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ANALYSIS OF HYDROLOGIC UNCERTAINTY

by John C. Schaake, Jr.
INTRODUCTION

Measuremsat errors, model errors and natural variability of meteorological
inputs to hydrologic systems are causes of uncertainty in hydrologic information.
Although methods exist to analyze some of these uncertainties, improved techniques
are needed. Methods exist, for example: to study the accuracy of hydrologic
instrumentation; to describe the natural hydrologic variability of meteorological
inputs to hydrologic systems either with probability distributions or with stochastic
processes; and, to assess the accuracy of hydrologic models empirically by comparing
computed results with qbserved data. Most extensiVEIymdeveloped are univariate
techniques for analysis of a single random variable or a single time series. Least
extensively deveioped are multivariate techniqiies for analyses of physically inter-
related multiple time series. Improved techniques are needed: (1) to’assess the
accuracy of models where computed results cannot be observed; (2) to permit
measurementsof variables such as, snow water equivalent, soil moisture, or discharge
(which may be computed model output’s) to be used more rationally to improve the
accuracy of model results; (3) to make more rational use of data from more than
one source fe.g., rainfall data from rain gages, radar and satellites); (4) to
permit redundant information to influence hydrologic model results in proportion
to the accuracy of the information.

Suggested in this paper are some ideas for using deterministic models and
stochastic theory together to meet these needs. To be practical these ideas need
extensive development and trial application. They are applied below to a simplified,

hypothetical catchment. Potentially, they could help:

develop improved forecast update procedures
° make better use of snow course data in river forecasting

make better use oé Quantitative precipitation feorecasts in river forecasting
make better use‘i; hydrology of satcllite data which may conta’in much more
.uncertainty than ground. data _ ‘ .

d;velop optimal network design procedures

° make better joint use of radar and rain gages to observe precipitation

° make use of runoff data jointly with point rainfall data to get improved

-estimates of mean areal precipitation ‘
>

HYPOTHETICAL SYSTEM

Consider a hypothetical catchment and svstems for measuring the meun areal

precipitation over the catchment and the downstream discharge. This is illustrated
in Figure 1.



Let
I = True mean areal precipitation (MAP) over the catchment during the
interval <t-1,t>

P = Measurement of I_ from the rain gage network. This is a weighted

average of point rainfall measurements. - C 2
k = Catchment parameter !
Ot = True downstream discharge rate at time t ’ i
Qt = Measurement of 0, from the stream gage.

Assume, for example, that It'varies'stochasticaily according to the
autoregresgive process

- — 3
It pIt_l + Oy V1 P wlt .. (1)
" where ’ © s
wy = independently distributed standard normal deviate
t . . . o A
UI‘ = standard deviation of It R .
P = serial correlation coefficient of It oo

This is not strictly physically realistic for two principal reasons?
(1) the autoregressive process is stationary whereas rainfall is not, and (2) I
has, for convenience, a zero mean and can assume negative as well as positive
values. (To be more practical it could have been defined as a deviation about an
underlying storm pattern, but that would complicate thez example.)

Assume also, for example, that the catchment functions with no evapo-
transpiration nor other loss of water, as a single linear storage reservpir ,
according to '

0, = (1-k) 0_ . + kI_ © (2
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also can be negative.

1

Since It can assume negative values, 0, ’

The true values of I_ and Ot can nzver he known ‘exactly. They can only
bz measured and modeled, but méasurements always include measurement -errdor. Assume

these measurements are made as ’ : )

‘ t .
Po=1 4V 3
t Tt 1 . - (3)
where
ot . y . , s
\Y = a serially uncorrelated random normal measurement error with zero
\ 2
mean and variance Op . :
0 v
and as
Q =o_ +v,t ' (4
t t 2 ‘ . .
whege
7 t —' »r'»‘?l e T e ] A - o}y - ! ey - e 1
Xz = a servially uncerrelated randon normel measurement error with
- 2

zero mean and variance (5}:“

-



ESTIMATION OF THE TRUE STATE OF THE HYPOTHETICAL SYSTEM

The true values of I, and O_ in the hypothetical system can never be
known; but they can be QQtlmatGd on tfe basis of measurements and model computations.
Variables Iy and Op are called the state of the system. The measurements of T and
Ot are Py and Qt’ respectively, The estimates of I and Ot are It and Ot

Conventional Approach

5
Conventionally, in hydrology, when measurements are available they are used
directly to make required estimates. TFor example, available discharge measurements
are used to estimate the true discharge without considering rainfall data nor
rainfall-runoff models. Mdtncﬁathally, this conventional estimate is

0, = g .
P =9 (5)

. As another example, available point rainfall measurements are used to-
stimate MAP. Mathematically, this conventional estimate is

° 4

I =P, o s (6) |

°

Aveilable discharge measurements, generally, are not used to 1mprove It and, if
rainfall data do not exist, conventionally no estimate can be made of It'

Equations 5 and 6 are introduced to help relate conventional hydrologic
methods with the ideas to be presented. An iaportant point is that

I #P 7
r ¢ (7)
and

0_#0 ’ 8

¢ * 0, (8)

The conventional approach in hydrology when rainfall data are availabie

and streanilow data ave not is to use a catchment model to estimate strens: | from
rainfall. Tais is illustrated in Tigure 2. The conventional Approach to assess the
gecuracy of model estimates is to compare estimates with measured values. -This als

iz shown in Figure 2.

Before presenting the proposed approach, estimation accuracy must be dis-
cussed briefly because there are subtle, but theoretically important differences
be ween the conventional accuracy definitien illustrated in Figure 2 and the
inition to be proposead.

casure of Accuracy : 0

One of the most L“UO” ant neeads in A\J ology is to be able to sav how

N A .
accurate are given eéstimates, lt and Ot' This requires



® a definition of accuracy

° methods to evaluate given estimate

One approach to accuracy definition is to regard the true state, say T
probability density function (PDF) distvibuted
This is illustrated in Figure 3.

a
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as a random variable that has

about the estimated value It‘
mean and standavrd deviation o-

=an Hp e, Q 1P Q

eloe, Rt el t, ¢t

PDY

bias and variability of the estimate. The

s
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This PDY¥ has a
which may be used to measure the

in Figure 3 is a conditional PDF

because It is based on measurenents Py and Q. up to the current time.

o

A method exists to quantify ug IP Q
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assumption to be made.. An assumption is needad
. ¢

‘86 conventional statistical methods cannot be u

The assumption is that the true relationship be

knotn. This may involve both deterministic and

and © but it requires a key
Itht,Qt q ¥

because It and Ot cannot be observed,

sed to estimate these statistics:
tween all of the state variables is
stochastic components. Whereas the

trué relationships between state variables in a natural process can never be known

exactly, models of these relationships are freq
state variables. 1If such models are acceptable
could be acceptable also for estimating the acc

Proposed Approach

The proposed approach is to apply the
produces the estimate

T = U and O u :
t p ' T 0 |p
[N} S | e, %
Jazwinskil presents @ clear and comnl
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the necessary mathematical bac
that estimates equal to the conditional mean,
variance estimates for all filtering problenms

these estimates minimize g + g2
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filtering approach is similar to the
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(D

o

in Figure 4. In many respects the

1 approach, bhut some
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. (In other words, the Kaliman
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The off-diagonal elements are non-zeroc if the estimates of the different state
variables are correlated, which usually is the case.

The additional irput information required by the filtering approach to
pruuuce not only a state estimate but also the covariance of the estimation errors
ara (1) covariance data for the measurement errors, (2) a stochastic model! of the
natural variations of I,, and (3) system noise covariance data (i.e., parameters
of the stochastic rainfall model).

The details of the Kalwan filter model for the hypothetical system appear
Appendix A.

EXAMPLE APPLICATION IN RIVER FORECASTING
. Suppose measurements. P and Q, were made for t=1,...,5 and estimates of
It and 0, are wanted at thcse CE me times. Also, a forecast of Ot is wanted for

t= o,...,EO .

The "conventional" approach would be to estimate

It = Pt . S . - _ (ll)_
% = % . (12)
for t < 5 and to use a model of the catchment to forecast O_ using It = Pt as input
up to t = 5 and I, = 0 thereafter. Results of this conventional approach

will be compared below to results from the filtering approach.

Table 1 presents assuwed numerical values for the parameters of the
bynothetical dynamical and measurcrnent systens.

able 1 Assumad Parametar Values

°  Parameter Value
“k .2
Pr .5
o 5
Op 1
UQ .25

P‘Eaﬁdter k controls catchment lag time; Py is related to the persistence of tha
)

precipitation; Uy is related to the natural variability of precipitation; o iz the
nmessurement error of the rain gaze network; and 05 is the measurement oo i

discharge mrasurements (caused by uncer:ainty in the vating curve).
values of 0, and O, were chosen to preserve the fact that disch.rze n:
are much more HLCULJLG than “V0(1w1tablox measurements, T

oS

1@ relative



o, aud Op were chosen to preserve the fact that precipitation measurement errors
are =aall compared to natural variability from time to time of precipitation amounts.

A time series of observations are nced to apply the filter, so the hypo-
thetical model was "operated" using the parameters in Table 1 and tables of standard
normal deviates to assign values to the noise and error vectors. The values assigned
to observed rainfall and discharge are given in Table 2.

Table 2 Rainfall and Discharge Mezasurements

Sampling Rainfall Pischarge
Interval Pt Qt
1 ' . 4.66 .99
2 "2.81 . 1.35
3 4.25 1.67
4 1.a1 1.93 o
5 5.53 2.47 ’ -
Filter Approach Estimation-Errogi ‘ s R i D

B 4
The Kalman filter was used-to make estimates of both I_ and 0 from
t =0 to t = 10. Since the present time is t.= 5, estimates beyond t = 5 were
forecasts. Figure 5 shows how the standard deviation of error in the discharge
estimate Oq [P Q changed with time. Initially, it began equal to the measure-
t, t :
ment error, On, because the best possible estimate at t = 0 was the measured dis-
charge. Then, as time progressed, .the filter model used the measured discharge
and rainfall data together to gét better discharge estimates than could be gotten
from the measured data alone. By t = 35, Oy v o ha! reduced to 69 percent of the
(VLI S
Bgyond t = 5 measurenents of rainfall and discharze were
inereased. Ultimately, the water stored in the catchient

meagurement error,

unavailable, and Ty

9

el

was depleted, there wa 11Lt" information in the model unique to any particular

time, and the estimation error approached the long-term climatic standard deviation
~ . ")

of ¢1scharg§, Oy- At time t = 10, gy, !P OL reached 88 percent of To-

>

rd

t,
S

-

The filter gives' esrimates of T as well as of 0. Figure & shows how the

standard deviation of error in - -the rainfall astimate’ul ip o Changed with time.
N I N

It followed a pattern very similar to O, 1. starting equal to the measurvment

error, Jp and decreasing until at t = 5 it was equal to 81 percent of tha mensure-
o

ment error. Beyond t = 5, there were no more measurem=nts so the rainfall earimate
. was based soley on persistence. Very rapidly after t = 5, 91 Ir o increasead
3 ' S, e
until it reached the lpng-term climatic standard deviation of rainfall, ol

Conventional Aporoach, EQLLmﬂLLon Errors

[N

Figure 7 shows houw the standard devicilon of the error
discharge estimates changed with time. Prior to and including t
ondy on the discharge measurement: Thercofore, the

i




equal to the discharge measurement errorwhich was much less than the catchment
modal errcr but substantially greater than the estimation error for this period
by the filter approach.

Beyond time t = 5 forecasts of 0, were made using the catchmernt model
with input values of P_ up to t = 5. At time t = 5 the catchment model had
complete rainfall information and the standard deviation of the model estimate of
05 was equal to 0.33 which is 133 percent greater than the discharge measurement
ccror and 193 percent of the error in the filter estimate of 0. (Recall that use
of the model and discharge measurements together in the filter approach reduced
the estimation error of 05 to €9 percent of the measurement error.)

Because there was a shift of estimation technique at t = 5 there was
also a discontinuity in measurement error at t = 5.

The estimation error in discharge forecasts from the catchment model also
increased and approached the long-term climatic standard deviation of discharge as
occurred in the filter approach. . : 5

o

Comparison of Filter and Conventional Approaches ° ' o .
'Figure 7 shows the filter dischargg estimate error was less than the
conventional discharge estimate error for the entire period 0<t < 10. The ratio
of the filter error to the conventional error is shown in Figure 8. ©Note that
the ratio is always less than 1.0 since the filter error was always less than the
conventional error. Note also that the improvement is greatest in the immediate

future beyond the present time and up to the present time. -
©
- 2

SUMMARY AND CONCLUSIONS

Presented were some ideas for using deterministic and stochastic hydro-
logic models tozether to reduce uncertainty in hydrologic-information. A 1.,
tietical river forecastirg exazmmle was used to compare these ideas with a conven-

tional deterministic model approach. The proposed ideas involve use of Katlman
o

iiltver thoory which depe; n determinictic modals to vepresent
processers while also naki full use -of much additional knowledge

The approach taken to present tha
very simple example involving o basic deter
Yesorvoir; a basic stochastic model — the la- S
.basic measurement error models., While still maintaining enough ohvsical

&4 1 sense Lo
be worth analyzing, a numerical example was used ro exarine some implicacvions of
L:ts theory for river forecasting. This provides a basis for beginaing to look at
acvantages and limitations of Xalman filter theory and for cr eating more campletra

s hal §
more physically meaningful models. .
Estimates of pr@SQH“ nd future states may be produced bv the Kalwman

filter. Also produced is the covariance matrix of the estimation errors.

tilter theory is more explicit about differences between true
states and Mneasurad st than conventional methods. The e-
stLeL610L hetween the imated stare and the true statoe, wvhich can never bo

R et |
, N L . e N . -
<aown exactly. The filter estinates minimize ths total variance of the

i
errors.  The presence of measurcment error is accounted for.




stationary, tiwm

Although the example illustrated the coriginal Kalman filter which was for

&

-invasiant, linear proble.s, the filte: is easily applied to non-

stotionary, time-varying problems and the extended Kalman theory caun be used when
non~-linearities are important.

Some of the limitations of the hypothetical system in the example are:

All relationships are linear.

All parameters are assumed known and the implications of not
knowing these are not explored.

The "base event' is subtracted out because interest is im the
estimation errors which depend mainly on deviations about some
base. 1In principle this is correct, but there is no discussion
of how to establish the base event nor are possible uncertaintiss
introduced by the approach to base event estimation explored.
The rainfall variation model is autoregressive, which midy be
adequate as a first approximation; but implications of more
complex rainfall interrelationships have not been explored.

In the example catchment model, only direct runoff is considered.
This suggests I, should be more precisely defined as "effective
rainfall" and O, as direct runoff. Therefore, the medsurement
errors must include uncertainty from the soil moisture accounting
nodel. ?

‘Many of these limitations can be overcome by adding some more complexity
the example. It remains to be seen if all of them can be overcome.

. 1. T ~ e P s -2 1., L R .
Jazwinski, A.H., Stoehastic Processes and Filrering Theory, Academic Press

1970.

Kalman,

Trans.
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F= [F},]= state transition matrix from t to t+At; i=1, N; j=1,N.
3 In the example:
1 0
= A2
F ko, 1k (A2)

The state transition matrix explains how Xt would change if there were no
stochastic inputs to the system. -

Two matricies and on2 vector are associated with the stochastic inputs
to the system: . . 1

2

, Et =‘[H§]= system noise vector, i=1,N
QA. € =.[Gij]= system noise coefficientomatriX}
‘i’n B : i=1, N: j=1,N ) o .
Q°5 U = {Uij]: system noise covariance matrix, |
" (G=1,N; j=1,8) (i.e. U(L,1) is the o

)s

variance of w,
1t

In the example, the elements of ¢ and U are:

A (A3)

(i%)

1o
i

and



The dynamical system model is, then

Xt+At -rxt 4o Vj,t+[\t (A6)

which is equivalent in abstvact matrix notation to Equations 1 and 2. The matrix
U is the covariance matrix of the vector W. R

Measurement System Model

A
-3

M = pumber of measured variables (in this case M=2)

t ooty .
Y = [Yi]= measurement vector at time. t; i=1,M

In this case

i

o= ;. | “ (A7)

]

a

H = [Hij]= measurement matrix; i=1,M; j=1,N

In this case

( 1 0 ' (4%

. . . N
The measurement matrix explains how would depend on ¥~ 1if there were

<~
no measurement errors. One matriz and one vector are associated with the measure-
ment errocs:

t ) . ’
V. = [ViJ = measurement error vector; i=1,M

In this case:

t k:' 1 (Ag)

1<

R = [R..] = measurement error covariance vector; i=1,M; j=1;M.
— 1] .
In this case N

2
P
0 o

(‘\i(‘)

Q
<
DN
[ —

|

]



. . - t
Matrix R is the covariance matrix of vector V.

The measurement model is, then

& o= wxt vt (A11)

which is equivalent in‘abstract matrix notation to Equations 3 and 4.

Filter Computations

. . t
Let the desired estimate of Xi be

2

st . C o .
Xi = state estimate at-time t, given Yt
3 B A )
up toe.and including time t; i=I1,N ' .
Lo - ' R
In this case
. 1
[ t t

I
~
=g
st
| ]
~—

The uncertainty in this estimate is given by the covariance matrix

t . ) ~t e y
Sij = covariance matrix of error in Xi; i=1,N;5 j=1,N

o .
Step 1 - Matrix §t is to be computedrfor t>o, but initial values of X" and P
must be given at time t=o. These correspond to prior estimates of the iniria}
state and the uncertainty in whether the svstem is in the estimated initin] stata,
in the example; the initial state is assumed to be

I, =0 ' (A13)

A ’ E
OO = 0 B S (AL

3.

o s L 5
based on the measurcments at that time. Accordingly, S wvas zakes to bo the snoe
as the measurement error covariance matrix

5

S = N

2]
~
N
[
}.—l
w
~

which seemed reasonable because H is an identity matrix in this case.

+At t
Step 2 - Compute the forecast state at t given the measurements Y up to and

including time t, . k
L tFAE ot :
X157 = F X (AL6)
o} . - -
s . o . . o LERAL AT
Thig forecast is the hest estirmate that can be made of X it Y does not

exiat.
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