hydrologic

model is implemented by the generic programming

technique which produces extensible and reusable

computer codes.

GRAPH THEORY REVIEW

Graph definition

Before starting our discussion, it is helpful to introduce

some basic terms and concepts. By definition, a graph G is a

pair (V, E) where V, the vertex set, is a finite set of vertices

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011183

and E, the edge set, is a set of vertex pairs (u, v) with u and v

in V. A graph must have at least one vertex but may have no

edges (in which case it is a null graph).

A graph is undirected if the edge set E consists of

unordered pairs of vertices, rather than ordered pairs

(Figure 1). An edge connects the two vertices in both

directions. That is, an edge is a set u, v where u, v [V and

u – v. In an undirected graph, self-loops are forbidden and

so every edge consists of exactly two distinct vertices. In

contrast, a graph is directed if its edges are ordered pairs

which connect each source vertex to a target vertex.

The walk of a graph is an alternating series of adjacent

edges and vertices; a path is a sequence of vertices ,v0,

v1, … , vl . in a graph G ¼ (V, E) such that each vertex is

connected to the next vertex in the sequence. The edges (vi,

viþ1) for i ¼ 0, 1, … , k 2 1 are in the edge set E. An

undirected graph is connected if every pair of vertices is

connected by a path. A graph with no cycles is acyclic, i.e. no

cycle is found along any path. An acyclic undirected graph is

a forest and a connected acyclic undirected graph is a tree.

A rooted tree is a tree in which one of the vertices is

distinguished from the others. The distinguished vertex is

called the root of the tree. A vertex of a rooted tree is often

referred to as a node. Each node is either a leaf or an

internal node. An internal node has one or more child

nodes and is called the parent of its child nodes; each node

has one parent except the root. A node without children is

called a leaf. For a rooted tree, each node has one and only

one path to the root, and each node can only be accessed

from the root. That is the root is predefined.

A graph is dense if its number of edges is close to the

square of the number of vertices. On the other hand, a graph

is sparse if its number of edges is less than or close to its

number of vertices. A rooted tree is a sparse graph because

its number of edges is one less than its number of vertices,

i.e. E ¼ V 2 1.

Graph implementation

Three data structures can be used to implement a graph:

matrix, adjacency-list and edge-list. Each implementation

has time and space performance trade-offs which should be

considered when choosing a data structure.

Adjacency-matrix

A graph can be implemented by a V £ V adjacency-matrix

where V is the number of vertices. Each element of the

adjacency-matrix aij is a binary bit indicating whether or not

there is an edge from vertex i to j.

Figure 2 depicts the adjacency-matrix for the graph in

Figure 1. The amount of space required to store an

adjacency-matrix is O(V 2). Any edge can be accessed,

added or removed in O(1) time. Adding or removing a

vertex requires reallocating and copying the whole graph,

an O(V 2) operation. The adjacency-matrix approach is

suitable for dense graphs.

Here, O(V 2) is called the big-O notation. The big-O

notation describes the upper bound magnitude of a function

in terms of another, usually simpler, function. The big-O

notation is commonly used to measure the complexity of an

algorithm in terms of either space or time. It also describes

how the runtime (space) grows with the number of inputs.

The formal definition is as follows.

For a given function g(n), O(g(n)) is the set of functions

OðgðnÞÞ ¼ {fðnÞ :

there exist positive constants c and n0 such

that 0 # fðnÞ # cgðnÞ for all n $ n0}

For example, f(n) ¼ 3n 2 þ 2n þ 1, then g(n) ¼ n 2. Because

for all n $ 1, we have c . 6 such that 0 # f(n) # cg(n).

x y

w z

Figure 1 | An undirected graph.

x

x 0 0 1 1

0 0

1 1 0 0

1 1 0 0

1 1y

z

w

y z w

Figure 2 | The matrix representation of the graph depicted in Figure 1.

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011184

Since the big-O notation describes the upper bound of a

function, it is used to bound the worse-case runtime (space)

of an algorithm. When we say the time (space) complexity

of an algorithm is O(V 2), it is equivalent to saying that the

worse-case runtime (space) is bounded by the square of the

number of the vertices, or the worse-case runtime (space)

grows with the square of the number of vertices. O(1) means

that the worse-case runtime (space) is constant, i.e. it

doesn’t grow as the number of inputs increase.

Adjacency-list

An adjacency-list implementation of a graph has a list of

vertices with each vertex containing a sequence of out-

edges of this vertex. Since only those edges that exist in the

graph are stored, it saves some space for sparse graphs.

Figure 3 shows the adjacency list implementation of the

graph in Figure 1.

The list of vertices in an adjacency-list can be stored in a

vector or a linked-list. The vector has the advantage of fast

access time, of the order O(1). However, the disadvantage is

computationally expensive insertion and deletion because

the entire vector needs to be copied over. On the other

hand, the linked-list has the advantages of fast insertion and

deletion, but the disadvantage of expensive access time of

the order O(V). In addition, the linked-list needs extra space

to store pointers for each vertex.

Edge-list

An edge-list implements a graph by simply using a sequence

of edges, where each edge is represented as a pair of vertex

identifiers (IDs). The memory required is of the order O(E).

Edge insertion is typically O(1), although accessing a

particular edge is of the order O(E), which is not efficient.

Since no vertex is stored, vertices can only be accessed

through the edges they are associated with and can only be

inserted or deleted by inserting and deleting the corre-

sponding edges.

REPRESENTING DRAINAGE NETWORKS

WITH GRAPHS

As mentioned before, the flow direction grid is derived from

digital topographic information such as a DEM or TIN

using specialized algorithms. Figure 4 shows the resulting

flow direction grid using the algorithm proposed by Reed

(2003) on the Blue River basin in Oklahoma, USA. Each cell

in Figure 4 is approximately 4 £ 4 km. The black line is the

boundary of the drainage basin defined by natural topo-

graphy, while the dark grey lines represent the same border

when the basin is represented by a grid. The arrows show

the flow directions from each cell. Only the case where each

grid cell has only one outflow is considered here. Braided

channels need to be addressed in future work.

x z w

y z w

z x y

w x y

Figure 3 | The adjacency-list representation of graph.

Oklahoma

Blue basin

Drainage network
Basin boundary
Grid basin boundary

Grid cells

Figure 4 | Connectivity of the Blue River Basin, Oklahoma, USA.

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011185

The hydrologic connectivity grid, or drainage network,

can be modelled by an undirected graph that has one vertex

for each grid cell and one edge (u, v) for each pair of grid

cells for which u flows toward v. For each drainage basin,

such a graph is connected since each grid cell either flows

into another cell or has flow coming from another cell.

Furthermore, since the outlet grid cell has no parent cells,

distinguishing the vertex corresponding to the outlet makes

this graph a rooted tree. We choose the undirected graph

instead of the directed graph because we use the rooted tree

to represent a basin.

Our approach of applying graph theory to distributed

hydrologic modelling differs from that adopted by

Apostolopoulos & Georgakakos (1997). In their approach,

the basin is divided into river segments and each river

segment is sub-divided into a main channel, reaches and

sub-reaches. To apply graph theory, the main channel,

reaches and sub-reaches are mapped to the edges of the

graph, while the starting point and the intermediate points

of the reaches and the hydrologic models are mapped to

the vertices of the graph. Thus a graph contains both

data (reaches) and algorithms (models). In contrast, in our

approach, only grid cells are mapped to the vertices of the

graph; the graph edges connect grid cells to form a drainage

network. The resulting graph acts as an information

repository for various hydrologic models. How to manip-

ulate the data depends on the particular application (model)

which employs graph theory algorithms to access, retrieve

and analyze the data. We believe our approach separates

data and algorithms in a way that encourages modular

design and can be adapted by a variety of hydrologic

models.

We present a simple example (Figure 5) of a flow

direction grid in Figure 4 to illustrate the concepts

introduced above. The grid can be divided into three basins:

A, B and C. Cells in each basin flow to its individual outlet

cell. Basin A is in dark grey and has two cells with cell

number 3 as the outlet. Basin B is in grey and has nine cells

with cell number 11 as the outlet. Basin C is in white and

has only one cell, cell number 12. It is also the outlet. The

right side of the figure shows the rooted trees (forest) that

represent the basin drainage network. Each tree represents

an independent basin. The outlet cells of each basin 3, 11

and 12 are the roots of basins A, B and C, respectively.

Although there is only one cell in basin C by definition,

it is a graph having only one vertex without edges i.e. a

null graph. The drainage network is a sparse graph because

the rooted tree is sparse.

Using graph walks to control processing order

Distributed hydrologic model algorithms need to visit the

grid cells in a particular order. For example, to route flows

on each grid cell to the outlet cell, we need to visit

(calculate) upstream cells before downstream cells. The

flow direction grid specifies this kind of order: the

hydrologic connectivity order which describes the pro-

gression of water flowing along topographic gradients

through the watershed to the outlet. In graph theory, the

graph walk is the process of visiting each vertex through

1 2

3 4 5 6

7

11 12

8 9 10

A B C

A B C

3

7 8

4

1 2 10

6

5 9

11 12

(a)

(b)

Figure 5 | A small simplified drainage network: the connectivity (left) and the graph

representation (right).

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011186

the edges. In particular, the Postorder Tree Walk algorithm

can be used for this purpose. The Postorder Tree Walk can

be implemented by a recursive function in that the root

(downstream cell) of a subtree is visited after its children

(upstream cells). Recursive functions are functions that call

themselves. They are simpler than iterative functions and

thus are easier to understand. The following pseudocode

describes the algorithm of the Postorder Tree Walk.

Meanwhile, it is also necessary to visit the grid cells in

the reverse order: visit the downstream cells before the

upstream cells. An example is finding the drainage area for a

given grid cell, but excluding grid cells in a sub-basin. This is

equivalent to finding all upstream cells (children) for a given

grid cell (root). The Preorder Tree Walk algorithm visits

the root of the tree before visiting each of its children. In

other words, the downstream cells are visited before

their upstream cells. This algorithm can therefore find all

upstream sub-basins for a given cell in the downstream

to upstream order (the reverse connectivity order).

The following is the pseudocode of the Preorder Tree

Walk algorithm.

The Preorder Tree Walk and Postorder Tree Walk will

visit the grid cells all the way to the leaves (cells which have

no incoming neighbours). However, sometimes it is necess-

ary to divide a connected basin into several sub-basins. In

this case, the outlet cell of a sub-basin could be an incoming

cell of another sub-basin. Therefore one sub-basin is a

dependent of another sub-basin. Figure 6 shows an example

of a connected basin. There are two sub-basins, B and

D. Basin B depends on Basin D because one of its boundary

cells (cell number 8) has an incoming cell (cell number 4)

which is the outlet of Basin D. The flow routed from sub-

basin D flows to sub-basin B. The question is how to visit

sub-basin B without visiting cells in Basin D. The previous

two algorithms will not work because cells from both basins

will be visited if we start from cell 11.

In order to make a partial visit (i.e. visiting only grid

cells in Basin B but not D by starting at cell 11), we modify

the two tree walk algorithms by adding a test before

visiting each child to see if it is an outlet of another sub-

basin. If it is an outlet, the algorithm will skip this child;

otherwise, the algorithm will continue as usual. We call

these algorithms Partial Preorder or Postorder Tree

Walk. The following is the Partial Preorder Tree Walk

algorithm’s pseudocode. The Postorder Tree Walk can

be modified similarly to make a Partial Postorder

Tree Walk.

Postorder-Tree-Walk(Node n)
//visit children first
for each child of n
Postorder-Tree-Walk(child)
end for
//then visit the root
visit n
return

Preorder-Tree-Walk(Node n)

//visit the root first
visit n
//then visit each child
for each child of n
Preorder-Tree-Walk(child)
end for
return

Partial Preorder-Tree-Walk(Node n)

//visit the root first
visit n
//then visit each child
for each child of n
//skip the sub-basin
if (child is not an outlet)
Partial-Preorder-Tree-Walk(child)
end for
return

Figure 6 | Example of nested basins.

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011187

An example of the usage of the partial visiting algorithm

is to determine the drainage area of Basin B excluding Basin

D for the given grid cell 11 in Figure 6.

Originally, the distributed hydrologic model developed

at the NWS used one-dimensional arrays which store the

downstream grid cell number for each grid cell. This

approach was based on that used in the Nile Forecast

System (Koren & Barrett 1994). While a one-time sorting of

these pixels can yield a computationally efficient model for

routing calculations that must be repeated for many time

steps, a graph-based approach provides a more flexible

solution which can be more efficient for some tasks. By

relying on industry standard libraries, the graph-based

approach also results in simpler codes that are easier to

maintain.

An example where efficiency can be improved is the

problem of finding all upstream cells for a particular grid

cell, which is required by many operations such as finding

drainage area and routing. With the 1D array implemen-

tation, we need a loop to search the entire array for this

problem. In the following example, each element of the

array downstream[i] is the downstream cell of i. A negative

value indicates the cell is an outlet.

The time complexity of this approach is of order O(n),

while using an adjacency list (graph) instead of the array

downstream[i], the time complexity is constant: O(1).

Although the array implementation of hydrologic connect-

ivity has the advantage of fast access to the downstream cell

for each cell with a time complexity of O(1), it is still not

convenient to route water from upstream cells to the outlet

cell. As a result, our original distributed model requires that

the connectivity must be pre-sorted by a pre-processor

before running the model. In other words, for the array

elements of downstream[i] and downstream[j], if cell i is

upstream of cell j then i must be less than j. Nevertheless,

a possible algorithm to sort the cells into connectivity

order using the downstream[i] array with random cell order

could be as follows.

This algorithm involves three nested loops. Not only

does it involve more programming efforts (more lines of

code are written) compared to the Postorder-Tree-Walk

function, but it is also inefficient: the time complexity is of

the order O(n 3), i.e. polynomial time instead of linear.

Using the Postorder-Tree-Walk, the time complexity is only

O(n) because each node is visited once. To set up the

graph object from a list of n nodes and m edges, the time

complexity is O(n þ m). Therefore, the graph theory-based

algorithms are two orders of magnitude more efficient than

our original routing algorithm.

upstream-cells(Node n)

for each node in downstream
if (downstream[node] ¼ ¼ n)
node is one of upstream cells of n
break
end for

connectivity-order(downstream[n])

int ordered[n];
bool already-sorted[n];
for (int i ¼ 0; i , n; iþþ)
{
already-sorted[i] ¼ false;
}
int count ¼ 0;
do{
bool finished ¼ true;
for(int i ¼ 0; i , n; iþþ)
{
bool hasParent ¼ false;
for(int j ¼ 0; j , n; jþþ)
{
if(downstream[j] ¼ ¼ i && !already-sorted[j])
{
hasParent ¼ true;
break;
}
}
if(!hasParent && ! already-sorted[i])
{
ordered[countþþ] ¼ i;
already-sorted[i] ¼ true;
}
}
for(int i ¼ 0; i , n; iþþ)
{
if(!already-sorted [i])
{
finished ¼ false;
break;
}
}
} while(!finished);

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011188

Choice of data structure

The choice of data structure depends on the density of the

graph and what kinds of operations can be performed

efficiently on the graph. For example, if edges are frequently

being accessed, added or removed, such as in the case of

editing a flow direction network, the matrix structure

should be used to take advantage of the fast access time.

Otherwise, if we need to access the vertices quickly and

seldom delete or insert an edge, then the adjacency-list

would be the choice. For a distributed hydrologic model,

the drainage network is usually static, and the grid cells

should be accessed quickly to calculate runoff and flow for

each of them. For this reason, we chose the adjacency-list

implementation of graph as the data structure. The vertices

and edges are implemented using vectors to achieve fast

access. Moreover, an adjacency-list saves more space than

an adjacency-matrix because the drainage network is a

sparse graph. An edge-list implementation is not suitable for

distributed hydrologic connectivity because vertices can

only be accessed via the corresponding edges.

PARALLEL COMPUTATION

Today, parallel computing has become a common tech-

nique to improve performance. CPU clock speeds are being

pushed to the limit by manufacturers. Consequently, there is

little room to improve CPU clock speeds and therefore

reduce computing costs. As a result, more and more CPU

manufacturers offer multiple core processors instead of

processors with faster clock speeds. This trend has a

profound impact on programming approaches. Tradition-

ally, programs will run faster on newer hardware because of

faster CPU clock speeds. However, with multi-core CPUs

that have unimproved clock speed, programs that are not

tuned to utilize the multi-core CPUs by parallel program-

ming will not realize any performance gains. Today’s

programmers are therefore forced to develop parallel

programs if they want their program to run faster on

newer hardware (Sutter 2005).

Distributed hydrologic modelling normally involves a

large amount of spatially distributed data which results in

a heavy computation workload. Parallel computation

becomes a vital tool to improve distributed hydrologic

model performance. Apostolopoulos & Georgakakos (1997)

proposed a parallel algorithm for distributed hydrologic

models that assumes a shared memory environment—an

ENCORE parallel computer with 14 processors and the

Encore Parallel FORTRAN compiler (EPF). Under EPF the

programmer has no control of the workload allocated to

each processor, but only the number of processors to be

used. Moreover, the resulting code of EPF is not portable to

distributed parallel architectures and is not scalable with

the number of processors. Cui et al. (2005) parallelized a

distributed hydrologic model in a message passing environ-

ment. However, only the water balance part of the model is

parallelized. The dependence of the connected drainage

network is therefore not considered in the research carried

out by Cui et al. (2005).

Here we assume a message passing environment.

Message passing parallel software is more scalable and

portable than shared memory software (Dowd & Severance

1998; Berthou & Fayolle 2001). In a message passing

environment, a number of processors could either be

connected by a high-bandwidth network or coupled closely

to each other, such as the multi-core architecture. Each

processor can either have its own memory or share a

common memory with others. The programmer has full

control over the workload of each processor. The import-

ance of workload is discussed below.

As stated above, the flow channel network describes the

order in which each grid cell’s runoff will be routed to the

outlet. That is to say there are dependencies among the grid

cells in a drainage network. To utilize multiple processors

we shall determine which cells can be calculated simul-

taneously given the grid cell dependencies. As a simple

example, we discuss only one basin in which all pixels drain

to only one outlet. Such a basin can be represented by a

single rooted tree like the basin B in Figure 5. Note that

situations with multiple basins, each draining to different

outlets, can easily be modelled using multiple processors if

the single tree problem is solved.

Referring to Figure 5, the routing process starts from the

most upstream grid cells which have no incoming grid cells

(leaves) and then proceeds to their downstream cells and

then all the way to the outlet cell. Because each grid cell has

only one path to the outlet (root), the starting upstream grid

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011189

cells are also the farthest cells from the outlet along the

path. Therefore the problem of which cells can be

calculated simultaneously is equivalent to determining

the distance of each grid cell to the outlet along its path.

Starting from the farthest cells, cells at the same distance

can be calculated simultaneously after all cells at greater

distances along the path have been calculated.

The problem of finding the distances of all grid cells to

the outlet cell is the same as the single-destination shortest

path problem in a rooted tree. The problem is to find all the

shortest paths from every vertex in the graph to one vertex,

the equivalent of the single-source problem. In the single-

source problem, the shortest path is measured by a weight;

each edge has a weight w(vi21, vi) and the weight of a path

w(p) is the sum of all edge weights along the path:

wðpÞ ¼
Xk
i¼1

wðvi21; viÞ ð1Þ

The shortest-path weight from vertex u to v is then

Du;v¼
minðwðpÞÞ :u!v if there is a path from u to v

1 otherwise

(
ð2Þ

The path with minimum weight is the shortest path.

When considering only computational order, all edge

weights may be set equal to 1 in a drainage network even

if the true element sizes vary with location. Because there is

one and only one path from each node to the root node, the

distance of each node to the root is also the shortest/longest

distance.

In graph theory, Dijkstra’s algorithm is used to find the

shortest path for each node to the root (Cormen et al. 1989).

Dijkstra’s algorithm finds all the shortest paths from the

source vertex to every other vertex by iteratively ‘growing’

the set of vertices S to which it knows the shortest path.

Initially, the set S is empty. Another set D contains the

length of the shortest path for each vertex, which is

initialized to infinity for all the vertices except the source

vertex which is zero. At each step of the algorithm, the next

vertex added to S is determined by the set Q that contains

the vertices in V 2 S prioritized by their distance in D,

which is the length of the shortest path seen so far for each

vertex. The vertex u with minimum distance in the set Q is

then added to S and removed from Q, and each of its out-

edges is relaxed: if the distance to u plus the weight of the

out-edge (u, v) is less than the distance for v in D then the

estimated distance for vertex v is reduced and D is updated.

The algorithm then loops back, processing the next vertex

that has the minimum distance in Q. The algorithm finishes

when the set Q is empty.

We present Dijkstra’s algorithm as follows. Here G is

the graph, w is edge weight, s is the start vertex and d[u] is

the return value of the algorithm which contains the

distances of all vertices to the start vertex. The subroutine

Extract_Min(Q) searches for the vertex u in the vertex set Q

that has the least d[u] value. That vertex is removed from

the set Q and returned. The set previous[v] records the

previous vertex along the shortest path for vertex v.

Table 1 shows the results of applying Dijkstra’s

algorithm to Basin B in Figure 5. The distance from the

outlet is 4, which is the maximum distance. It needs 5 steps

to finish the calculation. First the farthest grid cell 6 is

calculated; next 1, 2 and 10 are calculated simultaneously;

then 4, 5 and 9; then 8; finally the root 11 is calculated.

Table 2 lists the cell numbers on each processor in each

Dijkstra(G, w, s)

for each vertex v in V[G] //initialization
d[v]: ¼ infinity
previous[v]: ¼ nil
end for
d[s]: ¼ 0
S : ¼ empty
Q : ¼ V[G]
while Q is not an empty set //the algorithm
u : ¼ Extract_Min(Q)
S : ¼ S union {u}
for each edge (u,v) outgoing from u
if d[u] þ w(u,v) , d[v]
d[v] : ¼ d[u] þ w(u,v)
previous[v] : ¼ u
end if
end for
end while

Table 1 | Applying Dijkstra’s algorithm to basin B in Figure 5

Node u 1 2 4 5 6 8 9 10 11

d[u] 3 3 2 2 4 1 2 3 0

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011190

time step when assuming three processors are used in the

simulation.

Parallel computing performance can be measured by

speedup and efficiency. Speedup (Sn) is the ratio of the run-

time of the sequential algorithm using one processor to the

run-time of the parallel algorithm using multiple processors:

Sn ¼
T1

Tn
ð3Þ

where T1 is the run-time of the sequential algorithm and

Tn is the run-time of the parallel algorithm executed

on n processors.

The efficiency En is the speedup divided by the number

of processors used in a run of the parallel algorithm:

En ¼
Sn

n
¼

T1

nTn
ð4Þ

where n is the number of processors.

Speedup and efficiency are affected by many factors

such as inter-processor communication bandwidth, I/O

bottle neck, etc. However, one of the most important

factors is the load balance among processors. In the above

example, assuming that three processors are used (Table 2)

and there are no communication and I/O costs, it takes five

units of time to finish the simulation because there are five

steps when the three processors can run simultaneously in

step 2 and 3; meanwhile the run-time of using one processor

is nine units of time because there are nine grid cells.

Therefore the speedup is 9/5 ¼ 1.8 and the efficiency is 9/

(3 £ 5) ¼ 0.6. The process is only 60% efficient because

the workload of each processor is not balanced very well.

The last column in Table 2 shows the workload of each

processor. Processor 1 has the greatest workload of five grid

cells, while processors 2 and 3 have only two grid cells each.

As shown in steps 1, 4, and 5, two processors have to

wait for the other processor to finish; their time is wasted.

Because of the dependency of grid cells, the workload of

the processors cannot be balanced. Particularly during the

last step, the outlet can be assigned to only one processor

while other processors are idling. Due to this limitation, the

speedup and efficiency are not ideal even though we

assumed ideal zero inter-processor communication and

I/O costs. Moreover, the resulting parallel algorithm is not

scalable. In other words, increasing the number of pro-

cessors may reduce the speedup and efficiency. It is possible

to optimize the number of processors to be used to achieve

maximum speedup and efficiency.

To overcome the unbalanced workload limitation, an

algorithm decomposition strategy could be an alternative to

the data decomposition strategy described here. The

decomposition strategy introduced here is called data

decomposition, in which each processor runs the same

algorithm but uses different datasets. The algorithm

decomposition strategy assigns the same dataset to each

processor, but each processor runs a different algorithm or a

different part of the same algorithm. Therefore, algorithm

decomposition may produce a more balanced workload on

each processor if the algorithm could be distributed evenly.

However, it requires more programming efforts and may not

be as scalable as data decomposition. Usually, algorithm

decomposition results in complicated parallel algorithms

(Dowd & Severance 1998).

CASE STUDY

Implementing the parallel algorithm

The parallel algorithm discussed in the previous section was

implemented into a routing model. This implementation

uses the Message Passing Interface library, openMPI. As

discussed, the distances from each grid cell to the outlet cell

is first calculated. Starting from the longest distance, the

flow on the grid cells at the same distance are computed

simultaneously. The grid cells within the same distance are

allocated to the available processors in a manner such that

the workload of each processor is as even as possible. After

all processors have done their jobs at the current distance

and before starting the jobs at the next distance, each

processor first find out who will need its results for the

computation at the next distance and then sends its results.

Table 2 | Cell number on each processor in each step

Step 1 2 3 4 5 Total workload

Processor 1 6 1 4 8 11 5

Processor 2 Idle 2 5 Idle Idle 2

Processor 3 Idle 10 9 Idle Idle 2

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011191

After sending results, the processor will also find out from

whom it will receive data for its own computation at the

next distance and then do the receiving. After sending and

receiving, the processors will have outflow from upstream

cells and resume the computation at the next distance. This

process is repeated until the working distance is zero where

the root (outlet) cell is processed.

This communication step is necessary because the

processors must know the outflow value from upstream

cells before proceeding to the next level in distance;

however, the upstream cells might have been assigned to

another processor. Thus the results have to be obtained

from the other processors who computed the upstream

cells. To minimize inter-processor communication, the MPI

point-to-point method is used in which only processors

involved in the computation will do the communication. If

a processor is not assigned a job or other processors do not

need its computation results, it will not participate in the

communication activities.

Hardware

The simulation is conducted on a distributed memory

cluster that has 33 compute nodes. Each compute node

has two dual-core AMD Opteron processors and 13 GB of

memory. The compute nodes are connected by an Infini-

Band switch, which is a fabric communication link used to

connect the compute nodes in high-performance comput-

ing. The number of processors used in this study is varied

from 1 to 16 to study the performance of the algorithm.

Simulation dataset

We chose the Oklahoma Illinois River Basin at Tahlequah

as the test basin (Figure 7) because it is one of the basins

recently modelled in the US NWS Distributed Model

Intercomparison Project (Smith et al. 2004). This basin

has a drainage area of 2,484 km2. The connectivity file

contains 151 grid cells. Each grid cell has a size of 4 £ 4 km.

The longest distance from the outlet cell calculated by

Dijkstra’s shortest distance algorithm is 32 grid cells. The

distribution of the grid cells at different distances is shown

in Table 3.

The precipitation data is also in a gridded format with a

resolution of 4 £ 4 km obtained from the NWS NEXRAD

Stage III hourly precipitation archive. Temporal resolution

is one hour of precipitation data. The simulation was

conducted from 1 October 1995 to 30 September 2002.

RESULTS

Figure 8 is the resulting discharge from the simulation

compared to the observed discharge values at Tahlequah

station of the Oklahoma Illinois River basin. The simulated

discharges agree well with observed values.

Figure 9 shows both the wall clock time of average

runtime and average inter-processor communication time

of the parallel routing model for the number of processors

ranging from 1 to 16. The total runtime was reduced from

140 seconds on 1 processor to 60 seconds on 16 processors.

The reduction of runtime is more significant at a small

number of processors (less than 6) than at a large number of

processors (greater than 6). This pattern is also shown in

Figure 10 where higher speedups were achieved when the

number of processors is less than 6. The runtime did not

decrease significantly and was relatively constant when the

number of processors is greater than 6. There was a slight

increase in runtime when the number of processors

increased from 3 to 4 and 7 to 8. The inter-processor

communication time increased from a near-zero value to 23

seconds on 4 processors and remained relative constant

thereafter. Although the inter-processor communication did

not increase after 6 processors, the runtime did not decrease

when the number of processors increased. This means that

the computation time did not decrease as the number of

processors increased when the number of processors is

greater than 6. The parallel routing algorithm is only

scalable up to 6 processors. At 4 and 8 processors, the

Oklahoma
Tahlequah

Illinois River Basin

Arkansas

Figure 7 | Location of the Illinois River Basin.

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011192

communication time is about 23 seconds which is one of

the largest communication times. This could contribute to

the increased runtime at 4 and 8 processors.

Figure 10 shows the speedup of the parallel routing

model up to 16 processors. As the number of processors

increased, the speedup first increased and the maximum

speedup was about 2.2 at 16 processors. However, the

increase was not significant when number of processors is

greater than 6.

DISCUSSION

The parallel routing has limited scalability as shown in

Figures 9 and 10. The runtime did not decrease and the

speedup did not increase significantly when the number of

processors is greater than 6. Perhaps two reasons contribute

to the scalability.

The first reason is the overhead time due to inter-

processor communications. For example, at 6 processors,

the average communication time is about 20 seconds which

consists of 29% of total runtime, 70 seconds. The down-

stream cells depend on upstream cells; the parallel

algorithm has to coordinate the processors to communicate

to others at each distance for processors to obtain necessary

data before proceeding to the next level of distance. The

number of communications is proportional to the maximum

distance to the outlet of the connectivity. The maximum

distance of the Illinois basin is 32 units, thus the

algorithm will coordinate the processors 32 times at each

distance to send and receive data. When the number of

processors increases, the communication required at each

of the 32 distances increases because more processors are

involved and therefore the overall communication time

increases.

This experiment was conducted on a cluster where

memories are distributed among the compute nodes

connected by a network. The performance would be better

if a shared-memory SMP computer was used. The SMP is a

multiprocessor computer architecture where two or more

identical processors are connected to a single shared

Table 3 | Number of grid cell at each distance

Distance 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No. of cells 1 2 3 2 3 2 1 1 2 2 4 2 2 4 3 5 8

Distance 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

No. of cells 7 9 7 5 4 5 5 7 10 17 11 8 3 3 2 1

0

 200

 400

 600

 800

1,000

01
/01

/19
96

01
/01

/19
97

01
/01

/19
98

01
/01

/19
99

01
/01

/20
00

01
/01

/20
01

01
/01

/20
02

D
is

ch
ar

ge
 (

C
M

S)

Simulated discharge
Observed discharge

Figure 8 | Simulated versus observed discharge at Tahlequah, the Oklahoma Illinois

River basin.

0

20

40

60

80

100

120

140

161287654321

T
im

e
(s

ec
)

Number of processors (p)

Runtime
Communication time

Figure 9 | Simulation runtime and communication time versus number of processors.

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011193

memory. The inter-processor bandwidth is much higher

than the distributed memory cluster.

The second reason for a limited scalability is the

unbalanced workload as discussed in the previous section.

As shown in Figure 9, the runtime and communication time

curves are almost parallel from 6 to 16 processors. It

indicates that the computation time remained constant even

though more processors participated in computation.

The number of grid cells at each distance varies greatly

from 1 to 17 as shown in Table 3: 4 distances have 1 grid

cell, 8 distances have 2 grid cells and 5 distances have 3 grid

cells, etc. The greater the numbers of processors, the more

often the processors are idling at the same distances. The

idling processors at these distances are just wasting

resources and cannot proceed until the busy processors

finish their jobs. The results are low speedups and poor

scalability. Table 4 lists the distribution of jobs at each

distance for each processor.

Here we use the ratio of maximum to minimum

workload called job ratio to measure the degree of work-

load balance. When the workloads are perfectly balanced,

the job ratio is 1. The larger the ratio, the more the work-

loads are unbalanced. In the above example of 4 processors,

the job ratio is 52/24 ¼ 2.166. It also can be seen from

Table 4 that Processor 4 has more than the twice the

workload of Processor 1. Figure 11 shows the job ratio

versus the number of processors for the Illinois River Basin

from 1 processor to 16 processors.

The job ratio at 6, 7 and 8 processors is about 5

and quickly increases to 34 at 12 and 16 processors.

The unbalanced jobs at high number of processors limited

the parallel scalability.

The job ratio is also controlled by the distribution of

grid cells along the depth of the tree. There are 151 grid cells

1

1.2

1.4

1.6

1.8

2

2.2

2.4

161287654321

Sp
ee

du
p

Number of processors (p)

Speedup

Figure 10 | Speedup on various numbers of processors.

Table 4 | Workload on each processor at each distance with 4 processors

Distance Processor 1 Processor 2 Processor 3 Processor 4 Total

0 0 0 0 1 1

1 0 0 1 1 2

2 0 1 1 1 3

3 0 0 1 1 2

4 0 1 1 1 3

5 0 0 1 1 2

6 0 0 0 1 1

7 0 0 0 1 1

8 0 0 1 1 2

9 0 0 1 1 2

10 1 1 1 1 4

11 0 0 1 1 2

12 0 0 1 1 2

13 1 1 1 1 4

14 0 1 1 1 3

15 1 1 1 2 5

16 2 2 2 2 8

17 1 2 2 2 7

18 2 2 2 3 9

19 1 2 2 2 7

20 1 1 1 2 5

21 1 1 1 1 4

22 1 1 1 2 5

23 1 1 1 2 5

24 1 2 2 2 7

25 2 2 3 3 10

26 4 4 4 5 17

27 2 3 3 3 11

28 2 2 2 2 8

29 0 1 1 1 3

30 0 1 1 1 3

31 0 0 1 1 2

32 0 0 0 1 1

Total 24 33 42 52 151

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011194

all together which is a relatively small number, but the

maximum distance is 32. The largest number of grid cells at

one distance (17) occurred at distance 26. The job would

have been more balanced if there were more grid cells at

each distance and the maximum distance was shorter.

CONCLUSIONS

This paper discusses the use of graph theory for distributed

hydrologic models that use a drainage network derived

from DEM data. Graph theory has a rich set of well-studied

algorithms that can be used by scientists to facilitate

their modelling efforts and avoid duplicating past work.

The two most commonly used algorithms, the Postorder

and Preorder Tree Walk, and their variations are presented.

These are used to visit the grid cells in particular orders.

Three data structures (adjacency-matrix, adjacency-list

and edge-list) can be used to implement a graph. The vertex

and edge set can be implemented as a vector or a linked-list.

Each of these structures has different trade-offs on perform-

ance and storage.

The graph-based implementation of a drainage network

and algorithms discussed in this paper are applicable to

distributed hydrologic models that have structures similar to

regular grids and TINs. The authors have implemented

drainage networks using the adjacency-list structure in both

the research and operational versions of the NWS dis-

tributed model. The graph-based architecture provides both

scientific and system software developers with ready-to-use

algorithms in a generic object-oriented development

environment. The resulting sequential computer codes are

efficient, extensible and reusable.

As parallel computing becomes more commonplace on

today’s computing hardware, a parallel algorithm for the

routing model has been developed. The parallel algorithm is

based on Dijkstra’s shortest-path algorithm which deter-

mines which cells are to be calculated simultaneously in a

drainage network at each distance. However, because of the

dependencies in the drainage network, upstream cells must

be computed before downstream cells. Consequently, work-

load on the multiple processors is very difficult to balance.

The parallel algorithm has been implemented in a

distributed hydrologic routing model and run on a cluster

using the Oklahoma Illinois River basin dataset. The results

show that inter-processor communication and unbalanced

workload are the bottlenecks of the performance due to

the nature of the problem being solved. Because of the

dependency of the grid cell in the hydrologic connectivity,

the computation on grid cells must start from the grid cells at

the greatest distance from the outlet, one distance at a time

and progressively to the outlet cell. The inter-processor

communication is required at each distance and the work-

load of the processors is highly unbalanced as the number of

processors increases. Thus, the scalability is limited.

The inter-processor communication plays a key role for

the parallel algorithm presented in this paper. A shared-

memory SMP computer would improve the scalability

considerably because of high inter-processor bandwidth.

On the other hand, the relative small number of grid cells

and the long maximum distance to the outlet cell produce

high job ratios that will deteriorate scalability. The job ratios

could be improved for basins with a large number of grid

cells at each distance. We conclude that the parallel

algorithm is more applicable to computers with high inter-

processor bandwidth and basins where the number of grid

cells is large and the maximum distance of the grid cells to

the outlet is short.

Algorithm decomposition is another strategy to over-

come the inter-processor communication and unbalanced

workload limitation. However, algorithm decomposition

requires a greater programming effort to decompose the

system of equations, and usually results in complicated

0

5

10

15

20

25

30

35

40

161287654321

Jo
b

ra
tio

 (
m

ax
 jo

b
si

ze
/m

in
 jo

b
si

ze
)

Number of processors (p)

Job ratio

Figure 11 | Maximum to minimum workload ratio on various numbers of processors.

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011195

parallel algorithms. Other considerations such as computer

architectures, inter-processor communications and parallel

I/O will also affect the performance of the parallelized

system, and should be taken into consideration when

developing parallel algorithms for distributed hydrologic

models.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewer for their

valuable comments. Reviewer #5 also contributed ideas

on improving the performance of the parallel algorithm.

REFERENCES

Apostolopoulos, T. K. & Georgakakos, K. P. 1997 Parallel

computation for streamflow prediction with distributed

hydrologic models. J. Hydrol. 197, 1–24.

Bailly, J., Monesez, P. & Lagacherie, P. 2006 Modelling spatial

variability along drainage networks with geostatistics. Math.

Geol. 38 (5), 515–539.

Berthou, J. & Fayolle, E. 2001 Comparing OpenMP, HPF, and MPI

programming: a study case. Int. J. High Perform. Comput.

Appl. 15 (3), 297–309.

Cantwell, M. D. & Forman, R. T. T. 1993 Landscape graphs:

ecological modeling with graph theory to detect configurations

common to diverse landscapes. Landsc. Ecol. 8 (4), 239–255.

Carter, G. C. 2002 Infusing new science into the National Weather

Service River Forecast System. Second Federal Interagency

Hydrologic Modeling Conference, Las Vagas, Nevada, p. 10.

Coffman, D. M. & Turner, A. K. 1971 Computer determination of

the geometry and topology of stream networks. Water Resour.

Res. 7 (2), 419–423.

Cormen, T. H., Leiserson, C. E. & Rivest, R. L. 1989 Introduction to

Algorithms. The MIT electrical engineering and computer

science series, MIT Press, (ISBN 0-262-03141-8).

Cui, Z., Vieux, B. E., Neeman, H. & Moreda, F. 2005 Parallelisation

of a distributed hydrologic model. Int. J. Comput. Appl.

Technol. 22 (1), 42–52.

Cui, Z., Koren, V., Moreda, F. & Smith, M. 2006 A common

programming framework for distributed hydrologic modeling

research: an overview of the architecture. Third Federal

Interagency Hydrologic Modeling Conference, Session 5E, Las

Vegas, Nevada, April 2–6.

Dowd, K. & Severance, C. R. 1998 High Performance Computing.

O’Reilly & Associates, Inc, Sebastopol, CA.

Fairfield, J. & Leymarie, P. 1991 Drainage networks from

grid digital elevation models. Water Resour. Res. 27 (5),

109–717.

Gleyzer, A., Denisyuk, M., Rimmer, A. & Salingar, Y. 2004 A fast

recursive GIS algorithm for computing Strahler stream order

in braided and nonbraided networks. J. Am. Water Resour.

Assoc (JAWRA) 40 (4), 937–946.

Gupta, R. & Prasad, T. D. 2000 Extended use of linear graph theory

for analysis of pipe networks. J. Hydraulic Eng. 126 (1),

56–62.

Jenson, S. K. & Domingue, J. O. 1988 Extracting topographic

structure from digital elevation data for geographic

information system analysis. Photogramm. Eng. Remote Sens.

54, 1593–1600.

Jiang, B. & Claramunt, C. 2004 A structural approach to the model

generalization of an urban street network. GeoInformatics 8

(2), 157–171.

Koren, V. & Barrett, C. B. 1994 A satellite based river forecast

system for the Nile River. Proceedings of the 21st Annual

Conference sponsored by the Water Resources Planning and

Management Division, ASCE, held in Denver, Colorado, May

23–26, 1994.

Koren, V., Reed, S., Smith, M., Zhang, Z. & Seo, D. 2004

Hydrology laboratory research modeling system (HL-RMS)

of the US national weather service. J. Hydrol. 291,

297–318.

Kreyszig, E. 1998 Graphs and combinatorial optimization. In

Advanced Engineering Mathematics (ed. E. Kreyszig), 8th

edition. John Wiley & Sons.

Lee, L., Siek, J. G. & Lumsdaine, A. 1999 The generic graph

component library. Proceedings of the 14th ACM SIGPLAN

conference on Object-oriented programming, systems,

languages and applications, Denver, Colorado, United States,

399–414, ISBN:1-58113-238-7.

Mark, D. M. 1988 Network models in geomorphology. In Modelling

Geomorpholgical Systems (ed. M. G. Anderson), pp. 73–97.

John Wiley & Sons Ltd.

O’Callaghan, J. F. & Mark, D. M. 1984 The extraction of drainage

networks from digital elevation data. Comput. Vision Graphics

Image Process 28, 323–344.

Park, J., Obeysekera, J. & Vanzee, R. 2005 Graph theory data

objects applied to stream flow network representation in an

integrated hydrological model. American Geophysical Union,

Spring Meeting 2005, 2005AGUSM.H21C.01P.

Pfafstetter, O. 1989 Classification of hydrographic basins: coding

methodology. Unpublished manuscript, Departamento

Nacional de Obras de Saneamento, August 19, 1989,

Rio de Janeiro, Brazil [Translated by J.P. Verdin,

U.S. Bureau of Reclamation, Denver, Colorado,

September 5, 1991].

Reed, S. M. 2003 Deriving flow directions for coarse resolution

(1–4 km) gridded hydrologic modelling. Water Resour. Res. 39

(9), 1238.

Reynolds, J. F. & Wu, J. 1999 Do landscape structural and

functional units exist? Integrating Hydrology, Ecosystem,

Dynamics, and Biogeochemistry in Complex Landscapes

(ed. J. D. Tenhunen & P. Kabat),. John Wiley &

Sons Ltd.

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011196

http://dx.doi.org/10.1016/S0022-1694(96)03281-7
http://dx.doi.org/10.1016/S0022-1694(96)03281-7
http://dx.doi.org/10.1016/S0022-1694(96)03281-7
http://dx.doi.org/10.1007/s11004-006-9033-0
http://dx.doi.org/10.1007/s11004-006-9033-0
http://dx.doi.org/10.1177/109434200101500307
http://dx.doi.org/10.1177/109434200101500307
http://dx.doi.org/10.1007/BF00125131
http://dx.doi.org/10.1007/BF00125131
http://dx.doi.org/10.1007/BF00125131
http://dx.doi.org/10.1029/WR007i002p00419
http://dx.doi.org/10.1029/WR007i002p00419
http://dx.doi.org/10.1504/IJCAT.2005.006802
http://dx.doi.org/10.1504/IJCAT.2005.006802
http://dx.doi.org/10.1029/90WR02658
http://dx.doi.org/10.1029/90WR02658
http://dx.doi.org/10.1111/j.1752-1688.2004.tb01057.x
http://dx.doi.org/10.1111/j.1752-1688.2004.tb01057.x
http://dx.doi.org/10.1111/j.1752-1688.2004.tb01057.x
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:1(56)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:1(56)
http://dx.doi.org/10.1023/B:GEIN.0000017746.44824.70
http://dx.doi.org/10.1023/B:GEIN.0000017746.44824.70
http://dx.doi.org/10.1016/j.jhydrol.2003.12.039
http://dx.doi.org/10.1016/j.jhydrol.2003.12.039
http://dx.doi.org/10.1016/S0734-189X(84)80011-0
http://dx.doi.org/10.1016/S0734-189X(84)80011-0
http://dx.doi.org/10.1029/2003WR001989
http://dx.doi.org/10.1029/2003WR001989
http://dx.doi.org/10.1029/2003WR001989
http://dx.doi.org/10.1029/2003WR001989

Scheidegger, A. E. 1967 On the topology of river nets. Water

Resour. Res. 3 (1), 103–106.

Shreve, R. L. 1967 Infinite topologically random channel networks.

J. Geol. 75, 178–186.

Schroder, B. 2006 Pattern, process, and function in landscape

ecology and catchment hydrology—how can quantitative

landscape ecology support predictions in ungaged basins

(PUB)? Hydrol. Earth Syst. Sci. Discuss. 3, 1185–1214.

Smart, J. S. 1970 Use of topologic information in processing data for

channel networks. Water Resour. Res. 6 (3), 932–936.

Smith, M. B. & Brilly, M. 1992 Automated grid element ordering for

GIS-based overland flow modelling. Photogramm. Eng.

Remote Sens. 58 (5), 579–585.

Smith, M. B., Seo, D. J., Koren, V. I., Reed, S. M., Zhang, Z., Duan,

Q., Moreda, F. & Cong, S. 2004 The distributed model

intercomparison project (DMIP): motivation and experiment

design. J. Hydrol. 298 (1–4), 4–26.

Sutter, H. 2005 A fundamental turn toward concurrency in

software. Dr. Dobb’s J. 30 (3) (Available online: http://

www.ddj.com/web-development/184405990).

Urban, D. & Teitt, T. 2001 Landscape connectivity: a graph-

theoretic perspective. Ecology 82 (5), 1205–1218.

Verdin, K. L. 1997 A system for topologically coding global

drainage basins and stream networks. Proceedings of the

Seventeenth Annual ESRI User Conference, San Diego,

California.

First received 21 March 2008; accepted in revised form 2 November 2009. Available online 13 April 2010

Z. Cui et al. | Hydroinformatics advances for operational river forecasting Journal of Hydroinformatics 9 13.2 9 2011197

http://dx.doi.org/10.1029/WR003i001p00103
http://dx.doi.org/10.1086/627245
http://dx.doi.org/10.1029/WR006i003p00932
http://dx.doi.org/10.1029/WR006i003p00932
http://dx.doi.org/10.1016/j.jhydrol.2004.03.040
http://dx.doi.org/10.1016/j.jhydrol.2004.03.040
http://dx.doi.org/10.1016/j.jhydrol.2004.03.040
http://www.ddj.com/web-development/184405990
http://www.ddj.com/web-development/184405990
http://dx.doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2

	Hydroinformatics advances for operational river forecasting: using graphs for drainage network descriptions
	&?tpacr=1;Introduction
	Literature review
	Graph theory review
	Graph definition
	Graph implementation

	Representing drainage networks &?tul=0;with graphs
	Using graph walks to control processing order
	Choice of data structure

	Parallel computation
	Case study
	Implementing the parallel algorithm
	Hardware
	Simulation dataset

	Results
	Discussion
	Conclusions
	Acknowledgements
	References

