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ABSTRACT

Unsteady flow In a natural river which meanders through a wide flood plain
is complicated by large differences in hydraulic resistance and cross-
sectional geometry of the river channel and the flood plain. The unsteady
flow 1s further complicated by the tendency for a portion of the flow to
"short-circuit" along the more direct route afforded by the flood plain rather
than following the longer route along the meandering channel. Thus, the wave
attenuation and the time of travel of the portion of the flow in the channel
4 ffers from that in the flood plain due to differences in the hydraulic
properties, and flow-path distances of the channel and flood plain.

A mathematical model for routing floods in meandering rivers with flood
ilafns is presented., The technique is based on a modified form of the
complete one-dimensional equations of unsteady flow and thus avoids the
vbvious use of the more complex and computationally time consuming two-
dimensional equations. The onc-dimensional equations are modified such that
the flow in the meandering channel and flood plain are identified separately.
lhns, the differences in both hydraulic properties and flow-path distance are
taken into account in a physically meaningful way, but one that is one-
dimensfonal {n concept. This development differs from conventional one-
dimensional treatment of unsteady flows {n rivers with flood plains wherein
the flow is elther averaped across the total cross-sectional area (channel
and flood plain) or the flood plain is treated as off-channel storage, and
the reach lengths of the channel and flood plain are assumed to be identical.

The modified equations contain the same two unknowns (discharge and water
wurface elevation) as the conventional equations; hence, the same numerical
solution techniques applicable to the conventional one-dimensional unsteady
flow equations may be used. 1In this paper, a welighted four-point {mplicit
(inite difference technique s used for reasons of its versatility and
computing efficiency.

The mathematical model 1s compared with two conventional flood-plain
vouting models and found to produce appropriately smaller wave attenuation
and travel time, especially when channel meander i8 a factor. The mathematical
model is used to simulate a number of hydrographs for varying flood plain to
channel ratios of flow-path distance, roughness, and width in order to
letermine both qualitatively and quantitatively the modifying effects of
fluod plalns on floods propagating through meandering rivers. Wave
ittenuation and travel time are found to increase as flood-plain roughness
nand width increase and as the extent of channel meander decreases.

"TResearch Hydrologist, Hydrologic Research Laboratory, National Weather
tervice, Silver Spring, Md. 20910.




INTRODUCTION

Unsteady flow in a natural river which meanders through a wide flood
plain 1s complicated by large differences in geometric and hydraulic
tharacteristics between the river channel and the flood plain, as well
4s the extreme differences in the hydraulic roughness coefficient.

Ihe flow 18 further complicated by the meandering of the main channel

3lthin the flood plain, which causes a portion of the total flow to
short-circuit” and proceed downstream along the more direct course

nfforded by the flood plain rather than along the more circuitous route

of the meandering channel. This tendency for short-circuiting of the flow

{s enhanced by the greater longitudinal slope assoclated with the flood plain

than that of the main channel; however, the short-circuiting effect is

diminished by the greater hydraulic roughness of the flood plain. Further

complexities are created by portions of the flood plain which act as dead

storape areas, wherein the flow velocity is negligible, Another flow

complexity occurs due to the interaction of the flows in the main channel

and the flood plain; the direction of the lateral exchange of flow between

the two watercourses depends on whether the flood wave 18 rising or receding,

which, 1n turn, affects the magnitude of the assoclated energy loss,

Tn the literature [Liggett and Cunge, 1975; Miller and Cunge, 1975],
ft is evident that the one-dimensional mathematical models proposed for
«imulating unsteady flows in natural rivers have, for the most part,
frnored the above flow complexities. Most either treat the flood plain
or some portion of it as off-channel dead storage, or the main river
rhannel and the flood plain are lumped together to form a composite
channel {n which the significantly different particle velocities and
wvave speeds of the flows 1in the maln channel and in the flood plain
are averaged together. FEach of these techniques provides only a rough
approximation of the actual flow, while the problem of short-circulting
{s usually ignored; although, Perkins {1970} approached the problem by
I{ncarly adjusting the channel flow-path length as the flood plain
{s inundated.

The purpose of this paper 1s to present a one-dimensional mathematical
model for simulating unsteady flows in a meandering river within a wide
flood plain. Although the proposed model is alsoc an approximation of
the complex flow in such a natural watercourse, it does directly consider
the Influence of the unequal flow velocities and different degrees of
roughness in the main river channel and the flood plain, the influence
of different lengths and slopes of the flow paths of the channel and the
flood plain, and the influence of dead storage areas. The energy loss
due to the interaction of channel and flood-plain flows, as well as the
problems of simulating helicoidal flow at river bends, traveling eddies,
ete., which are assocliated with natural river channels are not considered
in the proposed model.

MATHEMATICAL MODEL

Governing Equations

The basic concept of the model 18 to treat the flows in the river
channel and the flood plain separately and from a one-dimensional point
of view [Fread, 1975]. Thus, the model is based on a modified form of
the one-dimensional equations of unsteady flow and thereby avoids the
obvious use of the more complex and computationally time-consuming two-
dimensional equations. This approach is warranted since the purpose of
the model is to route floods and thus determine the celerity and trans-
formation of the flood wave as it proceeds downstream through the river
channel and the flood plain. These characteristics of the flood wave
sre influenced predominantly by the one-dimensional motion of the flood
wave along the longitudinal axes of the river and the flood plain.

In order to treat the flows in the channel and flood plain separately,
it is important that the geometric, roughness, and flow-path character-
istics of both the river channel and flood plain be preserved in the
governing one-dimensional equations. Using a subscript "e" to denote
variables pertaining to the river channel, the complete one-dimensional
equations of unsteady flow in a prismatic or non-prismatic river channel

of arbitrary cross-sectional shape [Liggett, 1975; Stoker, 1957) are:
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Likewise, using a subscript "f' to denote variables pertaining to the
flood plain, the one-dimensional equations of unsteady flow can be
written for the flood-plain flow as follows:
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The variables in Eqs. 1-4 are defined as follows: Q = the discharge,
L}/T; A = the cross-sectional area, L?; A_ = the off-channel dead storage
area, L?; h = the water surface elevation, L; S = the friction slope, L/L;
q = the lateral inflow, L?/T; v, = the velocity of the lateral inflow
in the direction of x-axis of tﬁg flood plain, L/T; x = distence along
the longitudinal axes of the channel or flood plain, L; t = time, T; and
g = the acceleration due to gravity, L/t



The above flow ratio is defined as:
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The total flow in the channel and flood plain ie the sum of two
separate flows, i.e.,

Q=q +Q an

From Eq. 10, it 18 seen that

Q= ¥, (12)
Then, substituting Eq. 12 in Eq. 11, the following is obtained:
- ° 13
Q = Q a3
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1
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Likewise, using Eqs. 11-12, the followlng can be obtained also:

Q = TQ (15)
where
2
T 1+ (16)

Since ¢ and T are both functions of ¢, which, in Eq. 10, 1s seen
to be a function of only one unknown variable (h), Eqs. 13 and 15 can
be used to express Q. and Qf in terma of Q and h. Thus, upon substituting
Eqs. 7, 11, 13, and 15 in Eqs. 5-6, only two unknowns, Q (total discharge)
and h (water surface elevation), remain, 1i.e.,
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Upon adding the flows in the channel and the flood plain, the equations
of unsteady flow for the combined flow become:
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Eqs. 5-6 contain only four unknowns, Q , Q., h , and h_ because A can
be expressed as & function of h, S can be éxpressed as a function of Q
and h, and q, v, , 8, X, t are known quantities. Since there are only
two equations, }f i8 desirable to reduce the number of unknowns to two.

Following a one~dimensional approach, the water surface is assumed
to be horizontal acroas the river channel and the flood plain; therefore:

hc-hf-h )
Thus, h_ and h, can be replaced by h in Eqs. 5-6, thereby eliminating
one of fhe four unknowns.

It is further assumed that the friction slope in the channel and in the
flood plain can be expressed by Manning's equation, in which the slope
S 18 approximated as:

S = Ah/Ax ()
This approximation neglects the contribution of inertia effects in
evaluating the friction loss, yet 1is reasonable in the case of slowly

varying transients such as flood waves moving through meandering rivers.

An approximate ratio of the flow in the flood plain to that in the
river channel can be found using Manning's equation with S approximated
by Bq. 8. Thus

(9)

in which n = the Manning's roughness coefficient, T/lﬂn; R = the hydraulic
radius, L, which is approximated herein by A/B, where B is the top width ot
the water surface within the cross section, L; &h/Ax = the change in

water surface elevation per incremental distance along the channel or

flood plain aexis, L/L.



parallel to the x axis represent time lines; they have a spacing of At,
which need not be constant. Those parallel to the t axis represent discrete
locations or nodes along the river (x oxis); they have a epacing of Ax,
which also need not be constant. Each point in the rectangular network

can be identificd by a subscript (1) which designates the x position and

a superscript (j) which designates the time line.

The time derivatives are approximated by a forward difference quotient
centered between the 1th and 1+1 points along the x axis, i.e.,
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where K represents any variable.

The spatial derivatives are approximated by a forward difference
quotient positioned between two adjacent time lines according to welighting

factors of 8 and 1-6, 1.e.,
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Variables other than derivatives are approximated at the time level where
the spatial derivatives are evaluated by using the same weighting factors, i.e.,
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A 6 weighting factor of 1.0 yields the fully implicit or backward
difference scheme used by Baltzer and Lai [1968], Dronkers [1969].
A weighting factor of 0.5 ylelds the box scheme used by Amein and Fang [1970],
Contractor and Wiggert [1971]. The influence of the 0 weighting factor on the
accuracy of the computations was examined by Fread [1974a}, who concluded that
the accuracy decreasecs as 0 departs from 0.5 and approaches 1.0. This effect
becomes more pronounced as the magnitude of the computational time step
increases. In this paper, a weighting factor of 0.55 18 used so as to
minimize the loss of accuracy associated with greater values while avoiding
the possibility of a weak or pseudo instability noticed by Baltzer and
Lat [1968}, Quinn and Wylle [1972], Chaudhry and Contractor {1973], and

Fread {1975] when a 6 of 0.5 18 used.

When the finite difference operators defined by Egs. 20-22 are used to
replace the derivatives and other variables in Eqs. 17-18, the following

weighted four-point implicit difference equations are obtalined:
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Eq8. 17-18 are the governing differential equations of one-dimensional
flow in & natural mcandering river with a flood plain. Eq. 17 conserves th
mass of the flow and Eq. 18 conserves the momentum.

Eq. 18 neglects momentum considerations for the lateral exchange of flow
between the channel and the flood plain. The exchange is assumed to be
completely described by the equation of continuity (Eq. 17).

Eqs. 17-18 constitute a system of partial differential equatlions
of the hyperbolic type. They contain two indcpendent variables, x and t,
and two dependent varlables, h and Q; the remaining terms are elther functici
of x, t, h, and/or Q, or they are constants. These equations are not
amenable to analytical solutions except in cases where the channel geomuor,
and boundary conditlions are uncomplicated and the non-linear propertics
of the equations are either neglected or made linear. The equations miy
be solved numerically by performing two basic steps. First, the partial
differentinl equations are represented by a correaponding set of finice
difference algebraic equations; and second, the system of algebralc equatiovus
is solved In conformance with prescribed initial and boundary conditions.

Numecrical Solution

Eqs. 17-18 are modified forms of the conventional one-dimensional
equations of unsteady flow (Eqs. 1-2). They contain the same two unknowi
(water surface elevation and discharge) as the conventional equations;
hence, the same numerical solution techniques applicable to the
conventional equations may be used. Accordingly, Egs. 17-18 can be
solved by elther explicit or implicit finite difference techaiques {Lippett
and Cunge, 1975]). Explicit methods, although simpler in applicatfon,
are not sultable for the simulation of loag-term unsteady flow phenomciig,
such as flood waves In rivers, because they are restricted by mathematic.al
stability considerations to very small computational time steps (on the
order of a few minutes). Such small time steps cause the explicit mechods
to be very inefficient in the use of computer time. TImplicit finite
difference techniques, however, have no restrictions on the size of the
time step due to mathematical stability; however, convergence considerativic,
may require its size to be limited to somcthing less than a few hundied
times that of the explicit method, depending on the hydraulic propertic:
of the unsteady flow and the size of the distance step.

Of the various implicit schemes that have been developed, the “welphicd
four-point” scheme first used by Pretssman [1961] and recently by Quinn
and Wylie [1973], Chaudry and Comntractor [1973] and Fread {1974b] appears
most advantageous since it can readily be used with unequal distance
steps and 1ts stability-convergence properties can be controlled easfly.

In the weighted four-point ifmplicit finite difference scheme, the contfinuo. .
x-t region in which solutions of h and Q are sought is represenrcd by

a rectangular net of discrete points. The nct points arc determined

by the intersection of lines drawn parallel to the x and t axcs. Those




The terms associated with the j‘h time line are known from elther the
initial conditions or previous computations. The initial conditions

refer to values of h and Q at each node along the x axis for the first

time line (j=1). They are obtained from a previous unsteady flow solution,
or they can be estimated since small errors in the initial conditions
dampen out within a few time steps.

Eqs. 23-24 cannot be solved in an explicit or direct manner for the
unknowns since there are four unknowns and only two equations. However,
if Eqs. 23-24 are applied to each of the (N-1) rectangular grids between the
upstream and downstream boundaries, a total of (2N-2) equations with 2N
unknowns can be formulated. (N denotes the total number of nodes.) Then,
prescribed boundary conditions, one at the upatream boundary and one at the
downstream boundary, provide the necessary two additional equations required
for the system to be determinate. The resulting system of 2N non-linear
equations with 2N unknowns is solved by a functional iterative procedure,
the Newton-Raphson method [Amein and Fang, 1970}, :

Computations for the iterative solution of the non-linear system are
begun by assigning trial values to the 2N unknowns. Substitution of
the trial values into the system of non-linear equations ylelds a set
of 2N residuals. The Newton-Raphson method provides a means for correcting
the trial values until the residuals are reduced to a suitable tolerance
level., This 1s usually accomplished in one or two iterations through use of
linear or parabolic extrapolation for the first trial values. If the
Newton-Raphson corrcctions are applied only once, i.e., there is no
iteration, the non~linear system of difference equations degenerates to the
equivalent of a quasi-linear difference formulation which may require
smaller time steps than the non-linear formulation for the same degree of

numerical accuracy.

A system of 2N x 2N linear cquations relates the corrections to the
residuals and to a Jacoblan cocfficlent matrix composed of partial derivatives
of each equation with respect to cach unknown variable in that equation.

The coefficlient matrix of the linear system has a banded atructure which

allows the system to be solved by a compact quad-diagonal Gaussian elimination
algorithm [Fread, 1971}, which is very efficient with respect to computing

time and storage. The required storage 18 2N x 4 and the required computational
steps are approximately 38N.

The boundary conditions consist of a description of elther water surface
elevation (h) or discharge (Q) as a function of time at the upstream and
downstream extremities of the study reach. The downstream boundary may also
be a specified relationship between h and Q such as an empirical rating curve
or normal stage-discharge relationship corrected for unsteady effects.

For example, the upstream boundary could be given by the followlng:

' - = 0 (29)

where Q(t) is the specified temporal variation of Q at the upstream boundary;
and the downstream boundary could be given by the followinyg stage-discharge
relationship:
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Eqs. 23-24 constitute a system of algebrafc cquations that are non-Ifuca
with respect to the unknowns, i1.e., the values of the dependent variables
h and Q at the net points 1 and i+1 at the time line designated as jt+l.
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where S 18 approximated by Eq. 8.
COMPARISON WITH CONVENTIONAL MODELS
The model developed herein is referred to as the "channel-flood plain”
: model to distinguish it from two other conventional models of rivers having
MEANDERING RIVER flood plains with which it will be compared. The other models are denoted
CHANNEL as the "off-channel storage" model and the "composite channel" model.
The off-channel storage model treats the flood plain as off-channel dead
storage. In this model the effect of the flood plain on unsteady flows
VALLEY BLUFF 1s assumed to be completely described by the continuity equation (Eq. 1)
LINE in which the term A, 1is replaced by A, which 18 defined as:
A=A +A (31)
FLOOD PLAIN ¢

In this model, the velocity of the flow fn the flood plain is assumed negllpibiy
and its momentum cffects are not considered in kq. 2.

The composite section model treats the channel and flood plaln as onc
continuous cross-sectional area. In this model the term AL In cach of
Eqs. 1-2 {s replaced by A, as defined by Eq. 31. An ecquivalent Manning
DOWNSTREAM roughness coefficient (n,), which is a welghted averape of ng and ny,
BOUNDARY is used. It is based on the assumption that the total force resisting

the flow is equal to the sum of the forces resisting the flow fn the

b 1 d in the flood plaln., It s glven by:
FIG. 1 DEFINITION PLAN OFf IDEALIZED MEANDERING KIVER WITH FLOOD PLAIN ‘ channed an e oud plain phven by
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BBy N where P 1s the wetted perimeter of the cross-sectional area,
{
’ VALLEY The same welghted four-pofnt fmplicit findfte difference method in uted
¢ BLUFF for the numerical solution procedure in the off-channel storage and composite
LINE channel models as was previously described for the channel-flood plain model.

An idealized meandering river with a significant flood platn (Fig. 1)
| _and uniform cross sectlon (Fig. 2) is used In the compariscon ot the simulation
characteristics of the three models. The discharge-hydrograph {s specificd

i 1aL —s == FLOOD PLAIN for the upstream end of a 100-mile reach of meandering river with a bottom
FLow f —— “‘"’é:‘v:':"‘“ slope of 1 foot/mile. The three models are used to compute the discharge
1= - ) hydrograph at the downstream boundary. In order to minimize numerical errors,
8 1-hour time steps and l-mile distance steps are used. The exteut of meande:

or sinousity 18 specified by the flow-path length ratio:

- L 3 i)
FIG. 2 CROSS-SECTION 5-5 OF IDEALIZED RIVER Lr Lc/ f 0n

where L. 18 the length of the meandering channel and Lf is the lenwth of the
flood plain between the upstream and downstream boundarfes. For the compariso,
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sinulations, the pertinent characteristics of the channel and flood plain are:
L. = 1.0, 1.5, 2.0; n, = 0.03; ng = 0.06; B, = 500 feet; Bf = 2,000 feet;
Yp = 10 feet; the flood plain slopes upward from the river to the valley bLluti
iine at a rate of 1 foot per 1,000 feet; and there is no lateral ianflow.

| T 2
§ Typtcal computed hydrographs of the channel-flood plain model and the
- i F off-channel storage model are shown in Fig. 3. The composite model
- z 1s not shown since computational problems are encountered when simulating
w the sudden change in top width (B) as the flow spills onto the wide flat
- i . ‘3 flood plain.
[ 3
9. For a critical assessment of the differences between the models, attention
ik - = 3 is focused on the attenuation (aﬁ) and travel time (Tp) of the hydrograph pouk:
2. & (Qp). These are normalized to the attenuation (ap) and travel time (1)
| g % associated with the flow condition (Qy) when the river channel 1is bankfull.
vo -~ = T Normalization about the bankfull condition focuses on the differences in the
20 z computed attenuation and travel time of each model duc to the presence of Lhv
- ox ° 5 flood plain, Simulations are also obtailned from the composite channel modcl
I e with the flow simulation starting with the flood plain inundated suffictently
t % to eliminate the problem of large changes in the top width per change in f 1o
S i < depth as the flow spills onto the flood plain. These results can be compared
o u w - % with the other models since only the hydrograph peaks are of interest.
S no M <
" "..:, I 4 & The attenuation characteristics of the three flood-plain models are shown
- : > o 8 in Fig. 4. The off-channel storage model attenuates the hydrograph much woie
@ o % z [e] than the other two models. The composite channel model {s similar to the
S e -~ ~ " ¥ channel-flood plain model, particularly at the larger flows and when there 1o
i i 4 % no channel meander (L =1.0). As the sinuosity of the river channel fncreaucs,
a < ¥ z the composite channel model deviates farther from the channel-flood plain
PR -1 ° ] model, the former attenuating the hydrograph more than the latter.
34 x o
§ § & _ 6 The travel time characteristics of the three models are shown fn Fiy. o
“ v o s “ Again, the off-channel storage model deviates significantly from the othes
' H ! x t two models as manifested by its considerably greater travel times. The
td - X i composite channel model deviates more and more from the channel-flood
. x 8 plain model as the sinuosity (Lp) and the peak flow (Qp) increase.
<« 3 ac
& § -1 ~ 2 The channel-flood plain model produces results which approach thone ot
s z x the off-channel storage model as the flood-plain roughness and width fncrea.
- ; I S and as the sinuosity decreases. Although the composite scction model has
B & the inherent problem of simulating the condition when the flow spllls onto o
et wide flat flood plain, its simulation characteristics approach those of i
- ~ channel-flood plain model as the difference in channel and flood-plain
- o roughness decreases, as the sinuosity decreases, and as the flood-platin
g width decreases.
| | z
a 3 < . b o “ ° FLOOD WAVE MODIFICATIONS DUE TO FLOOD PLAINS
{r120000)0 The channecl-flood plaln model was used to ocbtaln a qualitative and quaaci-
tative description of the modifying effects that flood plalns have on flood
waves propagating through meandering river channels. Hydrographs having .
wide range of peak values were routed through the fdealized wmeandering 1iven
and flood plain (Figs. 1-2) described previously. The modifying cffects ol
. iy
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A
the flood plain on the attenuation and travel time of the hydrograph peaks
were sought for varying channel and flood plain characteristics such as flow-
path distance, hydraulic roughness, and width. The flood plain effects are
expressed in terms of a normalized attenuation (a /ub) and travel time (Tplxb)
for varying discharges normalized to the bankfull flow, f.e., (Qp/Qb)~

The extent of channel sinuosity (Lr) is an important factor in affecting
the attenuation. This 1s evident in Fig. 6, where the attenuation decreases
significantly as the sinuosity increases. The travel time (Fig. 7) also
decreases as the channel meander increases. The decrease in attenuation and
travel time results when a portion of the flow short-circuits slong the
shorter path afforded by the flood plain rather than following the longer
circuitous channel. For a given sinuosity, attenuation tends to increase
and travel time decrease as the flow increases; however, the trends are
reversed when the flood plain flows and depths are small.

The rclative roughness of the flood plain to the channel, l.e.,

n_ = nf/nC (34)

has an important effect on the attenuation and travel time characteristics.
Attenuation (Fig. 8) and travel time (Fig. 9) increase significantly as the
relative roughness of the flood plain to channel Increases.

Similarly, the relative width of the flood plain to the channel, f.e.,
Br - Bf/llC (35)

affects the attenuation and travel time characteristics. Attenuation (Fig. 10)
and travel time (Fig. 11) increase as the width ratio (B.) increases.

In Figs. B-11, the attenuation increases and travel time decreases as the
flow increases, except at low flood plain flows where the trends are reversed.

SUMMARY

A mathematical model has been developed to route floods in natural
meandering rivers with wide flood plains. The governing equations are
modifications of the conventional one-dimensional equations of unsteady flow.
The modified equations preserve the identity of the essential one-dimensional
flow properties of the flow in the river channel and in the flood plain;
also, the flow-path lengths and slopes of each watercourse are preserved,
which allows the problem of flow short-circuiting to be realistically
modeled. The modified equations contain the same two unknowns as the
conventional equations; this allows the convenient application of conventional
numerical solution techniques, An efficlent and versatile weighted four-point
implicit scheme has been applied to the governing equatlons.

The channel-flood plain model developed herein has been compared with two
conventional methods of treating the flood plain. The channel-flood plain
model provided results which differed from the other models, especially where
channel sinuosity and assoclated flow short-clrculting are factors. The
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computational problem associated with a composite channel model when the flow
spills onto a wide flat flood plain 1s not encountered in the channel-flood

plain model.

The channel-flood plain model has been used to simulate flows in an 8
idealized meandering river with a flood plain. Flood peak attenuation and
travel time were found to increase as flood-plain roughness and width increase
and a8 channel sinuosity decreases. Attenuation increases and travel time
decreases as the flood-plain flow increases except at low flood-plain flows

when the trends are reversed. t
42\
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