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Generation of synthetic streamflow traces has proven to be an extremely useful technique for the
evaluation of water resource planning and management alternatives. But existing models do not account
fer the uncertainty in the streamflow parameters. Past research efforts have focused on obtaining ‘best’
estimates of these purameters which are then used as the "true’ values of the process. Bayesian methods
are here used 10 overcome this shoricoming. By incorporating the parameter uncertainties into the genera-
tion scheme, ulternatives may be evaluated under both the natural and the parameter uncertainties. This
is accomplished by integrating over the probability distribution of the parameters to obtain the Bayesian,
predictive, or unconditional probability distribution function (pdf) of the sireamfiows. Use of the Baye-
sian pdf for synthetic generation is shown to lead, on the average, to better designs under uncertainty con-

ditions.

Simulation models and the required synthetic streamflow
generators have gained wide acceptance in water resource
planning over the last decade. These models systematically in-
vestigate the effects of the variations of streamfiows on the
proposed development or management alternatives. Vicens er
al. [1975] classified the uncertainties in water resources as be-
ing natural and informational, the first due to the assumed
random nature of hydrologic processes and the second due to
the lack of perfect information about the ‘true’ nature of the
process.

Traditionally, research efforts have focused on each of these
areas separately.. Moreover, once parameter estimation and
model selection have been carried out, the remaining uncer-
tainties about the true values of ¢ ieparameters and/or the true
model are ignored. Planning decisions or alternatives have
been evuluated through the use of simulation models which
do not account for the informational uncertainties.

The objective of this paper is to propose a Bayesian syn-
thetic generation scheme which accounts for the parameter un-
certainties due to short hydrologic record. This approach
seems a more rational one in lieu of the great statistical disper-
sion existing 'in hydrologic parameters corresponding to
records of common length. This paper limits itself 1o only one
model, a first-order normal autoregressive process: other
models are considered by Vicens et al. [1974].

Streamflow processes will be considered as random proc-
esses generating random variables distributed according to a
model probability distribution function (pdf). The inherent or
natural randomness of the process creates uncertainty about
future observation of the process and about the consequences
or benefits of any decision. In addition. the paramsiers of the
model are unknown, a situation which further adds to the un-
certainties about future observations. However. we shall as-
suine taat the model pdf is known with certainty; ie.. no
mode] uncertainty exists.
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The Bayesian framework presents the possibility of in--

cluding parameter uncertainties in inferences about future
streamflows. First. by selecting a model we have defined a
model pdf f{3,{0) which is the pdf of a future observation
given that we know the true parameters 8. This is 4 con-
ditional pdf given the parameters, but these parameters are not
known. Our best information about them is described by their
joint posterior pdf f'(0}1,, Y). where I represents all prior
regional information and Y represents the at-site historical
record [see Vicens et al., 1975]. To obtain the unconditional,
marginal, predictive, or as we shall call it, the Bayesian pdf of a
future streamfow, an integration over the product of the con-
ditional pdf of y; given 0 and the pdf of 0 is required, i.e.,

For | Iy 1) = f o 10770 | Ien Db (1)

The resulting pdf includes the natural or inherent randomness
of the streamflow process and the uncertainty about the
parameters. It can be viewed as a weighted average of the
model pdf with the posterior pdf of the parameiers as the
weights.

The Bayesian pdf can then be used for inferences about
future streamflows: thus the probability of a flood over a cer-
tain flow ¢ can be obtainad by

Ply, > ¢] = j For i L, Y) dy, )

Similarly, the Bayesian moments of a future observation wre
given by

B = [ v Rl e Y sy 3
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OpT1iMaL DESIGNS

- Water resource planning involves the formulation and
evaluation of alternative designs. Presently, deterministic op-
timization models are used to screen the alternatives and select
a small number to be further analyzed [see Jacoby and Loucks,
1972]. Simulation models are then used to evaluate this smaller
set of alternatives, specifically their response to the natural un-
certaintizs of the streamflows without explicit consideration of
parameter uncertainties. Both uncertainties can be brought
into play by using the Bayesian pdf of future streamflows in
the generation of synthetic records for the simulation run.
To evaluate any design, a value or utility function which
reflects the decision maker’s preferences for the outcomes must
be specified. This function specifies a value for every combina-
tion of design D and random outcome (streamflow) y,. A net
benefit function in monetary units will be assumed to be ade-
quate in this work. Using such a function u(D, y,), the expected
net berefits of any design are

Eud)] = [ (D, 3050, | I Dy, (5)
1’74
The optimal design D* is that which has the highest expected
net benefits, i.e., . -
D* < max E[u(D)] (6)
all D
A design was defined as a vector quantity, since for most
water resource problems, several variables need to be specified
for a project. In fact, decisions are generally so complex and
the relation between D and y; and the net benefits is so indirect
that the integral of (5) cannot be carried out analytically. This
problem forces water resource planners to use simulation
models for the evaluation of alternatives. »
But at present the evaluation of designs is not carried out
through simulations as in (5). To explain this point, that in-
tegral may be divided into two parts:

B o] = [ w, v L0 dy (O

vs

Elu(D)] = | E[u(D)| 0-f"(0 | Ie, V) @B (8)
. L2

Equation (7) computes the expected net benefits of a design D
given the parameter set 8. Equation (8) then weights the ex-
pected net benefits given 8 by the joint posterior probability
that 0 are the true values of the parameters. The resulis are
the expected net benefits of D evaluated under both natural

and purameter uncertaintizs. In other words, use of the Baye-

sian pdf for evaluation of designs is equivalent to a two-step
approach which first assesses the consequences of the natural
uncertainties and then the effect of the parameter uncertainty.
For complex decisions, these integrals may be approximated
by simulation models.

Present day simulation models ignore the parameter uncer-
tainty. Ta effect, only the first integral of the two-step approach
(equation (7)) is carried out. This approach is therefore not as
complete as the Bayesian methodology which carries out a
more complete analysis of the uncertainties involved in the
design problems. The two-step approach is practically inferior
to using the Bayesiun pdf because only one integration needs
to be approximated through simulation {equation (3)). since
the Bayesian pdf (equuation (1)) can gencrally be obtained
through direct integration. '

As an example of the Bayesian approach to synthetic
streamflow generation we will analyze the first-order normal
autoregressive process.

FirsT-ORDER NORMAL AUTOREGRESSIVE PROCESS

A time series of annual streamflows Y* = [y, 3000+, ya)
is assumed to have been generated by a first-order autoregres-
sive process:

=B +tByate =12 n 9

where ¢, are independent and identically distributed normal
random disturbances, with mean 0 and variance ¢,2. There are
three unknown parameters in this model: 8,, 8;. and % Our
objective is to derive the Bayesian or predictive pdf for this
model. In addition, regional and historical data will be com-
bined to make optimum use of ail available information. The
more traditional version of this model often szen in the
hydrologic literature is

O = 1) = p(e-r — 1) + (1 — p*) 0 (10)

where v, is- a normal disturbance term with mean 0 and
variance 1. The parameters g, 6%, and p are the mean,
variance, and serial “correlation coefficient of the annual
streamflow series. The model of (10) reduces to (9) if

B = w1 — p) (an
52 = p (12)
o= o(l — p)'* (13)

Equations (11)-(13) show the relation between the parameters

of both models when they are all known with certainty. When

parameter uncertainty exists, care must be taken in transfec-
ring information from one set of parameters to the other. In a
Bayesian context these parameters are assumed to be random

_variables and have pdf's which contain the information

available. Derived distribution theory, or at least first-order
analysis [Cornefl, 1972], must be used in transferring informa-
tion from one parameter sct to the other.

One difference between the traditional model and the ap-

proach described in this paper is that the process will not .

necessarily be limited to stationary processes (i.e, {84 < 1).
The parameter 3, will be considered a random variable with
limits —® < 8, < «; nevertheless the application of the model
to observed hydrologic time series generally reduces the high
probability region of 8, to between —1 and +1.

Likelihood of the sample. The distribution of the distur-
bance term ¢, as assumed in the previous section is a normal
pdf given by

fste: 10,65 = @2 %"

1 o |
-exp ["*T);“E (e, — 0)'] 14
The model pdf of ye is then

ﬁ}'r‘iﬁn B 02 ¥ = f:‘c(,":.!.ax + 8y Yeor 68 (15)

i.e., when 3, 8, o2 and ), , are known, the pdf of 3, is normal
with mean and variance:

Ely, ! 8, B o, ]l = By A By (16)
V[)"( l .Bly B’."a T .ri-—l] = 062 (17)

The likelihood funciion for the sample Y5 = [ri yooo -+ 3l
is the product of the pdf's for the individual y» and is given by

D ARy A

R T

s




VICENS ET AL.: STREAMFLOW MODELING 829

1 1
LB,o. | Y, ) « o Exp [_2«.,2

(Z > — B — z%yt_,)) ] (18)

where an initial observation y, 1s assumed to be known- This—

exprossion can be simplified if the sample statistics are defined
as
”n
n E Ve

V= = (19)

Z Yi1 Z )’:—12

L} t=l
PR
b=V ‘! o (20)
z Yeale
L=l
y=n—2 ' (21

R oA R Iy

Then the likelihood function may be written as

L(gy Te iY) }’o) « —I.T\
2

L
i

which has 2 kernel similar to the product of a bivariate normal
and an inverted gamma 2 pdf [Vicens et al., 1974)].

The historical record for the Blackwater River at Webster,
New Hampshire (U.S. Geological Survey station 1-870), will
be used as an example. This record was broken into threé sam-
ples (n = 10, 20, 42), and the sufficient statistics computed.
The values shown in the first paragraph of the-appendix will be
used fater in this paper.

Prior pdf for 3 and o.. The prior information about 3 and
¢, Is included through their joint prior pdf. The functional
form of the joint prior pdf is sclected from the natural con-
jugate family of the likelthood function. In this case it is the
procust of a bivariate normai for 3 given o, and an inverted
gamma 2 for o, i€,

SGadly) = PG, 6l V) - fied(elds’ v (29)

where the prior parameters are b, V', §’, and »'.
The marginal pdf for 3 is obtained by integrating over o

G 1) = [ 1@ o | 1) do. = £s2@ b, sV, )
o 25)

s 4+ (3 — bYV(E — b)}} (23)

which is a bivariate Student ¢ with parameters b', 5’2V, and »’".

Further. the marginal pdf's for 3, and 2, are each of the uni- * Tpece relutions were derived by using second-order approx-

variate Student ¢ form with moments

v
Ig] = “7’““'

E[Bx : ]r':] = bl, V[Bx

’
EB. | L) = b VB | Ie) = s s QD)

Cov [3., EZI 1] =

’
14 2
Sy S e

2

b’ vy’ L2’
4 = N =
“b _ L ']; v [ . ’ 29
2 Uz~ b

In a similar fashion, the marginal pdf of ¢, may be obtained
by

o> 2 (28)

where

et = [ [ 1@ o112 45 = hioto, | v
—t Vo (30)

i.e., an inverted gamma 2 with parameters 5* and ', with mo-
ments

W\ 172 L )
Els. | I ) = (2) s H] Y>1 @1
Vie | bl = 7 — [Ele | LIF v >2 @2

By derived distribution theory we may obtain the marginal
prior pdf of ¢ which is inverted gamma 1 with parameters
Yv' and %p's'? and moments

’
14 2

Ele’ | Iz] = TS v > 2 (33)
2 205"y
Vil | Ll = e — v >4 g

To define the above prior pd{’s uniquely, only the parameters
b’, V', 5', and »’ need to be evaluated. One technique for defin-
ing these prior parameters is to specify values for the moments
of the marginal pdf's and solve equations (26), (27), (28), (33),
and (34) for the prior parameters. Generally, more informa-
tion is available about g, 6%, and p than about 3,, 8, and 6,2 If
this is the case, then the following relations may be used to ob-
tain the moments of 3,, 8,, and o, from the moments of y, ¢
and p:

E[BIe] = Elullz) - [V — Elp|Ir]] (35)
VB ~ (1 ~ ERUIRF - Vidll)
+ Eullp} - Vplle] (36)
E[8)I:} = Elp}/le} Gn
VIBitIa] = Vioilz) (38)
Cov [8., Billx] = —VeEld L] - Viplle] (39)
Elcl1:) = E[a% 1z} - [} — Eflpllz] — Vipile]]  (40)
Viel el = [I = EXpl el - VIole]

4 - [ElA1a) - EWRY - VL] ()

imations for the expected value of a function of a rundom
variable and first-order approximations for the variance [see
Benjamin ard Cornell, 1970, p. 184].

As an example of how regional information can be used 1o
arrive at prior pdfs, the Blackwater River near Webster. New
Hampshire, was studied. Regression models described by
Vicens et al. [1974] were used to predict the mean and varianes
of the arnual flows in this river from physiographic infornmu.
tion about its catchment. These regression relations wer:

L ae.
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TABLE 1. Prior to Posterior Analysis, Blackwater River

Moments
E[4,]. Elsl).
Information ft'/s Vi3] E[3.] V3] ft*/s? Vied]
Prior only
Regression models 176.5 1260.0 0.220 0.018 3046. 8.06 X 10°
Samplezonly at
=10 166.4 8083. 0.235 0.172 3308. 54.72 X 10*
n=20 1375 23560, 0.331 0.055 2051. 6.01 X 10°
n=42. 157.0 1157. 0.243 0.026 312, 5.38 X 10¢
Posterior :
Prior and sampie at
n =10 172.1 712. 0.214 0.018 2745. 457 X 10®
n =20 164.4 544, 0.230 0.010 2442, 277X 108
n =42 163.0 44, 0.218 0.009 2910. 261 X 10°

The prior information is taken from the regression models in paragraph 2 of the appendix.

derived from an analysis of 106 other New England rivers. The
predictions, E[u] and E[¢*]. and their errors, V[x} and V{s?].
are presented in the second paragraph of the appendix. In ad-
dition, the average of the serial correlation coefficient for the
106 basins and the variance of these coefficients were also used,
Elp} and V[p]. Use of these values in equations (33)-(41)
yviclded the moments of 8, 8, and ¢ 2. Finally, the moments of
these variables were used in equations (26)-(34) to solve for the
prior parameters b', V', ', and »’. From paragraph 2 of the ap-
pendix it can be shown that the standard errors of estimate for
3., B, and ¢2 are 10, 28, and 62%, respectively.

A second prior pdf was derived from subjective assessmants.
A simple version of the Thomas model described by Fiering
{1967, p. 69] was used to arrive at the predictions for p. ¢, and
p. This modsl, described by Vicens et al. [1974, 1975], uses in-
formation about the precipitation process and the
hydrologist's judgments about the percentage losses to es-
timate the moments of the streamflow parameters. The results
of this analysis are shown in the third paragraph of the appen-
dix.

Prior ta posterior aralysis. Prior and sample information
ars combined to obtain the posterior pdf of the parameters:

G odln Y, 3 = FQ3, adle) - L(3, Y, y) (42)

~ Since the prior pdf was selected from the natural conjugate
family of the likelihood function, the posterior pdf is of the
same form, the product of a bivariate normal and an inverted

gamma 2: ; -
e, adle. Y, yo) = f.\"mz”(gy LA b;lv v, s ey (43)

with posterior parameters:

Vet =yl 4yt (44)
b = V7 VB Vb )
o=k + 2 v >0 r >0 (46)

sll~ p—

;%7 s + bV s + b’V '
— VTR (4T

The marginal posterior pdf’s are of the same form as the
marginal priors, with the posterior parameters replacing the
prior parameters.

If no sample exists, the posterior parameters are identical to
the prior parameters. If no prior information is available, the
posterior parameters are identical to those of the sample set.

The prior information derived in the previous section was
combined with the historical record for the Blackwater River
at Webster, New Hampshire. These three series (paragraph |
in the appendix) were combined with the two prior pdl’s from
the regression models and from the subjective model. Tables 1
and 2 show the marginal momeats of 8,, 8.. and ¢ for prior,
sample, and posterior information. )

TABLE 2. Prior to Posterior Analysis, Blackwater River
Moments
E[3). Els7
Information f3/s? V3. E[3.] V3. fis/s* Vic?)
Prior oniy
Subjeciive models 199.2. 2385 0.220 0.018 2498. 62.39 X 1&®
Sumpic only at
ne= 10 166.4 8038, 0.233 0.172 3308. 5472 X 0°
n=2 137.5 2360 0.351 0.055 2051, 6.01 X 10°
n=42 157.0 1157, 0.245 0.026 3. 538 X 10°
Pusterior
Prior and sample at
n=19 174.5 RN 0.203 0.014 2134, 7.95 X i0°
=210 164.1 336. 0.233 0.010 1833, R x 1o
n =42 162.3 31 0.220 oottt - 2817 3.6 100

The prior information is taken from the subjective ussessment in paragruph ¥ of the appendix.
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Fig. 1. Marginal pdf of 3; (sample: n = 10).

These results show that the posterior information is, as ex-
pected, a combination of the prior and sample information.
The longer the sample record, the more its influence is reflected
in the posterior results. In addition, the variance of any of the
three unknown parameters is alvays lower when the prior and
sample are combined (into the posterior) than when they are
used separately. T .

These observations are demonstrated by Figures 1-6, which
show the marginal prior, sample, and posterior pdf’s for two
sample lengths. The prior used in all the figures was the subjec-
tive prior (paragraph 3 in the appendix). These figures show
that the posterior is a combination of the prior and sample in-
formution. ln addition, parametet uncertainty is recuced by
*pooling’ the two sources of information.

It is interesting to point out i Figure 3 that such a small
sample (# = 10) is not enough to strictly limit B to between — 1
and +1. It is possible, with a small probability, that 34 > L
The prior pdf has more information and has limited 3,10 —0.4
< 3, < 0.6. As the sample grows, in Figure 4, the sample and
posierior marginal pdFPs of 3, are concentrated in the region

Bayesian distribution. More important than parameter es-.

timates is the Bayesian or predictive distribution of the
process. Whether used for inferentes or decision making this
pdf contains the natural uncertainty from the model distribu-

015+ POSTERIOR
~.0t0
=
PRIO®
005 -
% SAMPLE
; (ﬂ:
;_wf : N e
100 200 200

3 , A
: PRIOR~J Yu—POSTERIOR

SAMPLE

0 05 00 0.5 0

Fig. 3. Marginal pdf of 8, (sample: n = 10).

tion of the streamflows and the uncertainty about the

parameters due to a lack of sufficient information.
Previously, the model pdf of a future observation was as-

sumed to be normal. The Bayesian pdf integrates the model

pdf over the joint of the unknown parameters:

ot ¥ = [ [ [ s

1@, 00 | Irs Y, o) d3 do,
= fOrlm ¥9)
a Student ¢ pdf with parameters
m=2Z -b"
o=+ 2 -V - Z]

and

where

1]

Ly,

and y, is the last observation. This pdf has moments

£(8,)
n

Lyt
0.5

Fig. 4. Muarginal pdf of 3; (sampie n = 32

(48)

(49)
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Fig. 5. Margiﬁ:ﬂ pdf of ¢, (sample: n = 10).
ElylIg, Y} = m = b" + b,y (53)
[ rr .
Vi | ey Y1 = 2 = 2o 4 2ivigg
E—2 =2

(59

Use of the Bayesian pdf for the generation of synthetic
streamflow will produce traces which may differ in their sta-
tistics from those of the historical record. This is a conse-
quence of (1) using miore than one source of information for
data about the unknown parameters and (2) explicitly includ-
ing the parameter uncertainty in the distribution of the
streamflows by integrating the praduct of the model pdf
(natural uncertainty) and the joint pdf of the parameters. In
general, the most significant difference between the synthetic
traces and the historical record will be a larger streamflow

ariance due to the parameter uncertainty. In addition, there
may be differences in the mean or serial correlation if ani |m0r-
mative prior pdf is used.

In generating synthetic traces for simulation purposes, the
first streamflow of every trace should be generated from equa-
tion {48). The second sampie should be generated from a
similar distribution except that yy, the first generated sample,
replaces y, in equation (52). All of the future flows should be
generatzd in a similar manner, by substitution of the last sam-
ple generated into equation (32). Therefore the parameter un-
certainty is accounted for in the entire trace.

The Buyesian pdf was derived for all combinations of the
three samples and the two prior pdf's. These results are shown
in Tables 3 and 4. The posterior expected values of y; are not
necessarily weighted averages of the prior and the sample
means. The future streamflow is dependent on the last obser-
vation as shown by equation (48). This is why the Bayesian pdf
is also called a predictive pdf. The moments in Tables 3 and 4
only apply to the next observation.

The posterior variance of y, is generally lower than the prior
or saumple variances. This is a direct result of the reduction of
the parameter uncertainty, Variations occur, since ¥y} is also
a function of the last observation.

BAYESIAN APPROACH FOR WATER RESOURCE
DEecision MAXING

Decision problem:  reservoir design.  The decision problem
wiii be the following: select a reservoir capacity and target

refzuse which will maximize the expected discounted net
benetits of the project over the next N years. The design pur-

.075 -
POSTERICR
050
-~ SAMPLE (n=62)
b
025+
PRIOR
N,
1 H

20 40 80 80 100
G (13 /sec)

Fig. 6. Marginal pdf of o, (sample: n = 42},

pose is to meet an annual water supply demand. The reservoir
costs will in this example be given by the cost function:

‘CS) = C, + C.S (55)

where § is the capacity and C, and C, are coefficients, whereas
the annual net benefits of a release R, when the target reléase
was 7T, are

B(R,T) = B, + \T — &(T ~ R)
B(R,T) = B+ N +~v(R —T)

when T and R are in cubic feet. This function is shown by
Figure 7. This benefit function contains an opportunity loss
for not obtaining the planned for target level or for un-
derestimating and not planning for a higher levzl. These short-
run losses will penalize desigas which are too conservative or
too optimistic about the achievable yield from the stream.
The discounted net benefits for any design D = [T, §} are

T>R

56
R>T (56)

NB(D) = Y [B(R, T)/(1 + '] — C, — GS  (57)

t=0

where r is the discount rate, and it is assumed that the reservoir
is constructed entirely in the first year. If any maintenance
costs need to be accounted for, these will be included as a
negative benefit in equation (56) through B,.

A very simple optimizing criterion has been selected to
simplify the design selection procedure described in the next
section. Other more complex criteria may be proposed for

TABLE 3. Moments of the Bavesian pdf, Blackwater River
Information Efy/]. f/s Fiy, L ress?
Prior only
Regression models 226.2 4435
Sample only at
n=10 2364 3953,
n =20 2123 2154
n =42 2228 3265
Posterior
Prior and sample at
n= 10 2258 301
n =20 2135 255!
no=42 2220 3023,

The prior information is tuken from the regression models in para-
granh 2 of the appendix.

o2
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TABLE 4. Moments of Bayesiun pdf, Biackwater River

lxformution Efy.]. /s Pl fins?
Prior oals
Sut w;e.m ive models 2554 S460.
Sumpic only at
n =10 2264 3933,
n=20 2123 2134
n=42 2228 3295,
Posterior
Prior ind sumple at
= 10 227.7 2418.
=20 2137 1941,
=40 2222 2331.

Ths prior information is taken from the subjective meodais in para-
graph 3 of the appendix.

realistic cases, but this simple one is adequate for the example.

Since the future releases from any design are random
variables, the net benefits of that design are also a random
variable. To assess the expected net benefits, a simulation
model is used.

Design procedure. To select an optimal design, a simulation
search procedure will be used. This approach would be costly
for complex problems of many design variables, but for this
problem of only two variables, capacity and target, it 1s a
useful and simple procedure. More important, a simulation
procedure analyzes each alternative design under the uncer-
tainty conditions arising from the random inputs, namely,
streamflows. The synthetic generation of streamflows will be
discussed in the next section.

To obiuin an optimal design, the method of steepest ascent
will be applied [Maass et al., 1962, p. 399]. This iterative
technique searches for the maximum of the net benzht “sur-
face’ by moving in the direction of steepest slope of the s_.f::
from the point that it was previously at. For two dasiz
variables the procedure is the following.

I. Seclect a starting point, D, = [C,, T}

2. Evaluate the expected net benefits of this decision
through the simulation.

3. Evaluate two other alternatives,

' = [Cy + AC, To) (33)

and
= [C,. T, + AT] (39

where AC and AT are increments in capacity and target,
respectively.

4. Estimate the partial deriv ﬂtwe of the net beneft surface
through

a’\’B (D ) — B(D,)

aNB €0
aC AC o
FTY Y
ONB _ B(D") — B(D,) (61)
aT AT
5. Move to a new poiat D, = [Ci, T]. where
, LONB
Co= G+ K-y= (63
) ONB 3
T,=T,+ K-3F ©

and

- aNBY aNBY* | 4
K= d[( ac)+(ar)] (64)

The parameter d is the maximum ‘distance’ to be allowed in
each move.

6. Evaluate the new alternative D,. If the expected net
benefits are lower than for D, return to step 3 and use a new
value of 4 equal to one-half the previous value. If the expected
net benefits are higher than those for D,, but only by less than
w, stop and accept D, as the optimal desiga. Otherwise return
to step 3 and repeat the procedure to obtain a new design D,.

The major advantage of the steepest ascent method is that

by measuring the derivative of the response surface the op-

timum may be approached quite rapidly. This procedure may
not attain a global optimum if local optima exist. For this
reason, a systematic search of the entire responsa surface is im-
portant at the beginning.

In step 6, d is set to one-half its previous value when the net
benefits decrease, since taking too large a step has apparently
‘stepped over’ the maximum -point on the surface. This
procedure allows the user to specify a large 4 at the beginning

of the optimization process. The process will converge to an-.

area near the optimum quickly, then decrease its step size for a
more careful search of the exact optimal solution.

The design variables T and S are measured in dimensionless
form, in percent of the annual mean flow.

Synthetic streamflow generation. The philosophy "~ and
theory behind the use of synthetic streamflow traces for the
analysis of hydrologic uncertainty in water resource planning
was discussed extensively by Maass et al. [1562] and Fiering
[1967]. The objective of this type of modeling has been the
preservation of the historical parameters estimated from the
existing records. The Bayesian approach described in this
work attempts to include the parameter uncertainty as well as
the natural uncertainty in the design process. The difierence
between these two approaches will result in different designs.

A comparison of these designs is carried out later on. The
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differences between the two synthetic generating schemes are
discussed frst.

Model.  The model used for this example is the first-order
normal autoregressive process described earlier. No model un-
certainty is considered; therefore it is assumed that the true
model is given by

Ye =B+ By + o (65)

where ¢, is a disturbance term distributed according to a nor-
mal pdf with mean 0 and variance ¢2.

Traditional approach. As was noted before, the tradiiional
approach to synthetic generation for this model has been to es-
timate the parameters of the model from the historical record
and ignore the parameter uncertainty. The estimated
parameters, by any of many methods which may or may not
include regional data, are assumad to be the ‘true’ ones, and
the simulation efforts are directed to the selection of an op-
timal design under the many possible streamflow sequences
which: are generated from the model. )

Synthetic streamflow traces are then generated through
equation (65) by using the estimates 8,, 3,. and 52 instead of
the true but unknown parameters 8,, 2. and ¢*. To start this
procedure, the last streamflow observed in the historical

~record was used as a starting base.

Bayesian approach. The Bayesian approach to synthetic
generation is to acknowledge the existing parameter uncer-
tainty and explicitly include it in the analysis. This may be very
important when the existing historical records are relatively
short. In this very common case the uncertainty in the
parameters is as important as that of the process itself. Even
when relatively long historical records are available, the in-
herent uncertainty in a parameter such as the correlation
coetlicient p (=f,) is very large as shown by Rodriguez-lturbe
[1969]. Errors in estimating p of the order of 100% are com-
mon even for records of more than 50 yr.

The Bayesian pdf is therefore a powerful tool, since it in-
cludes both the natural and the parameter uncertainty. For the
first-order normal autoregrassive process, the Bayesian pdf of
a future streamflow is

f04Y) = fstrdm v, &)

a Student ¢ pdf with parameters m, ¢, and £ defined in equa-
tion (48). To generate synthetic traces, random numbers are
generated from a Student ¢ pdf with mean and variance as in
equations (53) and (54). The streamflow generated replaces y,
in equation (33) to generate the next one.

Earlier sections of this paper have shown how several
sources of information can be combined to reduce parameter
uncertainties, For the purposes of comparison with a classical
procedure, only the historical record information will be used
here. A noninformative prior pdf will be used. us described by
Zellner {1971, p. 187]. A so-called Jeflrey’s pdf can be used to
express ‘ignorance™

(66)

(67)

1

f@yod = —

O

When this priar pdf is combined with the likelihood tunc-

tion. the posterior pdf is identical to that of cquation (43) ex-
cept that the posterior parameters are

V' o=V (68)
bn = b (69’
y" =y (70)
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"= 52

Gn

As was discussed earlier, the major differences between the
traces generated by the truditional approach and the classical
approach will be 2 lower variance in the latter, since the Baye-
sian approach has included the uncertainty about the
parameters, which the traditional approach totally ignores.

Comparison of designs. To compare the designs obtained
from using these two different synthetic generating schemas in
the problem described earlier, the following experiment has
been carried out.

1. Fix the true parameters equal to specific values 3,. 8.,
and ¢’

2. Generate a ficticious historical record of length n using
the true parameters.

3. Estimate the parameters in a classical framework,
generate synthetic traces, and optimize the reservoir design~
problem, Dr*. '

4. Generate synthetic traces from the Bayesian pdf, and
optimize the same design problem as before to obtain Dp*.

5. Evaluate designs D+* and Dp* by means of simulation
procedures, using synthetic sequences generated from the

., Rssume i
True Volues
of 8,35, crel’

l

Genercte g 2
historicot record
of tength nyears

l

1

—
Estimate 30‘ Obtoin 4e
Parameters __J Bogsgm POF
osin Eq. 48
B B
sGenerc?e Ganergte e
ynthetic Synthetc
Sequences Sequences

!

Ogtimize. 3c Optimize 4¢
and obtgin ond obtain
D> Dg*

[ |
T

-

Evalugte p_:’ and Q; under 3

simulation withtrue poraometers
B, 2324 and T

Repeat steps 2 €
through 5 for m sets
of lengith n yeors

ke

Compute avercge Ov’\d?
varicnce of benefils
from the m sets

4

Fepeat steps 2 8
through 7 for
several vciues of n

[

DU, S —

Fepeat steps | 9
to 8 for

typicat vatuas of
31, By, 0nd 2

Fig. 8. Expermenti] procedure for comparison of designs
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truc parameters, 3, 3. and ¢, to obtain NB(Dr*jn) and
“NB(D,*m). :
6. Repeat steps 2-5 for m sets of historical records of
length ».
7. Compute the average and variance of the expetted net
benefits for a historical record of length n, ie., compute
(NBYD | m) = = 3 NBD. ) (72)

v}

FBOD* | m) = == Z[vmnf. )

i=1

o

= (NBi(Dr* [ ) (73)

(NBY(Ds* | n) = — }j NB(Dp.* | n) (74)

LRI

) R .
——— 2 INB(Dz* | m)

[}

NB(D:* | n) =

— (NBYDs* | M) (75)

where Dr,*» and Dp,* are the optimal designs obtained in steps
3 and 4 for the ith historical records, i = 1, 2, ---

8. Repeat steps 1-7 for different historical tecord lengths
n.

9. Repeat steps 1--8 for several typical values of 3. 8,, and
O .
This entire procedure is reproduced in Figure §.

This experiment attempts to evaluate the differences in
designs and net benefits to be expected if a traditional versus a
Bayesian simulation procedure is used. The average neat
benefits, VB{Dr* a) and (VB (Ds* n). are estimates of the net
benelits to be obtamed if a traditional or Bayesian procedure
was used in the future when faced with historical records of
length n vears. The variances, N 3(Dz* n), and NB(Ds*n), are
estimates of the variations to be expected in these future
designs. A water resource planner would prefer design
procedures that on the averags result in higher net benefits. If
in addition the procedure selected minimizes the probability of
obtairing designs with very low net benefits, tm> procedure
would be quite successful.

Resuits. The coefficients of the benefit and cost functions
used are given below.

A=313-1050¢

v =313 X 1S40

6 =313x1081%¢
C,=0 (S

C, =200 (3/10%ac ft)

The sets of parameter values used in step 1 are in Table 5.
These represent average and rare values for medium-sized
streams. Parameter set 2 has a high correlation coefficient (p =
0.6), while set 3 has a high coefficient of variation (€, = 0.6}.
Set 4 has no serial correlation at all (p = 0).

In step 5, 50 sets of each record length n were used. These
should provide good estimates of the effect or influznce of the
record length 2. For the synthetic sequences in steps 35 and 46
(Figure 8). 50 sets of 50 yr were generz ‘:d .\g in these are
enouah to predict the net benefits of any des gn eccurm;!;
The evatuation of the opiimal designs Dp™ ond D™ instep 5
was mnade through the use of 30 sets of 0y of syathetic traces
generated with the true parameters.

All of the results are presented in T.ble 6 In addition. the
and variance of the cmcct_d nel %7:'1

the different parameter sets. In Table 6, the third and fourth
columns show the average and variance of the net benefits from
traditional designs, while the seventh and eighth columns show
this same value for the Bayesian desizn. The average opiimal
designs for the traditional approach are given in columns 5
and 6 (:7.* and (§1*)), and the Bayesiun ones are in columns
9 and 10 (¢Tx*) and (S5™).

Two characteristics of the differences between the expected
net benefits of the Bayesian and traditional procedures are
shown. First, the average of the expected net benefits is always
higher for the Bayesian approach than for the traditional ap-
proach. This difference is significant for short historical
records (n < 30), and for high values of correlation and coeffi-
cient of variation (scts 2 and 3). Second, the variance of the ex-
pected benefits for the Bayesian approach is always much
lower than it is for the traditional procedures. This indicates
that over many design cases the traditional approach will de-
sign some ‘wild" alternatives with very low net benefits. For
example, for relatively short records (n ~ 10 yr) the average
net benefits of the 50 Bayesian designs are 6-100% higher than
the 30 traditional designs (parameter sets 4 and 3, respectively),
while the variance of ‘the Bayesian designs is 18-72% lower
(parameter sets 4 and 2, respectively). Even for relatively long
records (n = 50) the average net benefits of the Bayesian
designs are higher and the variance is lower by more thun 19%.

The difference between the net benefits of the Bayesian
designs versus the traditional designs can be best explained if a
specific example is considered in detail (parameter set 3 and
= 20). The average net benefit of the Baycsmn designs is 31%
higher, while the variance is more than 41% lower. Both
procedures frequently preduce designs close to the optimal
one (i.e., the one which would maximize net benefits if the true
parameters were known). But the traditional procedure will
sometimes design reservoirs which yield very low net benefits.
The left tail of a histogram of the net benefits obtained is

*larger” for the traditional approach than for the Bayesian ap-
proach. The Bayesian approach greatiy reduces the probability
of obtaining designs with very low net benefits.

These differences in results are due to the differences in the
approach to design. The Bayesian approach acknowledges the
parameter uncertainty. This leads to designs which tend to
have higher storage capacities and/or lower target releases. As
can be secen in Table 6, the optimal Bayesian designs Dg*
have lower targets and larger capacities than the traditional
designs Dr*, especially for very short historical records (n <
20). In short, the Bayesian approach appears to be more con-
servative.

This does not imply that the Bayesian approach leads to bet-
ter -designs every time. Since both approaches rely on the
historical record for their information, if the historical
statistics are identical to the true parameters, the traditional
appr'oac’n would be ‘lucky” enough 1o achieve the best design.
But the probability of this event is very low, especially for
short historical records. The more usual occurrence is for the
traditiona! approach te either overdesign or underdesign by

TABLE 5. True Purumeter Scts

St 2nLfis 4wl RS pSs o s p C.
1 30, 0.3 429.3 450. 0.3 0.3
2 60, 0.6 360. 430, 06 03
3 1030, 0.3 258.3 900, 0.3 0.6
4 [N 0. 430, 430. 0
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TABLE 6. Resulis of Traditional and Bayesinn Desigas

. Record D%y Dy*)
Parameter Length, (NB (D= n). NB (NBiDp*in). NB
Set yr S X0 «(Dy*in) (Tr% (Se* S X 107 «(Dyp*ln)  (Te™ . (Ss"
1 1 3738 42280. 0380 0.30 407.3 19260. 0.73 0.4%
20 4322 17270. 0.79 0.4l 4455 10410. 0.76 0.44
30 4833 21935, 0.76 0.40 486.2 1496. 0.74 0.42
50 497.3 900, 0.76 040 499.1 723. 0.75 0.41
2 10 2731 88630. 077 0.27 295.6 72160. 0.73 0.38
. 20 316.7 53710. 0.75 0.25 3256 44930, 0.73 0.35
. 30 4198 5035. 0.70 0.27 420.1 3424, 0.69 0.34
3 10 -2.4 160090. 0.61 0.55 94.6. 76570. 0.54 0.61
20 115.1 60320. 0.57 0.57 150.8 35460. 0.53 0.59
30 2034 6320. 0.52 055 2128 3746. 0.49 Q.55
4 10 1439 26370. 0.84 0.51 474.5 7304. 0.78 0.58
20 507.6 6739. 0.83 049 513.9 3339. 0.830 0.5t

large values, whereas the Bayesian approach will do the same
but by lower amounts.

Use of informative prior pdf's. Previous work showed that
the effect of using informative prior pdfs is to reduce the
parameter uncertainty, which is analogous to increasing the
total equivalent sample size. On the average, i.e., over many
cases, the use of an informative prior will result in designs
which are ‘closer’ to the true optimal designs. and with less
variance. This is a result of reducing the posterior variance of
the parameters, which in turn leads to lower uncertainty levels
in the posterior information. Again this is the case on the
average, since for one particular case the prior pdf could be
mistaken.

An implication of the results of the previous section is that
for long historical records (n > 40 or 50} it would not be profit-
able to bother with an informative prior pdf. The marginal in-
crease in the average net benefits of the Bayesian designs is
very small.

_. 800+
g SAYESIAN
% 500 — yd
< 400}~ =
“ T —TRADITIONAL
= 300
tﬂ! 200 PAFAMETER SET NO.I
2 c 7.3, p%.3
z 100+
g
! i f '
e] 20 30 [3e] 3D
_ LENGTH OF RECORDS n {YEARS)
4
- 500! -
L
O .
= 40Ok 5AYESV
. 360 A=
= I TN TRANTIONAL
* 200 -
g : PARLVITER SET AD 2
? 100 c,c.3.7:5

R SO L - i
o 20 32 [-%] %0
LENGTEH OF REGGCRDS n (YEARE,

Fig. 90 Averase expected net benzhits (paramerer sets 1 and 2)

However, for relatively short historical records (2 ~ [0-30)
which are more common, informative prior pdf’s would be
quite valuable. An increase in the total information from 10 to
20 “equivalent’ total years could increass the expected average
net benefits by roughly 50-100% in this particular examplz.
This possibility should obviously foster research interest in this
area. '

Model uncertainty. An assumption was made that the true
model was known. This assumption stated that the model was
of the autoregressive family, and the disturbance terms were
normally distributed. This assumption eliminates all model
uncertainty from this problem. .

The model uncertainty problem can be divided into two
questions: (1) structural model uncertainty (e.g., is the process
autoregressive or fractional noise?) and (2) distributional
model uncertainty (e.g., are the error terms normal or log nor-
mal?). For decisions such as those presented in this paper the
distributional model uncertainty is not very importani. Unless

A
300
L2
©
Q
= 200;-
=
[N
<ioot
[¢a]
Z
v
10 20 30 43 50
LENGTH OF RECORDS n (YZARS)
A
|
— 600 — BAYESIAn
©
. -
o 500+ A=
o i =
~ sco! TN TRADITIONAL
€ 300—
S aoo -
-
a: .
Z 100~

Fig. 95, Average expected net beneiits (param=ter sets 3 and 34).
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PARAMETER ST MO, i
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Fig. 10a. Varia nce of, the expecied net benefits (parameter sets 1
and 2}

extreme events are of interest, the distributional uncertainty
can be ignored {sce Rodrz}gue—-[mrbe et al. [1971, p. 1141]).

The problem of structural mode! uncertainty is probably more
important, especially for designs that seek high levels of yield

from the stream in comparison with the mean flow. This

problem and solutions for it are still the subject of research.
No general conclusions have bzen arrived at.

This section presented a comparison of Bayesian and
traditional design procedures for various lengths of historical
ecords and several sets of typical streamflow parameters. A
eservoir capacity and target release decision was considered
uncer the assumption that the true model wa:. a first-order
normal autoregressive process

For the particular decision znd economic coefficients con-
sidered, the Bayesian approach leads to "better” designs on the
average. This implies that if some agency were to select a
prm.»dure to carry out water resource designs, the use of
Bayesiun procedures will, on the average, lead to designs
with higher net benefits, In addition, Bayesian procedures
greatly reduce the probability of designs with very low net
benefits.

CoxcLusioxs

A Bayesian approach to the generation of synthetic stream-
flow truces from a first-order normal autoregressive proc
was presented. This approach appears to be a mors rational
approach, since it explicitly accounts ”ox the parameier un-
certuintics in the generation of synthetic streamflows. In ad-
dition. it allows the use of other source of information in
conjunciion with the hismrical record to reduce the param-
eter uncertainties.

APPENDIX

1. Sample information for the Blackwater River, Webster,
New Hampshire, is given below, -

200 - PARAMITER SET NO 3
175 Cr6.223
“o : \
= 150 — \
125 - \
= \
= 00— \
::j t \
; 75 r \ /rTRADS'HON‘AL
<L !
50 — BAYESIAN
1
25—
L i 1 '
10 20 30 _ 40 50
LENGTH OF RECGR0S n (YEARS)
o PARAMETER SET NO.4
,459 \\ Cc =3, pP=0
~ 20 \
- \C/-TRADM\:\'AL
= \ e
Sg 'Of' \/BAY:M&V
<g \\\
I L : ! H
10 20 30 40 50

LENGTH OF RECCADS n (YEARS)

Fig. 10b. Variance of the expected net benefits (parameter sets
3 and 4).

Sample n = 10 (1928-1938)

b | 166.4 . F1o. 2125,
0.2349 (2125. 470,660.
s =2481. v =8
Sample n = 20 (1928-1948)
2
. 137.4 | v | 200 423,
.3509J, 4235. 934,290, ]

s° = 1824. v =18

i

Sample n = 42 (1928-1970)

1 Fan 2 1
- [157.0 - Fa2.  8628. I
| 0.2431 | 8628. 1,893,870, ]

15}

X
Il
N

12055, » = 40

2. Prior information from regrassion model and regional
serial correlation coefficient for the Blackwaier River,
Webster, New Hampshire, are given below,

E[u/1:] = 2262 /s V{uila] = 515
E{s?l1,) = 32635 f°/s*  Vie® ] = $22.030.
E[p'l:] = 0.22
E[301] = 1765 0%/s VI3, 1q] = 12369
E[3i1e) = 022 V[3i/a] = 00184
Cov [3u. 341p) = —=2.09

Ele®1,) = 30455 fii s
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oo [176sT {“ 298 3373 |
- - |
0.22 J 13373 203,312,

s’ = 2819.9 v = 21

3. Prior information from subjective assessments for the
Blackwater River, Wehster, New Hampshire, is given below.

< Elpelfg) = 2554 /s Vlullg] = 19426
E[o3 1) = 2676.5 f°/s*  V{[c%1g) = 3,509,000,
Elolfs] = 022 Viplla] = 001844
E[3{1:) = 199.2 ft¥/s  Vi3,la] = 23850
E[BlI:] = 022 Vi3l = 001844
Cov [3,. 341] = —2.35
Elodla] = 2497.7 f%/s* VioAIa] = 62,386,000.

199.2 120 1530

b = v =
0.22 153.0 154,993 _‘

5% = 1665. V=6

I

NOTATION

b’ prior parameters.
b sample parameters.
b" posterior parameters.
d - design alternative.
D vector of design decisions.

E{ 1 expected value operator.

S{ ) probability distribution function.

F( ) cumulative distribution function.

f(19) conditional pdf of y given the parameter set 0.
fly) Bayesian, unconditional, or predictive pdf of .
[(0) prior pdf of the parameter set 0.

"8y posterior pdf of the parameter set 0.

I, prior regional information.
k(8) kernel of the likelihood function of 8.
L(#,Y) likelihood function of 8 given the observations Y.
NB  net benefits. '
¢VB) average of net benefits.
NB  variance of the net benefits.
R reservoir release. .

§'*  prior variance parameter.
s? sample variance parameter.

s"*  posterior variance parameter,
T reservoir target release.
u{ ) utility function.-
U( ) total utility.
FI 1 variance operator. .
V' prior parameters of first-order normal autoregressive
process.
vV sample parameters of first-order normal autoregres-
sive process.
V"' posterior parameiers of first-order normal -auto-
regressive process.

¥. observation of streamflow process.
Y sct of observation of y.

y; future streamflow.

parameters of autoregressive model,
¢, disturbance term in autoregressive models.
e set of ¢.

parameter vector.

v'  priar degrees of freedom.

v sample degrees of freedom.

v""  posterior degrees of freedom.

equal to 3.1316.

3l

p serial correlation.

a® process variance.
o vartance of disturbance term ..
. . process mean.
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The authors appreciate Davis’ [1977] interest and feel that
his comments will contribute to a better understanding of
Bayesian applications in hydrology.

Davis’ comments focus on the use of the Bayesian probabil-
ity density function (pdf) instead of a two-step approach for
evaluation of projects through simulation. A preference for the
one-step approach is obvious because its reduction of the
required simulation runs makes the Bayesian approach a prac-
tical tool.

We agree with Davis that the proposed Bayesian streamflow
geherator may not lead to an exact solution for the expected
utility or benefits in water resources project evaluation. In-
stead, the use of such a generator represents an approxima-
tion, exact under certain cases and requiring less than one
tenth the computational cost of the exact Bayesian approach.

Widely used streamflow generating techniques, relying on
parameters estimated from historical streamflow data, on the
average give overoptimistic estimates of the benefits from wa-
ter resources development because they fail to account for the
consequences of uncertainty in the parameter estimates. Con-
ventionally, the true unknown parameters are assumed to be
known with certainty to be equal to values estimated from
historical streamflow records. '

Bayesian methods recognize that different parameter value
combinations could produce a given historical streamflow rec-
ord. These parameter values, some more likely than others, are
distributed about the conventionally assumed true values ac-
cording to a multivariate probability density function
(MPDF).

The difference between the exact Bayesian approach and our
proposed approximation lies in the way the MPDF is used.
The exact Bayesian approach according to equations (7) and
(8) [Vicens er al., 1975, p. 828] takes the expectation of net
benefits of a given design over the MPDF. This is oper-
ationally equivalent to sampling from the MPDF many sets of
parameter values, simulating for each the proposed design to
evaluate benefits, and taking the average benefit. This requires
repeated simulations, each often costly, for the different pa-
rameter sets.

Our approximation removes the need for multiple simula-
tions by using the MPDF together with the streamflow model
to form the Bayesian streamflow model (equation (1), p. 827).
Evidence from our computer studies suggests that improve-
ments in project benefits would be obtained if our approach

Copyright © 1977 by the American Geophysical Union.

Paper number TW 0341 855

were used in system design in place of the standard non-
Bayesian approach. It would be interesting to know how re-
sults from the exact Bayesian approach would compare with
the results given in the paper.

The exact approach would be illustrated by a modification
to Figure 8 of Vicens et al. (p. 834) as a third branch between
steps 2 and 5. This third branch would include the following
steps:

a. Generate sample values #* of the parameter set 6 from
the posterior pdf f"(6).

b. Using 6*, generate a synthetic sequence of streamflows.

¢.  Repeat steps @ and b K times to obtain a proper sample
from the posterior pdf of 6.

d. Optimize and obtain Dg,* the optimal design for the
two-step or exact Bayesian approach.

This design would then be evaluated in steps 5-9, as were the
traditional design D;* and the Bayesian design Dz* by our
approach.

An exact Bayesian experiment was not done within the
original research effort because of the magnitude of the re-
quired computational effort. Specifically, the cost of the com-
puter runs which performed steps 2-7 ranged from $50 to $70.
The total cost of the production runs described in the paper (a
total of 12) was of the order of $700-$750. If a branch which
included steps a-d above had been added parallel to steps
3a-3c¢ and 4a-4c. the per-run cost of steps 2-7 would have
increased to roughly $650, and the total cost of the production
runs would then have been about $8000.

Although our proposed approach appears to produce im-
proved reservoir designs over conventional approaches which
neglect parameter uncertainty, some additional improvement
may remain from the Bayesian multiple-simulation approach.
Qur recommendation is to use our proposed approximation to
develop system designs and then to evaluate the final design
further, if funding permits, with the exact Bayesian method.

REFERENCES

Davis, D. R., Comment on ‘Bayesian generation of synthetic stream-
flows' by G. J. Vicens, 1. Rodriguez-Iturbe, and J. C. Schaake. Jr..
Water Resour. Res., 13, this issue, 1977.

Vicens, G. J.. I. Rodriguez-lturbe. and J. C. Schaake, Jr.. Bayesian
generation of synthetic streamflows, Water Resour. Res., I/,
827-838, 1975.

(Received April 4, 1977:
accepted April 11, 1977.)




