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Cokriging Radar-Rainfall and Rain Gage Data

WitoLD F. KRAJEWSKI
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An ordinary cokriging procedure has been developed to optimally merge rainfail data from radars and
standard rain gages. The radar-rainfall data are given in digitized form. The covariance matrices required
to perform cokriging are computed from single realization data, using the ergodicity assumption. Since
the ground truth and the error structure of the radar data are unknown, parameterization of the
covariance between radar data and the true rainfall is required. The sensitivity of the procedure to that
parameterization is analyzed within a controlled simulation experiment. The experiment is based on a
hypothesized error structure for the rainfall measurements. The effect of measurement noise and network
density is examined. The usefulness of the procedure to remove the bias in radar is tested. Daily data are

used.

INTRODUCTION

Recent progress in quantitative hydrology brings out in
strong relief the need for accurate real-time analysis of precipi-
tation, probably the single most important hydro-
meteorological input to streamflow prediction models. Be-
cause of its large variability in space and time, precipitation is
difficult to measure accurately with a network of rain gages.
For real-time hydrologic applications of rain gage data,
automated gages should be used. Large numbers of automated
rain gages are both expensive and difficult to maintain and
operate, even with today’s sophisticated communication net-
works. An alternative device which is potentially useful for
precipitation measurement is meteorological radar [Kessler
and Wilk, 1968; Hudlow, 1973; Austin and Austin, 1974;
Anderl et al., 1976].

Land-based weather radar provides capability to measure
precipitation continuously in time and space, typically within
a radius of up to 200 km. Radar measurement of precipitation
is indirect, and raw reflectivity data have to be converted into
rainfall units, using a “Z-R relationship” [Battan, 1973]. In
order to estimate the coefficients of a Z-R relationship, rain
gage data are used. Many radar systems are equipped with
digital processors which allow them not only to convert the
raw data into rainfall, but also to integrate them into a desired
time and space scale.

Unfortunately, radar data, as well as data from other
remote sensors, are characteristically in error because of
equipment and meteorological variabilities. Austin [1964],
Harrold et al. [1973], and Wilson and Brandes [1979], among
others, discuss the various causes of these errors. The errors
exhibit both systematic and random behavior and quite often
can exceed 100% on a relative scale. It is impossible to elimi-
nate these errors directly by using rain gage data to calibrate
the radar, because of the generally low density of rain gage
networks and the different sampling characteristics of the two
sensors. Rain gages measure point precipitation on the ground
level, while radar-based precipitation represents a volumetric
(or areal) average above the ground at a level depending on
the distance from the radar site.

In this paper an optimal estimation approach to the prob-
lem of measuring precipitation using both radar and rain gage
rainfall data will be described. This represents a philosophy
similar to that of Eddy [1979] and Crawford [1979], who
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studied the problem of radar and rain gage data merging in a
multivariate analysis framework. Here a well-known geostatis-
tical interpolation technique called kriging is examined. The
use of kriging for merging radar and rain gage data was also
studied by Lebel [1986] and Creutin and Delrieu [1986]. In
the study reported here, a numerical simulation experiment
has been designed and carried out for the purpose of testing
this technique.

The study was part of the design and implementation of a
precipitation-processing system being developed for hydro-
logic use. The system is designed to be used with the
NEXRAD (Next Generation Weather Radar) radar systems
and will also include satellite data. The usage of satellite data
is not addressed in this paper. Ultimately, the system will
work in real time, providing hourly rainfall data for input into
hydrologic models. Operational constraints dictated the
choice of an ordinary cokriging algorithm instead of more
sophisticated methods of universal cokriging [Myers, 1982] or
disjunctive cokriging [ Yates, 1986]. While these latter meth-
ods are perhaps more accurate and are theoretically justified
for rainfall estimation, their computational requirements cur-
rently prohibit real-time applications. For more details on the
future precipitation-processing systems of the National Wea-
ther Service, refer to papers by Hudlow et al. [1983, 1984] and
Ahnert et al. [1983]. In the following sections a multisensor
rainfall estimation problem will be formulated and a method-
ology to solve this problem described. Also, a test experiment
design will be discussed, along with the results.

FORMULATION OF THE PROBLEM

Let us assume that our precipitation measurements network
covering space Q consists of two sensors: a weather radar and
a set of N rain gages. Let us further assume that the radar is
equipped with a digital processor, which produces accumu-
lated rainfall estimates on a rectangular grid over time period
AT and space Q. Similarly, rain gage data represent point
measurements for the same time period AT. Both data sets are
schematically depicted in Figure 1.

The motivation to use both data sets to estimate rainfall
stems from the error characteristics of the two sensors. Rain
gage data is typically considered to provide good point accu-
racy, but it offers little information on the spatial distribution
of rain storms, especially in convective type situations. Radar,
on the other hand, is capable of accurately delineating rainfall
boundaries but, because of various meteorological, equipment,
and methodological factors, its estimates of rainfall are burd-
ened with errors that are very often quite significant. Thus it is
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Fig. 1. Schematic representation of the radar (squares) and rain

gage (dots) data in the domain Q.

hoped that combining the data from these two sensors will
result in rainfall estimates which will have both high spatial
and point accuracy.

The previously mentioned facts were recognized a long time
ago and contributed to slow progress in hydrologic appli-
cations of radar. Other methods of combining radar and rain
gage data, such as those presented by Brandes [1975], Smith
and Cain [1983], and Hildebrand et al. [1979] fail to account
explicitly for the different sampling characteristics of the two
sensors and the existence of various processes, such as evapo-
ration and advection, taking place between the radar sampling
volume and the ground. Papers by Eddy [1979] and Crawford
[1979] essentially describe the same method, based on spatial
correlation, which also does not account for the sampling dif-
ferences. However, other differences between the two data sets
due to the environmental processes of evaporation and advec-
tion are described statistically by modeling the spatial cross-
correlation function. The technique described here is con-
ceptually very similar, although its realization is quite differ-
ent.

Mathematically, if we consider rainfall accumulated over
the period AT as a two-dimensional random process Z(u),
u e R?, our data are represented by (1) the radar data:

ij = I’;l‘;’i » Z(uij) du + ERy; (1)
i=1,2,-,N, j=12-",N, AgeQ
and (2) the rain gage data:
G, = Z(uy) + &g, k=12, N (2)

where Ay is the integration area of a single radar measure-
ment, i, j are coordinates of the corresponding location, &g, is
the error associated with ijth radar observation, and ¢, is the
error associated with kth gage observation. Notation R (u)
will also be used for the radar data.

In (1) it is assumed that three-dimensional sampling volume
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of radar measurements is projected on two-dimensional space
R?. The two-dimensional sampling space of radar data, ie.,
the grid boxes of Figure 1 will be called “radar bins.”

The problem of rainfall estimation, using the two sensors,
can then be formulated as follows: Find the best estimate
V*(u,) of V(u,), defined as

1
Viwg) = —

al Z(ug) du

[A] = |Agl Q)
Thus V*(u,) is an estimate of the mean areal precipitation on
the ground level over the same area as sampled by radar.

MODEL DESCRIPTION

As a solution to the problem formulated above, a linear
model is proposed:

Ne

V¥ug) = Y, 46,Giu) + Z ArR{m) 4)

i=1 i=1

where N, < N is the number of gages in the local vicinity of
location u,, Ny is the number of radar bins surrounding the
location u,, and A and Ay, are corresponding coefficients
(weights) that need to be estimated.

It is assumed in the model that the rainfall field Z(u) is
second-order stationary and ergodic over the space Q. It is
also assumed that rain gage observation errors are random
with zero mean, and variance 0552 and uncorrelated in space.
The radar observation errors are random with mean m,, and
spatial covariance cov, (u). Both assumptions have bases in
various experiments with real world data; however, the spatial
error structure of radar is, to the best of the author’s knowl-
edge, unknown at this point.

The weights A; and g, can be obtained minimizing the
estimation variance:

6,2 = E{[V — V*¥]?} = # Jf Cov,(u — v) du dv
A

Ng l
-2 ¥ Ag,— jCovGV(u —u) du
1Al J4

i=1

Nr
-2 3 Ag, Covgy(ug — u))
j=1
No Nk
+ X X e Ax, Covegly;, — u)
i=1j=1
N¢ Ng

+Y X 4ot Covgelu; — uy)

i=1 j=1
Nr Ng

+2 3 3 Ag, Ay, Covggln; —u) (5

i=1 j=1

where E{ } is the expectation operator, u, is the middle
point in block of area A at the location of interest, and u and v
are other points within the same block A. The covariance of
the true area average process is denoted as Covy( );
Covgy( ) is an unknown covariance between the integrated
process Z and the rain gage observations; Covg,( ) is an
unknown covariance between the integrated process Z and the
radar observations; Covgg( ) is the covariance of the rain
gage data; Covgg( ) is the cross covariance between gage and
radar data; and Covgg( )is the covariance of the radar data.
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For the estimate V* to be unbiased, it has to satisfy
E{V*} = E{V} (6)

Under our assumptions about the stationarity and error struc-
ture, the following conditions apply:

Ne
2 e =1 )
i=1
Ngr
Y g, =0 ®)

Jj=1

It should be noted, however, that if m, = 0, ie. the radar-
rainfall field is unbiased, then (7) and (8) reduce to

Ne Nr

2 Aot Z Ary =1 ©)

i=1 i=1
The problem of ¢,% minimization under unbiased conditions
can be solved using the Lagrange multiplier technique. Mini-
mization of the Lagrangian function leads to a set of simulta-
neous linear equations that can be written in matrix form as:

Covgp Covp 1 0 g Covyg
Covgr Covgs 0 1 Ao | _ | Covyg
1 0 00| |ulTl o (10)
0 1 00| |ue |
where
Covggllgy, Ugy) Covgr(Upy, Ury)
Covgr = : :
CoVgpl(Ugy,s Ugy) Coverltigy, Urn,)
Covgglug,, ug,) Covra(Upn e Ug1)
Covgs = : :
CovgglUpng Ugi) CoVrglUgne Ugng)
Covgglug,, ugy) Covgolugng Us1)
Covgg = : :
Covgglugy, Ugy) Covgelugng Yene
Covgp = [Covggl”
Covyp = (CovygUg, Ugy), * -, Covyglug, tpy D7

1
Cov, = <|—/-4—' J Covgglu, ug,y) du, -+,
A

1 T
. EJ Covgg(m, ugy,) du>
A

T

T '1~RNR>
5 T

s "’GN5>

and pg; and py, are scalar Lagrangian multipliers. The super-
script T denotes matrix or vector transpose operator.

The system (equation (10)) yields a unique solution if the
covariance matrix is positive definite. Because of the irregular
pattern of the network of rain gages the system needs to be
solved for each location, and it is necessary to approximate
the matrices Covg; and Covy; with a function model. Al-
though the relative configuration of radar data does not
change from location to location and the number of data
values used in the Covy, computation is typically large, the
matrix Covyy, also needs to be approximated to ensure posi-
tive definiteness.

To avoid solving the system (Equation (10)) at each location

Ap = (g, -

Ao =g,
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in Q, a modified algorithm is proposed. First, the rain gage
data are interpolated onto the same grid blocks as those for
which the radar data are given. This is done using block krig-
ing estimation [see Journel and Huijbregts, 1978]. Then the
above described algorithm is used to cokrige the two fields:
the radar data field and the field obtained by block kriging the
rain gage data. Now the relative geometry in either field and
between the two fields is constant throughout Q (except on the
edges), the system (10) needs to be solved only once, and the
same weights can be applied at each location in the field. The
matrices Covgg, Covgg, and Covy, are approximated by ex-
ponential models.

The computational algorithm can be summarized as fol-
lows:

1. Estimate the rain gage data covariance function, using
the exponential isotropic model. This is done by a least
squares fit.

2. Block krige the rain gage data to estimate

1
V¥, j) = [_;{—_] J'Z(uij) du u; e
R

3. Estimate Covgg, Covgy, and Covgg from the radar and
the new kriged rain gage fields. Now the elements of Covgg
represent estimates of the cross covariance between two areal
average observation fields. The estimation of Cov,, and
Cov,; will be explained later.

4. Model Covg, Covyyg, and Cov,g, using exponential iso-
tropic models. This is done by least squares fit, also.

5. Compute Az and Ag.

6. Cokrige the two fields.

The choice of exponential model was made for two main
reasons: first, the behavior of the model near the origin, which
seems appropriate for rainfall estimation [Rodriguez-Iturbe
and Mejia, 1974b], and second, its computational efficiency.
Computational efficiency was also the main reason for using
least squares as the method of covariance estimation. The
proposed algorithm is much faster than using direct rain gage
observations and varying network configuration from location
to location, and at the same time it results in minimal degra-
dation of accuracy.

A few additional remarks are in order. First is the problem
of a changing pattern along the edges of the domain Q. In the
work presented here, no special accommodation has been
made for this problem. The same weights are applied along
the edges as in the middle of Q, but the bins located outside of
Q are treated as missing values. Such a procedure results in
local bias, but it did not affect the results, since they were
based only on the points located inside Q, separated by a few
bins from the edges. The second important problem is that of
the small sample size of the rain gage data. In a real-world
application of the method presented here, where there is not
enough data to compute reliable covariance, computed covari-
ances can be substituted with climatological covariances com-
puted from historical data. However, for reasons explained in
the next section, this problem is not of concern in this paper.

To solve the system (10), one needs to estimate the vectors
Cov,; and Cov, ;. Elements of these vectors are covariances
between radar and rain gage data, respectively, and the true
precipitation V. Since V is unknown, Cov, , and Cov, have
to be approximated. The approximation used has the form:
(n

Covy i = fig Covgg Br€(0, 1)
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Fig. 2. Schematic representation of the configuration of the data
included in the cokriging system from each field.
and

Covy g = fs Covgg Bz, 1)

where the elements of Covg; have the meaning described in
point 3 of the algorithm. The values of 8, and f; are un-
known scalars and, in general, are extremely difficult (if not
impossible) to estimate from the data. However, since they
represent a measure of the accuracy of radar and gage
measurement in relation to V, they can be estimated based on
experience or specially designed experiments. The sensitivity
analysis of the previously presented method with respect to
these two parameters will follow, and some recommended
values will be given.

It should be pointed out that Cov,, and Cov,; can be
expressed in terms of data error characteristics. However, be-
cause of the generally unknown statistical error structure of
radar data, it was decided to investigate the previously de-
scribed approach first.

Before the weights A, and A, are computed, one needs to
decide how many data points should be used for estimation at
each location. The configuration of the data used in the pres-
ent study was constant and is schematically presented in
Figure 2. The relatively small number of data points (five from
each field) was dictated again by the computational efficiency.

The presented algorithm accounts for the sampling differ-
ences of the two sensors. It also uses the spatial cross-
correlation function to account for differences between the
error fields involved.

Once the coefficients A, and i; are determined, one can
calculate the estimation variance as

(12)

Nr
.2 ,
6,7 = Covgglig, Ug) — pg — 2, Ag, COVyplHty, u)
i=1
Ne

— ¥ 4g, Cov,glug, uy)
i=1

(13)

In this expression Cov, was substituted for Cov,.

TEST OF THE METHOD

Probably the most natural way to test any method of esti-
mating mean areal precipitation would be to compare the
results with data from a very dense network which would
constitute a “ground truth.” In the present case, however, such
an approach scems to be infeasible. First, there are not many
(if any) rain gage networks with high enough density and large
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enough coverage. Second, it may be impossible to find corre-
sponding radar data, since the systematic archiving of the
high-resolution RADAP II data by the National Weather Ser-
vice (NWS) started in 1985. Also, a significant data manage-
ment effort is required to handle enough data to give the
experiment statistically meaningful results.

In order to avoid these problems, a numerical experiment
has been designed following the ideas of Greene et al. [1980].
In the experiment the sampling and measurement properties
of radar and rain gages are mathematically simulated by gen-
erating radar and rain gage data from an original rainfall field
which constitutes the “ground truth.” Such an experiment has
many advantages: (1) full control of the experiment with mini-
mum effort; (2) knowledge of the true field; (3) control of the
measurement errors; (4) control of the measurement network
configuration (sampling scheme, network density); (5) feasibil~
ity of performing sensitivity analysis with respect to measure-
ment errors and network density; (6) statistically valid con-
clusions.

The experimental system which is schematically depicted in
Figure 3 consists of four elements. These are described in the
following sections.

Original Field

The original field could be generated by a space-time rain-
fall model, such as developed by Waymire et al. [1984], or it
could be a high-quality radar field. The latter was selected,
and the original fields are the radar-rainfall fields from the
GARP Atlantic Tropical Experiment (GATE) conducted in
1974. The GATE data represent convective systems and there-

ORIGINAL
RAINFALL
FIELD
\ Y
RADAR RAIN GAGE
ERROR ERROR
MODEL MODEL
Y
COMPARISON
\ | !
RADAR RAIN GAGE
RAINFALL RAINFALL
FIELD DATA
MERGED
FIELD

!

COKRIGING
ALGORITHM

Fig. 3. Schematic of the numerical simulation experiment used to

test the cokriging algorithm.



KRAJEWSKI: RADAR RAINFALL AND RAIN GAGE DaTta

9575

0.0 0.1 0.2 0.3 0.4

T r T T T

3.5 0.6 0.7 0.8 0.8 1.0
Br

Fig. 4. Contours of the correlation coefficient. Parameters are Lg* = 0.03, p, = 8 km, no bias, and 50 gages.

fore provide a stringent test for the present estimation pro-
cedure. The data are described by Hudlow and Patterson
[1979]. The GATE data underwent substantial analysis prior
to their release. They are considered to be of high quality in
that anomalous propagation and other outliers are removed,
and all the major features of real storm events are preserved.
The GATE radar data defines the Q region as being a circle
inscribed in a 400 x 400 km square. Data points are given on
a rectangular 4 x 4 km grid.

Radar Generator

The radar generator used in this study is described by Kra-
Jewski and Georgakakos [1985]. The radar field is generated as

R(i, j) = (i, j)10="-5ED (14)

where R(i, j) is the radar field at the location (i, j); 0(, j) is the
original field at the same location; (i, j) is the random compo-
nent of the noise field and is a stationary, isotropic random
field, with the mean u,, variance aez, and spatial correlation
function p(1); and S(i, j) is the deterministic component of the
noise field.

The deterministic component S(i, j) accounts for the
measurement behavior of the radar as a sensor. It usually
exhibits higher errors in high rainfall intensity and high gradi-
ent areas. The form of the function S(i, j) was borrowed from
Greene et al. [1980]:

5@, j) = 0.5{<IVOG, H>LIVOG, M~" + 6, )0, )™

where {|V6(i, j)|> is the average absolute value of the gradient
computed in four directions around the point (i, j) in the orig-
inal field; [VO(, j)l,, is the maximum absolute gradient in the
original field; and 0,(i, j) is the maximum value in the original

(13)

field. The parameters of the random component ¢ are, in gen-
eral, unknown but can be estimated for the purpose of the
generation by setting requirements on the resultant radar field
R. In the present study these requirements were (1) The mean
of the radar field is required to be M *. Thus

N

= E{R} dQ
=i | ER

(16)
(2) The logarithmic variance of the ratio R/6 is required to be
Lg*:

[ —

1
Le*= E{log, XR/0)} dQ—— j E*{log,,(R/0)} dQ (17)
19 Jo 1Qf Jo

Solving the system of (16) and (17), one can obtain p, and 0,2
The correlation function p(t) of the ¢ is assumed to be iso-
tropic and exponential. Its parameter was specified directly in
the present experiment and was a subject of the sensitivity
analysis. Once the parameters of ¢ are specified, ¢ is generated
using, for example, the Turning Bands method [Montoglou
and Wilson, 1982]. After ¢ is generated and the values of the
function S are computed for each location in €, the radar field
can be generated using (14).

Rain Gage Data Generator

Rain gage data are generated in two steps. First, the lo-
cations of the gages are selected based on a uniform random
distribution in €. Second, a rainfall value is assigned to each
location, based on the original field values. The original field
of choice (GATE radar data) represents areal averages, but we
want to generate the corresponding point process values. To
do that, the relationship between the variances of the point
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Fig. S.

process and the areal average process given by Rodriguez-
Iturbe and Mejia [1974a] was used:

a -1
6,> =0, 2[j rv)G(v) dv]
o

2

(18)

where apz and o,? are the point and areal average process
variances, respectively; v is a distance between two points in
the region A; r( ) is the correlation function of the point
process; G( ) is the probability density function for random
distribution between two points in the averaging area (a
square in the present case); and d is the largest distance in that
area. The distribution G( ) for a rectangular area is given by
Gosh [19517].

It was assumed that the rainfall data are lognormally dis-
tributed; consequently, the gage values G,(i, j) are generated as

Gyli, j) = LN{0G, j), 0,%} + LN{0, 0.0001m?0%(i, j)} (19)
k=1, N

where m is measurement error expressed as a percentage of the
mean, and LN{a, b} denotes lognormal distribution, with the
mean a and variance b.

The correlation function r( ) was assumed to be ex-
ponential and was estimated for the local vicinity of G,(i, j).
The correlation parameter h was obtained from the equation

ryty) = Jf r(u, h) du
A

where r,(z,) is the lag one correlation of the areal average
process, as computed from the data.

(20)

Contours of estimation variance. Parameters are L * = 0.03, p, = 8 km, no bias, and 50 gages.

Performance Criteria

The evaluation of the cokriging algorithm to merge radar
and rain gage rainfall data is based on the comparison of the
cokriged field and the original field. The comparison can be
done by visual inspection of the resultant maps or by a set of
statistics. The latter approach is more appropriate if the objec-
tive of the experiment is sensitivity analysis. The statistics se-
lected for comparison include the mean and variance of the
fields, the correlation coefficient with the original field, the
estimation variance (both computed and estimated), the mean
square error for averaging areas ranging from 16 km? to 1000
km?, and the maximum mean square error in the field for the
same areas. Inspection and proper interpretation of all of
these statistics allows us to evaluate the proposed method-
ology in a fair way. For the sake of clarity, the expressions
used to compute the mean square error and estimation vari-
ance are given:

Mean square error

1 N4
- (Oi - Mi)2 (21)
N4 igl
Estimation variance
I Z(O M)? ! Z(O M)2 (22)
NA i i NA i i

where N, is the number of points used in comparison and 6,
and M, are the original and merged field values, respectively.
It should be realized that the general validity of such a
numerical experiment is limited by the validity of the error
models of radar and rain gage data. There have been several
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Fig. 6. Contours of the mean square error. Parameters are Lp* = 0.03, p_ = 8 km, no bias, and 50 gages.

studies done on the error characteristics of rain gage data (see,
for instance, Larson and Peck [1974] and Sevruk [1982]). In
the light of these studies the proposed model seems to be
adequate. The situation is quite different as far as radar data
are concerned. There were many studies done in the past on
the comparison of radar and rain gage data, but the question
of what the statistical structure of radar rainfall errors is in
space remains unanswered. Such a question, however, is criti-
cal in the design of an experiment like the one described here.
The radar error model presented has certain qualitative fea-
tures identified by previous studies:

1. The model delineates rainfall patterns correctly, ie.,
anomalous propagation (AP) is not modeled in clear air. It
was assumed that in the operational environment the radar
data would undergo quality control steps that would, perhaps
with the aid of satellite data, eliminate AP.

2. Errors are higher in high-rainfall gradient areas.

3. Errors are higher in high-rainfall intensity areas.

4. Errors are correlated in space.

Among the effects that are not modeled are (1) Range effect
due to attenuation of electromagnetic wave (it was assumed
that for the radars with parameters corresponding to those
planned for the NEXRAD, this effect is negligible [ Hudlow et
al., 19847); (2) Beam-filling effect (however, the effect of this
problem also will be significantly reduced using NEXRAD
equipment and processing); and (3) Complete evaporation of
rain before hitting the ground (thus application of such an
error model in some situations may be inappropriate). Sum-
marizing, one could say that if the error models are valid, then
the results of this study are valid also.

RESULTS OF THE SENSITIVITY ANALYSIS

The sensitivity analysis of the merging method described
previously was performed using daily data from the GATE
experiment. It is very expensive in terms of computer central
processing unit (CPU) time to perform a truly comprehensive
experiment. It was estimated that such an experiment would
take over 5 years of CPU time on the PRIME 750 computer.
Therefore a limited experiment was performed instead. The
optimal combination of the parameters f; and f; was sought
as a function of various noise parameters and rain gage den-
sities. The noise parameters selected here for investigation
were the bias of the radar field, the variance Lg* (see equation
(17)), and the correlation distance h, in the ¢ field. The effect of
measurement error in the gage observations was not studied.
An error of 10% was specified for all the runs.

Since the framework of the methodology described here is
the estimation of random fields, the proper way of conducting
this experiment would be to repeat the analysis for a number
of realizations (at least 30) for each field, keeping the same
noise parameters, and then to average the results across the
ensemble of realizations. Such a procedure, however, is very
costly and prohibits even a limited experiment. To evaluate
the variability of the results across realizations, a few (five)
realizations were used for a selected set of radar noise parame-
ters and a network of 50 gages. The data for GATE day 245
(September 2, 1974) were used. The radar noise parameters
were (1) no bias in the radar field, (2) high noise (Lz* = 0.03,
which is in the range given by Greene et al. [1980] and was
also found to generate outliers [Krajewski and Georgakakos,
19857), and (3) correlation distances in the ¢ field of 8 and 20
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Mean square errors as a function of rain gage network density. Parameters are Lg* = 0.03, p, = 20 km, no bias,

Br = 045, and f; = 0.35.

km. It was found that the variability of the location of the
optimal set of B, and B, was negligible compared to the ef-
fects of other noise parameters, and therefore only one realiza-
tion was used for all other runs.

Two basic situations were investigated: the unbiased radar
field case and the biased radar field case. It is important to
distinguish between these two cases, since in the operational
environment of NWS, where the previously described method
is to be implemented [Ahnert et al., 1983; Hudlow et al., 1983],
there will be a bias removal procedure, based on the Kalman
filter concept [Ahnert et al., 1986]. The procedure will attempt
to remove overall bias often present in the radar data, based
on limited number of rain gage observations. If such a pro-
cedure does not precede the merging step, or does not work
properly because of a lack of adequate information, the bias
has to be removed by the cokriging algorithm.

First, let us consider the no-bias case. Two levels of Lg*
were considered: Lg* = 0.03, a rather high noise, and Lg* =
0.01, a medium-to-low noise. The correlation distance p, of the
¢ field was 8, 20, and 40 km. The number of rain gages ranged
from 50 to 200. The 50-gage case corresponds to approxi-
mately 1 gage per 2500 km? and the 200-gage case to 1 gage
per 600 km?, In order to study the selected statistics in the B,
B parameter space, 100 runs were made for each noise pa-
rameter combination. The statistics are correlation coefficient
with the original field, the variance of residuals, and the mean
square error for various averaging areas. Figures (4-6) are
examples of the plots of the correlation coefficient, the vari-
ance of residuals, and the mean square error surfaces, respec-

tively. The shaded area corresponds to a region where radar
alone did better than the merging procedure. For case present-
ed here, rain gage analysis based on kriging 50 gages was
worse than the analysis based on radar data. The cross-
hatched areas correspond to those combinations of f and f
which result in a worse performance than the gage data analy-
sis. The shape of the surfaces is very regular with a flat opti-
mum vicinity, which means that very precise location of the
optimum combination of f; and f is not needed. Also, note
that the optima for all three criteria have approximately the
same location. This is probably due to the quadratic character
of all the selected statistics. The method seems to be more
sensitive to proper specification of f; than f;. The location of
optimum moves to higher values of fi; with noise Lg* de-
creased and moves to higher values of f; with increased den-
sity of the rain gage network. This is obviously an expected
behavior. Figure 7 shows the mean square error plot as a
function of the number of rain gages for L* = 0.03 and p, =
20 km.

In the case of the biased radar field one would like to dis-
tinguish between overestimation and underestimation of the
rainfall field by radar. An underestimated radar-rainfall field
was generated by requiring the mean of the radar field to be
half of the original field mean. It was found that in such a
case, for all the combinations of other parameters specified,
the model was practically insensitive to the choice of f; and
B (in terms of selected criteria). The bias was effectively re-
moved for any number of rain gages in the range 50-200, but
the improvement offered by the merging procedure over rain
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Mean square errors as a function of rain gage network density. Parameters are Lg* = 0.03, p, = 20 km,

bias = 1.5, f; = 0.15, and fi; = 0.35.

gage data only was marginal (< 5%). Whether this is a consis-
tent result remains to be seen until more data fields are inves-
tigated.

The second situation, with bias present, was the case of the
overestimated field, i.e., the radar field mean was generated as
150% of the mean of the original field. Again, the bias was
effectively removed even by 50 gages (error in the mean was
less than 5%). This time, however, there was a well-defined
optimum in the fi, fi; parameter space corresponding to ap-
proximately fip = 0.2 and fi; = 0.3. The model is more sensi-
tive to the f, parameter than to fi;. It is interesting that
although even 50 gages merged with radar improved the mean
square error (see Figure 8) and the estimation variance, 100
gages were required to produce a merged field with a corre-
lation coefficient statistic equal to that of the radar field, and
150 gages were required to produce a merged field with a
slightly improved correlation coefficient. The effect of the cor-
relation distance of the radar error field was found to be mini-
mal in the investigated range of 8-20 km. Less-correlated
noise leads to some (< 3%) degradation of performance statis-
tics and slight increase of f, values.

Two general results were evident. First, the maximum
square error in the radar field (which was in all cases the more
noisy field), was always reduced to a level limited by the accu-
racy of the rain gage data. Second, estimates for larger areas
showed reduced average error characteristics. This reduction
of errors was again limited by the accuracy of the rain gage
field.

It should also be pointed out that although the noise (Lg*)
was set to the same value of 0.03 for both bias and no-bias
cases, the “amount” of random noise was really higher in the
no-bias case (in which all the noise expressed in terms of error
characteristics can be attributed to Lg*), while in the bias
cases (especially in the case of overestimation) the bias is re-
sponsible for high mean square values, but the correlation of
the radar and original fields is still good. Thus the improve-
ment of the mean square error is the most that should be
expected from the merging procedure.

CONCLUSIONS

A method for merging radar-rainfall and rain gage data was
presented. The method was tested via a numerical experiment,
with error fields of both sensors being modeled. The results
presented represent a preliminary testing phase and are limit-
ed to daily rainfall data. Ongoing testing of the described
technique, prior to its operational implementation by the Na-
tional Weather Service, proceeds along two paths. One is
based on the methodology described here and will be followed
by similar analyses for more daily fields and also for 6-hourly
and 1-hourly data fields. The second (semioperational test) is
based on real-time data from the Oklahoma City radar and
Tulsa River Forecast Center rain gage data. The comparison
is based on hydrographs resulting from mean areal precipi-
tation estimated from rain gages only (as is currently being
done in the operational environment) and via the merging
procedure for selected basins. For more details on this ap-
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proach and some preliminary results, see Krajewski and
Ahnert [1986]. As the results presented in this paper suggest,
the best configuration of a precipitation-processing system,
using data from radar and a network of rain gages, includes a
separate bias removal procedure, so that an unbiased radar-
rainfall field enters the merging step. Then, if the bias is ef-
fectively removed and the noise in the radar field is low, the
merging will not substantially alter the rainfall field. If, how-
ever, the noise is high, then a substantial improvement can be
expected.

As far as the specification of the values of the parameters fi,
and f; is concerned, the preliminary results show that the
robust region is somewhere in the range of 0.2-0.4 for both
parameters. The robustness of these results needs to be further
investigated. Also, for data collected at other than daily inter-
vals (hourly, 6-hourly, etc.), these results may not be valid. It is
expected that the performance of the presented method, rela-
tive to rain gage data analysis, should be better for hourly
data.

The described approach, since geared toward an oper-
ational environment with its computational time constrains,
presents some compromises between mathematical and physi-
cal appropriateness and practical efficiency. These are mani-
fested by using ordinary kriging versus the way of the pre-
viously mentioned methods of universal and disjunctive krig-
ing, parameter estimation, and also, now from the physical
point of view, a lack of accounting for temporal correlation of
the rainfall process. The practical consequences of these com-
promises are being investigated and will be reported.
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