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Water resource designs are perfect examples of decision making under uncertainty. In fact, three types
of uncertainties may exist in any design problem: natural, parameler, and mode! uncertainties. The Jast
two may be constdered as informational uncertainties that are due to the lack of perfect information
about the streamflow processes. The use of regional information has been suggested as a technigue for
reducing parameter uncertainties. The use of Bayesian methodolegy provides a framework for combining

regional information with at-site historical records.

Moreover, Bayesian methods allow the hydrologist to

consider the parameter uncertainties as well as the natural uncertainties within the decision-making
process. Because of these two advantages the Bayesian approach is a more complete and realistic ap-
proach to problems of uncertainty in hydrology and water resource planning than presently used

methodologies.

UNCERTAINTY IN WATER RESOURCE PLANNING

reh cfforts have

2

Over the last two decadss, extensive )
produced techniques that deal explicitly with the problem of
the uncertainties present in the design and planning of water
resource projects. These very successful efforts have mainly
focused on one aspect of the whole range of uncertainties pres-
ent in hydrologic problems. ,

These uncertainties may be classified as being of two tvpes,
natural (or inherent) and informational. Streamfow processes
are frequently considered or -assumed to be stochastic
processes because of the natural, or inherent, randomness ap-
parent in the observed streamflow traces. Owing to the lack of
perfect information about the streamflow process, e.g., in-
finitely long histarical records, there exists an informational
uncertainty about the process. This uncertainty may be di-
vided into parameter and model uncertainty. There is seldom
enough information available to evaluate the parameters of
the model or select the ‘correct’ model with certainty.

Stochastic hydrology has focused on the analysis of the
natural uncertainties in water resource problems and has
generally ignored the informational uncertainties. Many
techniques for the generation of synthetic streamflows have
been proposed, but no account of the parameter uncertainty
nas explicitly been carried out. Moreover, no model selection
procedure has been proposed, although this problem is be-
lieved to be less important than the parameter unceriainty
problem for time series models that do.not explicitly focus on
extreme events,

When parameter uncertainties have been considered, it has
been through point estimation procedures. Attempts have
been made to reduce this uncertainty by using the available
historical record or regional data. A combination ¢f these two
sources of information has rarely been autemptad, and no
attempt has been made to combine the two sources and to in-
clude the remaining parameter uncertainty in a decision
problem framework simultaneously. This type of framework
would assess the effects of the parameter uncertainty and the
value of obtaininz additional information.

Synthetically renerated records are used to assess the effect
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of streamflow varjations on proposed designs; this procedure
requires the estimation of streamflow parameters such s the
mean and variance {rom the historical record. The uncertain-
ties on these and other parameters have not been included in
the synthetic generation procedures.

The U.S. Geological Survey has carried out studies di-
rected at the estimation of streamflow parameters from
physiographic and meteorclogic characieristics of z basin
{Benson and Matalas, 1967, Thomas and Benson, 1970}
Matalas and Gilroy [1968] proposed that these estimates be
compared with those from the historical record and that the
lower variance estimators be used and the other set be dis—
carded.

Bayesian methodelogy has been used by Shane and Gaver
[1970], Tschanner! {1971}, Davis et al. {1972}, Lenton et al.
[1973]. and Weod et al. [1974]. Of these, Shane and Gaver
[1970] were the first to propose the use of regional information
from regression models and historical at-site information. The
objective in that work was to combine estimators from these
two sources. : )

This paper focuses on one objective: to investigate the use of
regional information in conjunction with the at-site historical
record to reduce the parameter uncertainties. A separate paper
will present procedures. that explicitly account for the
parameter uncertainties in planning for water resource proj-
ects. The details of this work can be found in the work of
Vicens et al. [1974]. As is described in detail in later sections,
Bayesian procedures appear to be perfectly suited to meet our
objectives. These procedures allow the hydrologist to include
explicitly the parameter uncertainties in the-decision process
and to combine sources of information to reduce the
parameter uncertainties.

BAYESIAN INFERENCE AND DEecCIsiON

Streamflow processes will be considered as random
processes generating random variables distributed according -
to a mode! probability distribution function (pdf). The in-
herent, or natural, randomness of the process creates uncer-
tainty about future observation of the process and about the
consequences or value of any decision. In addition, the
parameters of the madel are unknown, a complicztion that
further adds to the uncertainties about future observations.
However, we shall assume that the model pdf is known with
certainty: i.e,, no model uncertainty exists. Bayes's thecrem
can be used to combine the pricr and sample information to
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update the present information about the unknown
puarameters in the foliuwing manner .

Bl a, Y) = [1(Bi1z) LEY) (

i.c.. the posterior pdi of ths unknewn paiameters 8. Fr(8i .,
Y) is proportions! to the sraduct of the prior pdt f(9 /),
which contains the prior information I, and the hhelihood
function L(81Y). which contains the sample information Y.
Equation (1) is : : 1o : th
likelihood function is not a propet ndf. and
malicing constant is required to make this relation “equal 0.
Where this constant is important, it can be obtained from

Pt

s

therefo

ot = [ 1@l Lem e @

The use of Bayes's theorem {0 ‘pool” sources of information
is shown in Figure I. The sample informatiion, for example, the
historical record at a gaging station, is introduced through the
likelihood function. Other information is brought into the
analysis through the prior pdf. The result is a posterior pdf
that contains all of the available information.

If additional information becames available at a later time,
the present posterior pdf will become the new prior pdf, and
the additional information will be included in the process
through the new likelihood function. In fact, this process of
combining information is quite general and may be used to in-
clude many sources of information.

Prior pdf's. The prior pdf f'(B|1g) represents ail of the
available prior information about the parameters of the model!
©. The time sequence, whether or not this information was ob-
tained prior to the sample, is irrelevant. 1t is important though
that this information be separate and distinct from the
historical sample. Formally, it must be statistically indepen-
dent information.

When the prior pdf is derived from an ‘objective’ analysis of
available data (e.g., regression on regional type data), it may
be classified as data-based (DB). But when it is derived from
subjective judgments, casual observation, or theoretical con-
siderations, it is classified as non-data-based (NDB). Many
situations present both types of information.

Very few arguments will arise from the use of DB priors
when the analysis is carried out through means of a well-

Prior ‘ Sample
information i information
Ig Y
2
Prior POF Likelihood Function
f'(QIIR) L(gly)
L
]
T
E Bayes Theorem

l Equation |

Posterior POF
' (g11g.Y)

Fig. 1. The Bayes theorem: processing of information.

accepted technique such as regression analysis, O . oiher
hand, it can be nearly impossible to find two hydroiogi.. ~ho
wi Jduce identical NDB priors, since these witl refien. w3ir
peesonal training, experience, of bias. Conseyuently, pos
s or decisions based on their diifersnt NDB pn
arent.

1ss of NDB priors comprises the noninformaiive

inferen:
will be

A special €
priors. These are dsed 1O express ‘ignorance’ wboul the
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cis the informatio v thi san
sentation of ignorance in mathematic
of contraversy in the statistics literawure. This topic wilj avt be
covered in detail in this work, since it is irrelevant in practical
applications. The practicing hydrologist will always have some
information on which to base judgments oa the prior pai’s,
whether they be DB or NDB.

For many infersnce problems, only one parameter, 1., 8
subset 8, of 8, is of interest. The marginal pdf for this subset
can be obtained from the joint pdf by integrating over the
remaining parameters in 8, which are then called “nuisance
parameters.’

Bayesian probability distribution. The consequences of in-
forences and decisions in hydrology are more frequently direct-
ly related to future streamfows than te the parameters of the
process. For example, although a resgrvoir design will be
affected by the mean and standard deviation of the streamflow
inputs, the consequences of a design will be directly related to
the particular sequence of inputs that occur during the
economic time horizon of the project. Therefore we are par-
ticularly interested in the probability distribution of these
future streamflows.

The Bayesian pdf of a future observation of the strearafiow
process is obtained by integrating the product of the medel
pdf, which'is a conditional pdf given the parameters, and the
joint posterior pdf of the parameters [Zellner, 1971], ie.,

fodie D = [ j0ler1 @l nde G

where y, is one future observation of the streamflow and
f(y,|8) is the model pdf. The resulting pdf includes the
natural, or inherent, randomness of the streamflow process
and the uncertainty about the true value of the medel
parameters.

Equation (3) can be used for making inferences about future
streamflows. For example, the probability of a flood over a
certain flow g can be obtained by

Pl = al = | JoudIe D dy @

Similarly, the Bayesian moments of a future observation can
be obtained by

Ely) = -[/ v TR, Y) dy; (3)

i

Vil = [ G = B oL D dy, O

The next section will present one of the simplest modeis of
hydrologic time series, the independent normal process. The
lack of a correlation structure precludes the use of this model
for many hydrologic problems. It is nevertheless o useful one
to represent historical series, and its study is both necessary for
the understanding of mare complex models and extremely
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useful and simple for the demonstration of the values of prior
and historical information. Although this paper will focus on
this model only, the approach is not limited to this simple
model. In fuct, the saume methodology has been applied to
three ather models by Vicens er . [1974]. These models are
the independent log normal process, the first-order normal
suioregressive process, and the ﬂrst order log nomml
sive process, Researc]

2t the analysis of more complex moocl..

t oy g 2t
currantly 1 prog e
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INDEPENDENT NORMAL PROCESS

An independent normal process is defined as the process
generating annual streamflows (or other hydrologic variables)
¥, assumed to be independent and identically distributed ran-
dom variables with a normal (N) pdf (model pdf) given by

SsGiles 0) = @)y Hexp [~(n — w)/26% (T)

If n observations for this process have been made, the
likelihood [unction for that particular sample is the product of
the individual pdf's:

Zl Oy — 1)/ 2 J}
(&)

where Y denotes the set of observations [3,, ¥, « - -, ¥x]. Thus
L{p, o]Y)is proportional to the pdf that a particular sequence
of y, would be observed for specific values of y and ¢. Equa-
tion {8) may be simplified b) defining the suflicient statistics
for the sample:

Ly, oY) = (ZW)'X’Q"ab"{exp z

?:“Z% ©
f=1
s = Z e =3 a>1 (10)
n — I =
v=gn—1 n>0 an

These three statistics, in addition to n, the size of the samiple,
are the sufficient statistics for the sample. The likelihood func-
tion can now be written as
Ly, oY) = Qu) V#g-n
dexp [=(vs® + (3 ~ w))/207)
A kernel of this likelihood function, i.e., those factors that
vary with the unknown variables y and o, is

Mexp [=(ws® + (G ~ w))/20°  (13)

As an example the sufficient statistics for the Pemigewasset
River at Plymouth, New Hampshire (U.S. Geological Survey

(12)

k(p, o) = ¢~

stztion 1-765), were computed for three different record -

ths (# = 5, 20, 60). These are shown in Table 1. This infor-
i will be combined with the prior information to be
ezd in the following sections.

FARLE 1 Sample Information: Pemigewasset River,
Plvmouth, New Hampshire
K i ¥, £tis s? YT v, ¥T
1% 8 1383 64613 5 4
S 03 1367.9 41244 20 19
B 1536.8 60900 ¢o 59
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A convenient prior pdf for g and o is the natural conjugate
of (12). a normalinveried gamma 2 pdf. It is convenient in the
sense that when it is combined with the likelihood functon
(12), it yieids an analytically traclable posterior pdf. This pricr
pdf is a product of a normal and an inveried gamma 2 (1G2)
pdf [Vicens et al., 1974]. i.e.,

*’J‘E Tay = fud

Fin,

4

where the parameters i, s, n'. and »' are estimated from prior
information /4, as will be shown later in this paper

The marginal pdf for either of the two unknown vanab!es e
and ¢ can be obtained by ‘integrating out’ the other variable.
Thus the distribution of g is

Pl = | ' ol do = 15/ ely, S5, 0') (%)
0 "

a Student r pdf with expected value and variance

Elp|lp] = 5’ v > 1 (16)
Vielle] = v's”"/n'6" = 2) ' >2 (7
and the distribution of o is »
Pl = [ 100l di = foGels’ > (18
an inverted gamma 2 pdf with moments
N, T~ 1)/2] .
Elo|lz] = (2) s’ T6 /2] > 1 (19)
P’S’z 2
Vigl1z] = T T {Ele| =1} v >2 0 20)
where I'(' ) is the gamma function, defined by
I'(7) = f &p  tdp (21)
0

From (18) one gets the marginal pdf for the process variance
(through the theory of derived distributions): :

S0 1r) = fic2'(0%| k)

11/26] = fiai'(a?| Vov', V' /5"t (22)

which is an inverted gamma pdf with moments

E[o®|1:] = »
V[O'QIIR]

v > 2
v > 4

14 '2/(11 -
265" /(" — 2)"’(»' — 4)

(23)
(24)

It

The analysis of this model may be carried out in terms of the
mean and standard deviation (u, o), the mean and variance (u,
a’), or the mean and precision (u, h), where h = 1/¢* [Raiffa
and Schlaifer, 1961; Kaufman, 1972]. Information about ». ¢,
and A can be transferred from one to the other through the use
of derived distributions. This fact will be used in defining prior
pdfs.

Since the functional form of the prior pdf was selected 10 be
from the conjugate family of the likelihood function for this
model, ¢!l that remains to be dclcrmincd is the values of the
four purameters of the prior ', s n’, and »'. Once values for
these parameters have been se,t. a unique pdf for'y and ¢ has
been determined. Obtaining these values from the joint pdfis a
very difficuit task. Therefore approaching the problem from
the marginal pdf’s appears more promising. Marginal pdfs
and momenis were derived for u. o, and ¢* If specific values
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are given for Elujlel. Vig el Efg3 s}, and V(o Ll (16,
(17), (23), and {24) can be solved directly for 3, s, n', and v

¥ = Ewild @)
W= EL1, VL) )
v = 20 ENo’ 1)/ Vo' £ D

470y
=
[ Sty

(A similar approach to the assesstaent of prior pdi's was
presented by Ando and Kaufman [1964].) Estimates of Efuils},
V{u{L.). E(o’|s}, and V(0% Ip} can be obtained from purely
subjective judgments or from straightforward analysis of other
data. :
The moments of ¢* ars used instead of the moments of ¢
because the latter involve the gammma function. This would un-
necessarily complicate the solution of these four equations for
P, n', v, and s'%. Equations (25)28) resultin a prior pdf that
has the marginal moments specified initially except that n’ and
' are rounded off to the next smallest integer. These two
parameters represent equivalent sample sizes for prior infor-
mation about the mean and standard deviation, or varianss,
respectively.

Regional information has been used in the last few years to
estimate streamilow parameters. Physiographic and/or
meteorologic information can be related to streamflow
characteristics such as mean annual fiow and Teyr flood [Ben-
son and Matalas, 1967, Thomas and Benson, 1970]. Regression
models have been used to find these relations and to predict
the streamflow characteristics of other basins.

Models of this type were developed for the New England
region [Vicens et al., 1974] and were used to predict the mean
and variance of ths annual flows for the Pemigewasset River at
Plymouth, New Hampshire. The expected value and variance
of these two predictions are

i
i

Elg|lz] = 1271 f£'/s
E[c°|T.] = 70,497

Viu|Iz] = 16,868
Vip|Ip] = 4.039 X 10°

By using these results the parameters of the prior pdf for g
and o were obtained by solving (25)~(28). These parameters
are

It

3 = 1271 f¥fs o’ =4
s'% = 65,551 Y = 28

From the variance of these predictions it can be estimated that
the standard error of estimate for the mean is 10%, whereas for
the variance it is 29%. In terms of equivalent sample sizes the
predictions from the regression models were equal to about 4
yr for the mean and 28 yr for the variance. Although these
equivalent sample sizes imply that more information
is available for the variance than for the mean, the standard ec-
ror of estimate is a better indicator of the precision of the in-
formation available. Much longer records are required to es-
timate the variance than to estimate the mean if the same level
of precision is desired.

A second possiole source of information is the subjective
judgment of an experienced hydrologist. To take advantage of
thess talents, some conceptual model of the physical processes
in action in a river basin would be helpful. Although totally
subjective judgments (.., «seat of the pants’ guesses) could be
wsed. a model would heip structure the assessments of these

judgments. To thisend a model similar to the Thomas model
descrined by Fiering [1967] was daveloped. The streamiow
output from a rivee basia in vear /, g, was related 10 the
precipiiation input X by :

g = (1 - bix, (29)

The parametars of the sirsamflow process are then relawed 1o
the precipilation paramsians by

e = b Bl 367
o = (1 — bYa, G
Pe = P= (32}

where u, 0% and p denote the mean, variance; and serial cor-
relation coefficient.

Suppose this model was, in the hydrologist's judgment,
adeguate to represent 2 particular river basin. In addition, the
hydrologist was willing to specify some moments of the un-
known variables ug, 0.2 b, and px. Considering them as ran-
dom variables allows the specification of moments, i.¢., E{uxl
Viw,). Elos?), Viesl) Elb), Vil Elp.], and V[p,]. These
moments can then be related o the moments of the random
variables g, 0.2 and pg through approximations {Berjamin
and Cornell, 1970] by assuming that all covariances are zero.
These relations are

Flud = (1 — EBD-Elwl (33)
Vle) = E'lwl-vIb) + (1 — EQD VL] G9
Flof] = (1 — ED* + Vipl-£le’) (35)
Vo] = 41 — EBDSE'71 VB

+ (1 — EBYVIeS] ‘ (36)
Efp,] = Elp.] @an
Vil = Vipd (38)

The moments can be used directly in (25)(28) to assess the
prior parameters. Before proceeding with an example it is im-
portant to analyze how the required information is obtained.
First, the units of the model will be changed to cubic feet per
second for g, The precipitation x; will also be measured in
cubic feet per second and obtained from

xx=K-p -4 (39)

where p, is the precipitation in year {in inches per year, A is the
drainage area in square miles, and K is the conversion factor
from inches-square miles per year to cubic feet per second,
equal to 0.07367. This conversion adds some uncertainty to the
estimates of the mean p. and the variance o.%

Vip.] = A*-K'VI,) (40)
Vie,] = A'K*-V([s,’] 41

Elp.] = Elp,} Vip.l = Vip,] (42)

The following moments of p may be obtained from rainfall
records: Elupl. Vino) Elas’) Vie,*1, Elppl and Vippl
The hydrologist’s judgment comes again into play in es-
timating the momeats of b, the percentage loss. In E{b] the
hydrologist expresses his “best’ estimate of the losses. whereus
in 1'{5] he exprasses his confidence in this best estimate.
The expected value of the mean annual precipitation can be

Efu.] = A-K-Elu,)
E[s.") = A’K’Els,’]
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obtained from rainfall records for the basin of interest. The
variunce of the annual precipitation can b

ample. by assuming a coefficient of var

e obtained, jor ex-
ton of 0.2 for the an-
nual preci nee of u, and 6,7 can
be obtiined by assuming that an syt rainf
avatlable. Then the two variances ca

ation time series. 1The var

record s

— DIEe,"} (44)

For the Pemigewasset River the following information
about the rainfall process was used:

Flu,] = 48.5 in. Ele,’] = 94.1 Elp,] =0
Vip,] = 4.7 Vie,"] = 932.1 Vip,] = 0
A'=62mi* K = 007367

In addition, the annual precipitation process was assumed to
be an independent normal process. The value of £[u,] was ob-
tained from Johnston [1970], and the value of £[r,?] was ob-
tained by assuming that the coe at of variation of this
process was 0.2. The variance terms were obtained from (43)
and (44) and a subjective ‘guess’ that n, was 20 yr. (No infor-
mation was available concerning the length of record used by
Johnston [1970] in his studies.) Finally, it was assumed that the
precipitation process at the annual level was independent.
Using these values in (40)-(42), we obtain

Elu.] = 2222.4 fi®/s Vlu.] = 9868.2
Ele,?’] = 197,570 Vie.?] = 4.109 X 10°
E{p.] =0 Vip.]1 = 0

A smail group of hydrologists were asked about their subjec-
tive estimation of the percentage loss &, the resulis being

E[b}] = 04  V[p] = 0.01

The results in terms of the moments of the streamflow
parameters are

Elp,] = 1333 ft®/s Vie,] = 52,941
Elp,’] = 73,103 Vo’ = 1.095 X 10°
Elp] =0 Vipd = 0

These values were then substituted intp (25)-(28) to obtain the
prior parameters of a normal inverted gamma 2:

I

1333.4 /s s = 62,480

)7!

’

17 v .

n" = 1yr 13 yo

Considering »” and v as prior equivalent sample sizes there
is very little information about the mean. However, there is
some information about the variance. The standard error for
the mean in percentage is about 17%, whereas for the variance
it is 4545, ,

This prior pdiis very sensitive to the *confidence’ on the es-
timate of b Thus for V{h] = 0.0025 the following prior
parameiers sre ohiaipad:

1334.2 f°/s "% = 64,177

I

n =4 yo= 19

zs2 in a1 has been achieved by improving the informa-

-

Use of the prior information together with the historical
record always yields lower variance then we of only the o
or only the historical samples. In this example the guaniinca-
tion of the hydrologist’s judgments was limited to estim
the losses of the basin 2nd a confidence velue about 1his oy
timate. For more complex models. more assessments might be
i could involve groundwater stora
it i sur, ¢ 3
hasin due to urbanization. This last [actor might make
historical records worth less, since the basin has beer aliered.
In this case the assessment of a prior distribution is very im-
portant, since it would be the only information avaiiable.

These results of prior pdf assessments from regression are in
accordance with the results of Johnston [1970] and Hardison
[1969. 1971]. In terms of equivalent sample sizes the regression
models did not yield large amounts of information. But even
this small amount of information can be quite valuable wher it
is combined with the historical record, as will be done later in
this paper. The subjective assessments yielded even less infor-
mation than the regression models. This result was expected
because of the simple nature of the mode! used,

Prior i posterior analysis.  The regional tnfermation in the
prior distribution may be combined with the historical record
at the site of interest through the application of Bayes's
theorem, that is,

£, ol In Y) & fe, ol In)-Liu, oY)

o -,ng

(45)

Since the prior pdf was selecied from a natural conjugate
family, i.e., one with a kernel similar to the likelithood func-
tion, the posterior pdf will be of the same family. As is shown
by Vicens et al. [1974], the posterior pdf resulting from (43)
will be a normal inverted gamma 2 pdf, i.e.,

Srrea"(uts U“R» Y) = fN;Ga'(ﬂ: G'fi.&‘) - L, S!Y) (46)

with parameters

'y + np)/(n" + n) :

y = 47y

w'=n" 4 n (48)

=y 1 v >0 y> 0 49)

s = 0 ' s gt — 0PN (50)
¥ >0

‘The posterior parameters are functions of both the prior and
the sample parameter. For example, the posterior mean j' isa
weighted function of the prior mean 3’ and the sample mean 7,
where the weights are the relative number of samples n'/(n* +
n) and n/(n’ + n), respectively. If no prior information exists,
the posterior parameters will be identical with the sample
statistics. When no sample exists, the posterior parameters are
identical with the prior parameters.

Since the joint posterior pdf is normal inverted gamma 2,
identical with the prior pdf except for the new parameters. the
marginal posterior pdf’s for 4 and o are defined as for the prior
pdfs ((15) and (18)), and the expected value and variance of
these two parameters are given by (16), (17), (19), and (20) ex-
cept that 37, 5”2, n", and »" replace the prior parametcrs.

As an example of how regional information can be com-
bined with at-site historical records, this model was 2ppiied 10
the Pemigewasset River. The results of the prior to posierior
analvsis are presented in Tables 2 and 3. The prior information
obtained from regional data through regression analysis was
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TABLE 2. Prior w2 pastarior Analysis, Pemigewassst River

teg

Information 1 feif

at o= G, V' = 33 3.12 % 102
o= 24, W= 48 L 1.49 x 107
at o= 64, V= 83 06.95 x 10%

*Does not exist, since v = 4.

TABLE 3. Prior to Posterior Analysis, Pemigewasset River
Information  E[ul, fti/fs 7kl 2[s?] v{e?]
Prior Only (Subjective Assassments)
nt = 1, v' o= 13 1333 73103 73103 11.9 x 108
o . Sarpla Only
n=5, v=4 o 1384 25847 129235 *
n=20,v=19 | 1368 23304.8 46096 2.83 x 108~
n =60, v=259 T 1347 . 1050.6 63037 1.44 x 108
: Pesterior (Prior and Szrpls)

pt o= 6, Vo= 187 1376 11091 66548 6.33 x 108
ptto= 21, V=33 .- 1366 2440.7 51256 1.81 % 108
nt o= 61, V' = 72 1347 1015.4 61937 1.11 x 108

*Does not exist, since v = 4.

combined with the historical record (Table 1). In Table 2 the information is a combination of the prior and the sample in-
expected value and variance for the mean and variance of an-  formation. For example, for the mean annual flow the posterior
nual streamfows are shown: first, from the prior information expecied value of g is a weighted sum of the prior expected
only; second, from the historical record only; and finally, from value and the sample expected value. Second, as the historical
both combined. In addition, the marginal distributions for the  sample size increases (larger n), the sample information is
mean and standard deviation are shown in Figures 2-7. weighted more heavily than the prior information. Again for

The subjective prior pdf is corbined with the historical the mean annual flow the posterior expected value of p ap-
record in Table 3. The results are similar to those of the regres- proaches the sample expected value. Third, as the total infor-
sion prior pdf. mation increases (larger n”), the uncertainty about the

The following observations can be made. First, the posterior ~ parameters g and o2 as measured by their posterior variance is

i
004 — POSTERICR '
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Fig. 2. Marginal pdf's of the mean annual fow (sample: n = 3). Fiz. 3. Marginal pdf's of the mean anaual flow (sample: n = 20).
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Fig. 4. Marginal pdf's of the mean annual low (sample: n = 60).

reduced. Fourth, and most important, the posterior variances
of u and 6® are lower than those of either the prior or the sam-
ple alone. This fact indicates that combining the two sources of
information reduces the parameter vncertainty or equivalently
increases the total information over using each source
separately and then trying to decide which of the two is more
adequate,

These observations are demonstrated more dramatically by
the figures of the marginal pdf's. A reduction in variance is
reflected in a ‘tightening’ of the pdf about its mean. From
Figures 2-7 it can be seen that the marginal posterior pdf™s are
concentratzd closer to their mean than either the prior ar the
sample pdf. In addition, where the prior or sample con-
tains significantly more information than the other, the
posterior pdf closely follows the ‘stronger’ one.

Bayesian distribution of a future streamflow. It has been
assumed that the model pdf of the streamfiows was a normal
pdf given the parameters g and o. But owing to the uncertainty
ebout u and ¢ the information about a future streamfiow yris
not complete if this parameter uncertainty is not included.
Inferences or decisions about future streamfiows should take
this parameter uncertainty into account. Following (3), in-
legration over the uncertainty about g and & can be carried out
to obtain the Bayesian pdf of a future streamflow Jr of this
process:

JOA TR, X

f: j:‘ fN()’;l#, Uj'fx!cz"(,ﬁ, o) du de

i

T3, 8" v (1)

where
n'fet + 1) (52)

(This result is proved in Appendix B of Vicens et al. [1974])
The Bayesian pdr of 2 future observation from this model is a
Student 1 pdf. By stating thas the probabiliy stateredts shaut.
Yy et now in the farm o 2 Siudent £ instead of the mode! pef.
the warmal pdf, it should be nhvious immediately that gwing
to the parameter uncertainiy sbout u and ¢ the unceriainty
ab~t 3, has increased. Noreover, when the Bayesian
meTents are computed, the results are

=

Tiv s, Y] = 7 (53)
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TAILE 4. Moments of the Bavesian pdr, Pe ewasset River
infermation Z{y=l, £t /s iy
Yodels)
nt o= 4w
Scrple
n= 5, v=4 1384 185082
n= 20, v=19 1308 45401
n =60, v = 59 1347 64088
Postazrior (Prior and Scple)
=9, W= 33 1334 76041
w24, WM o= 45 1352 60237
n' o= 64, V' = 88 1342 64415

which show a larger variance than they would if 4 and & were
assumed to be known and equal to §” and 5. With an in-
creased total number of samples, i.e., larger n'* and »”, the in-
formation will increase, and the variance of y, will tend to its
true value, since (v” + 1)}/n” and »"/(»” — 2) will both tend to
unity. ’

For the purpose of inferences, (51) presents the pdf of a
future streamflow y,, which contains al! of the available infor-
mation about the process. For example, the probability that a
future flow will be less than ¢ is

Py S al= [ Rl ay  69)

and values for this probability can be obtainzd from Student ¢
tables.

Again if only prior information is available, the moments
and parameters in (53) and (54) will be the prior ones. If a non-
informative prior pdf is used, the posterior Bayesian pdf will
contain only the historical sample information.

The effects of parameter uncertainty on inferences or
decisions about future streamflows will be transferred through
the Bayesian pdf. The moments of the Bayesian pdf given prior
information from regression models and posterior information
from the historical sample are presented in Table 4.

Two facts should be pointed out in these results. First, the
Bayesian pdf includes all of the available information.
Therefore the Bayesian moments reflect the information that
was available through the posterior pdf. For example, the ex-
pected value of the future streamflow is equal to the posterior
expected value of the mean annual flow. As was discussed
previously, this posterior expected value is a weighted average
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Fig. 9. Marginal posterior variance of the standard deviation of the

annual flows.

of the prior and sample information. If only the prior pdf is
used. the expected value of y, refiects anly the prior informa-
tion. If the samplc is the only source of information, only it is
reflected in the Bayesian expected value of y,.

Second, the Bayesian variance of y, includes both the
natural uncertainty of the streamflows and the parameter un-
certainty due to lack of perfect information. Consequently, for |
short samples, prior or historical, the variance of v, is larger
than what appears to be the process variance (~60,000 ft/s),
But as the total information increases (larger n”), the Bavesian
variance approaches the process variance, as can be expected,
since the parameter uncertainty is eliminated.

" Advantages of Bayesian analysis.  Two of the major advan-
tages of the Bayesian approach are that parameter unceriair
is included in the analysis explicitly and that by using in-
formative prior pd{’s this parameter uncertainty may be
reduced. To demonstrate these advantages of the Bayesian ap-
proach and to test the relative value of using informative prior
pdf's versus longer historical records, the record of the
Pemigewasset River and the prior pdf's descrxbed earlier were
used as an example.

The historical record was divided into a set of samples n, yr
long each: Each set was combined with three sets of prior in-
formation pdf’s: noninformative, regression model, and sub}
Jective assessments. The posterior moments of g, o, and y,
were computed for each combination of prior and sample of
length n,. The results were averaged over the total number of
ny-length samples that could be obtained fram the historical
record. This process was repeated for n, = 5, 10, 15, 20, 30, 40,
50, 60, and 65 yr. For some samples, some part of the
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historical record was discarded. For example, for ny = 20,
threze samples of 20 yr were used, and the last 7 yr of the record
were discarded. Figures 8 and 9 show the marginal posterior
variance of the mean and standard deviation of the annual
flows versus n, for each of the three prior pdfs.

Several important trends are shown by these figures, First,
when either of the informative prior pdf’s is combined with the
historical record, the posterior variances are lower than they
are when the historical record is used alone {diffuse prior pdi)
or when the prior information is used alone (n, = 0). These
differences are very significant for n, less than 23 yr. For exam-
ple, at ny = 10 the posterior variance of the mean annual flow
can be reduced by more than 30% by combining the historical
record with an informative prior pdf. For the posterior
variance of the standard deviation a reduction of 70% can be
obtained by the same procedure. Of course, for longe
historical records the importance and value of the prior pdf
diminish. For n, more than 40 yr the differences are insignifi-

cant. These results are particular to this case only and valid if

the assumptions of the model normality and independence
have not been violated.

The effects of informative priors on the Bayesian pdf are
demonstrated in Figures 10 and 11. These figures show the
Bayesian expected value and variance of a future streamflow
for information from the historical records and the three
priors discussed earlier. The expected value appears to be a
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weighted average of the prior and sample informuiion,
wheress the variance reflects the uncertainties, nutural and
parameier, in the predicion. Here again ths use of an in-
formatise prior de sigaificantly reduces the variance for n,
less thun 20 yr. Afrer this point the value of the Bayesian

es qwua what appsars webe the true process
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variance 5 generally larger thaa &he procesy variance ba:ause it
includes the parameter uncertainty. The ratio of the variance
of the Bavesian pdf F]y,] to the expected value of the process
variance E{g*] will always belarger than I, butit wiil approach
1 as the parameter uncertainty is eliminated. Figure 12 shows a
plot of this ratio versus n, for combinations of the historical
record and the three prior pdfs. As is expected, the use of an
informative prior pdf reduces the parameter uncertainty.

Reducing the posterior variance of p and o and the variance
of the Bayesian pdf is also related to the parameter estimation
problem. A reduction in these variances directly reduces the
expected losses of Bayes estimates. These losses may be shown
to be directly proporiional to the variance of the unknown
variable.

CONCLUSIONS

This paper has described the Bayesian analysis of hydrologic
models in generzl and the independent normal process as an
example. The distribution theory and assumptions for this
model have been discussed:. In addition, an application to a
typical New England river has been presented.

The following general conclusions can be made.

1. Use of regional information through prior pdt's
significantly reduces the parameter uncertainty when the
historical rzcords are short {7 < 25 yr).

2. Use of the Bayesian pdf for design purposes accounts
for the parameter and natural uncertainties. For this particular
model the result is a change from a normal pdf to a Student ¢
and an increase in the predicted variance.

3. Use of regional information reduces the uncertainty in/
the Bayesian pdf by reducing the parameter uncertainty.

In summary, the Bayesian approach is more explicit in con-
sidering the parameter uncertaioty in inferences and decisions.
At the same time; the use of regional information through in-
formative prior pdf’s reduces this parameter uncertainty, es-
pecially for short historical records.

Research currently in progress is aimed at the analysis of
more complex models of hydrologic time series, such as mul-
tisite or multilag models, within a Bayesian framework and at
the problem of model selection.

NOTATION
E[ ] expected value operator.
A ) probability distribution function.
F{ ) curnulative distribution function.
fiy]®) conditional pdf of y; given the parameter set 8,
model pdf.
) Bayesian, unconditional, or predictive pdf of y,.
f(B1z) prior pdf of the parameter set 8 given information
13 #
AY18) joint conditional pdf of observing Y for sp—*cut ed
values of O.




posterior pdf of the parameter set 8.

L process precision, LQJJ) B‘c:‘:,

Iy regional information aboutl parameie
process. ‘

rs of the

k(O) kernel of the | i funcuon of €
L(Bg‘i’) Iikelihood o given the observations Y,
0
n ples.
n" number of posteno\: sampies.

n, sample size of sets of historical traces.
g specified streamflow value.
5’ prior variance parameter.
§* sample variance parameter.
s"*  posterior variance parameter.
utility function.
total utility.
variance operator.
y; ith observation of streamflow process,
Y set of observations of y, equal to [y y», - -+
¥ prior mean.
_sample mean.’
posterior mean.
y future streamfiow.
8 parameter vector, equal 10 [6,, 0,, --- . 6, - -]
mean of independent normal process.
v'  prior degrees of freedom.
sample degrees of freedom.
»”  posterior degrees of freedom.
7w pi, equal to 3.1416.
o standard deviation of independent normal process
o variance of independent normal process.
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