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Regional Flood Frequency Analysis Using Extreme Order Statistics
of the Annual Peak Record

JAMES A. SMITH

Hvdrologic Research Laboratory. National Weather Service. Silver Spring. Marviand

A regional flood frequency model is developed for estimating recurrence intervals of extreme floods.
The regionalization procedure developed in this paper differs notably from the U.S. Geological Survey
index flood method (Dalrymple. 1960) in that a large quantile. rather than the mean annual flood. is
used as the "index flood.” Based on a result from extreme value theory. exceedances of the specified
quantile are modeled by a generalized Pareto distribution. The generalized Pareto distribution has two
parameters: a scale parameter and a shape parameter. It is assumed that the shape parameter does not
vary from basin to basin. implying that annual peak distributions for all basins have the same upper-tail
thickness. The scale parameter. on the other hand. not only varies from basin to basin, but may also
depend on covariate information. such as drainage area or indicator functions for basin geology.
Likelihood-based inference procedures are developed for the regional flood frequency model. The
model is applied to extreme floods of the Central Appalachian region of the United States.

1. INTRODUCTION

Potrer [1987] notes that ‘‘decision-makers are presenting a
new challenge which may help to bridge the gap between the
statistics and science of floods. That challenge is the estima-
tion of probabilities of extreme floods."" In this paper devel-
opment of a regional flood frequency model for estimating
recurrence intervals of extreme floods is described. Model
development is based on the premise that large floods reflect
very different hydrologic and meteorological processes than
smaller floods. This approach is supported by the National
Research Council [1988] report in which “‘focusing on ex-
treme floods «-+ even to the exclusion of central character-
istics’” is given as one of three principles for improving fiood
frequency estimates.

Regional flood frequency models have received consider-
able attention in recent years (see, for example, Greis and
Wood [1981}, Wallis [1982), Kuczera [1982], Stedinger
(1983], and Lettenmaier et al. [1987}). The starting point of
most regional flood frequency procedures is the U.S. Geo-
logical Survey index flood method [Dalrymple, 1960]. In
Dalrymple’s procedure, the index flood is the mean annual
flood. Annual peak values are divided by the sample mean
annual flood for the site and pooled in order to estimate a
dimensionless regional flood frequency curve.

The model developed in this paper differs notably from
previous models in that the index flood is specified by a large
quantile, rather than the mean annual flood. Based on results
from extreme value theory [Pickands. 1975]. it is assumed
that exceedances of the specified quantile have a generalized
Pareto distribution. The generalized Pareto distribution has
two parameters: a scale parameter s and a shape parameter
k. It is assumed that the shape parameter does not vary from
basin to basin, implying that annual peak distributions for all
basins have the same upper tail “thickness.”” The scale
parameter not only varies from basin to basin but may also
depend on covariate information such as drainage area or
indicator functions for basin geology. As with previous
regional procedures. an at-site estimator of the index flood is

Copyright 1989 by the American Geophysical Union.

Paper number 88WR03907.
0043-1397/89/88 WR-03907305.00

used. Our at-site estimator is a simple quantile estimator,
instead of the sample mean annual flood. Exceedances of the
estimated quantile, for all sites, are pooled to estimate the
unknown scale and shape parameters.

Contents of the sections are as follows. The regional flood
frequency model is developed in section 2. Likelihood-based
inference procedures are developed in section 3. In section 4
the model is applied to extreme floods of the Central
Appalachian region. A summary and conclusions are given
in section 5.

2. MoDEL DEVELOPMENT

We assume that the flood record consists of annual peak
observations {¥,;:j = 1, ==+, nii =1, -, m} for m gaging
stations each with n years of overlapping data. The random
variable ¥, denotes the instantaneous annual peak discharge
for year j at station i. For each gaging station i we also have
a vector of covariate information, X, = (X;,, -+, X,), with
X,; denoting the jth covariate value for site i. Covariate data
may include drainage area. indicator functions for basin
geology. etc. Detailed discussions of the importance of
covariate information for flood frequency analysis can be
found in the works by Benson [1962] and Porter [1987].

It is assumed that for each station i, annual peak dis-
charges are independent and identically distributed with
distribution

Fiix) = P{Y,; <y} y>0 N
We are primarily concerned with estimating quantiles of F,,

Q.pr=F, " (p) (2)

where p is typically very close to |. The value of the 100-year
flood at site /. for example. is given by ©,(0.99).

It is also assumed that annual flood peaks are independent
from site to site. This assumption is standard in regional
flood frequency models (although several authors. including
Stedinger [1983] and Lettenmaier et al. [1987] have dis-
cussed problems created by this assumption). At the conclu-
sion of section 3 it is noted that site to site independence is
not strictly necessary for our statistical inference proce-
dures: all results carry through if a particular “"conditional
independence’” property holds.
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An important attribute of the upper tail of the unnual peak
distribution for site / is its upper bound

v = sup (v Filo < 1} 3

(9%

with interest focusing on whether ©, is finite or not. The
conditional exceedance distribution of £ is defined for « < ¢,

by

w=PY, su~v Y, >u
Flu+y)=Fun

4
| = Fu N

For a fixed threshold « the conditional exceedance distribu-
tion F,(v i «) is the conditional probability that ¥, is less than
or equal to « + v given that it is larger than «.
Closely associated with conditional exceedance distribu-
tions is the generalized Pareto distribution
Gly s, k)=

L=l —ks v (3

where the scale parameter s is positive and the shape
parameter k is real-valued. The range of the generalized
Pareto distribution is (0, 4~ 's] if & is positive: for & less than
or equal to 0. the range is the positive half line. Pickands
[1975] shows that if the underlying annual peak distribution
F.(y) has an extreme value domain of attraction [see Lead-
better et al., 1983] then the conditional exceedance distribu-
tion F (v u) can be closely approximated by a generalized
Pareto distribution as u becomes large. Importance of Pick-
and’s result follows from the fact that most continuous
““textbook’’ distributions have an extreme value domain of
attraction and thus have generalized Pareto upper tails.
Our regional flood frequency model is specified in terms of
the conditional exceedance distribution. Heuristically. the
model can be described as follows. For each site /. the flood
threshold «, has exceedance probability (I - p,). The
amount that a flood exceeds its flood threshold. given that it
does in fact exceed it. has a generalized Pareto distribution.
The shape parameter for the regional generalized Pareto
model is the same for all sites. The scale parameter is a
function of the covariate information X, for site /. More
formally. it is assumed that for sufficiently large p, in (0. 1).

Filyliuw) =Gyl §. k) (6)

where
u;=F, " py (7)
Si=exp{c+b X+ =h, Xyt (8)

The parameter «, is the index flood for site i. The model
contains g + 2 regional parameters (k. ¢. b,. «++. b ).
The generalized Pareto density is given by
gyis k=5l —hks Tyt Tl

Ak #0
9
glvisckr=s"lexp{-s'

v k=0

If k is positive. the distribution of flood peaks. for all sites. is
bounded above: the upper bound for site / is

o=+ kTS, (10

If k equals 0. the upper tail of F, is exponential with scale
parameter S,. If & is negative. the distribution is unbounded
and ‘‘thick tailed’” (see Schuster [1984] for a discussion of
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upper tail thickness). By a straightforwuard application ot
Baves' theorem. using (4)-1(6). it tollows that the quantile
function of F . for p greater than p,. i1s given by

Opr=u~Sk 1=l =pril =pyu*]  k#0

(tla)

Q.ipr=u, — S log [il = putl = py] A=0 (lim

3. STATISTICAL INFERENCE

Inference procedures are likelthood-based and rely on
exceedances of «,. the flood quantile with recurrence interval
(1 = py 7" for site i. We denote the number of years. out of
n. for which annual peaks at site i exceed «, by N,. The total
number of floods at all sites that exceed thresholds u, is
denoted V. that is. N is the sum of the m values of N,. We
denote the exceedances by {Z,;i =1, . mij= 1.+ N}
the 'normalized™” flood value Z, equals Y, - «, if year &
contains the jth annual peak at site i that exceeds u,.

It follows from (5)-(9) and the site to site independence
assumption that the log likelihood function for our model is
given by

m ‘Ve
Lyja)=Y log (g(Z;1 S k) ~ C (12)
i=1/7=1
where ¢ = (k. ¢. by, *++. b,) is the vector of unknown

parameters. The second term, C. in (12) is a function of
annual peaks that are smaller than the thresholds «,. but not
of the parameters a.

The score functions are partial derivatives of the log
likelihood function with respect to the parameters a,

aLl,(a)

da;

Uyta), = (13)

j=1g=2
Maximum likelihood estimators 4 are solutions to the system
of equations

Uy, =0 =1 g*2 (14)

[t is straightforward to show that standard properties of
maximum likelihood estimators hold (see. for example.
Bickel and and Dokyum [1977]). In particular, our estimators
are consistent. implying that if our data set is large and if the
model is correct tor the data. estimated parameters will be
close to thetr true values with high probability. The invari-
ance property of maximum likelihood estimators implies that
the maximum liketihood estimator of Q,ip). for p > pg, Is
obtained by replacing the parameters ¢ = (k. ¢. h)in (11) by
the maximum likelthood estimators «. The resulting estima-
tor. Q,(p). is a consistent estimator of Q. (p) for p > p,. The
estimators a and Q (p) are also asymptotically normal. This
result can be used to estmate standard errors of the estima-
tors d and Q,(p) [see Smith. 1987]. A useful property of
maximum likelihood estimators for hypothesis testing prob-
lems (see section 4) is that likelihood ratios have a limiting
chi-squared distribution.

In the index flood procedure of Dalrymple [1960] the
at-site estimator of the index flood is the sample mean annual
flood. The index flood for our model is the quantile u,,
instead of the mean annual flood. To implement the estima-
tion procedure described above. the at-site estimator of «, is
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i; = inf {v:Ei(v) > pol (1%

where F, is the sample distribution of annual peaks for site /.
The estimator can be represented in terms of the order
statistics of the annual peaks for site i. ¥, <=+- < ¥, . as
follows:

=Y, po € [(j— Wn =1 jin = 1] (16

The site to site independence assumption is not strictly
necessary for our statistical inference procedures. We obtain
identical maximum likelihood estimators and asymptotic
results under a weaker assumption. The assumption is that
flood peaks are conditionally independent from site to site,
given that they are larger than the appropriate thresholds
(u, .. u,). Under the conditional independence assump-
tion the only effect on the likelihood function of (12) is that
the second term C may change. Because this term is not a
function of the unknown parameters a. maximum likelihood
estimators. and asymptotic properties associated with the
estimators are unaffected.

Loosely speaking. the conditional independence assump-
tion protects us from being too surprised that big floods often
occur at a number of sites in the same year. Given that a big
flood occurs at a particular site. however. the conditional
independence assumption specifies that no further informa-
tion can be obtained about its magnitude from observations
at other sites. This assumption has theoretical support from
results in the work by Leadbetter et al. [1983] which assert
that in a variety of settings. exceedances of thresholds of
random processes are asymptotically independent as thresh-
olds become large. The assumption has empirical supportin
Buishand’s [1984] study of extreme rainfall data in the
Netherlands. From a practical standpoint the conditional
independence assumption has implications for assessing the

effective size of a regional flood peak sample. If the condi-
tional independence assumption holds. the effective loss of
data for the regional model of section 2. relative to proce-
dures that use all of the annual peak data. will be less than it
at first appears.

4. EXTREME FLOODS OF THE CENTRAL
APPALACHIANS

Application of the regional flood frequency model is
illustrated in this section. The setting for the application is
the Central Appalachian region of the United States. which
consists of the Piedmont. Valley and Ridge. and Appala-
chian Plateau provinces of Virginia. Maryland. West Vir-
ginia. and Pennsylvania. In the Central Appalachians annual
peak distributions are subject to a wide variety of hydrologic
and meteorological processes. A central assumption of this
paper is that the effective controls of the central portion of
the annual peak distribution may be quite different from the
effective controls of extreme floods. The Central Appala-
chian region. with its diversity of hydrologic processes.
provides the type of setting in which this assumption is most
likelv to be met. We begin the section with a graphical
description of extreme floods of the Central Appalachian
region.

Figure | shows a plot of maximum unit discharge versus
drainage area for 33 gaging stations in the Central Appala-
chian region. Maximum unit discharge is the largest instan-
taneous peak discharge during the period of record divided
by drainage area. The period of record is 1935-1984 (each
station has fewer than 10 years of missing data). Each of the
stations is described in U.S. Geological Survey annual data
reports as unaffected by regulation at high flow. Not surpris-
ingly. maximum unit discharge generally decreases with
drainage area. Also. variabihty in maximum unit discharge
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decreases with drainage area. The range in maximum unit
discharge for the 26 basins larger than 150 mi is only 40-250
cfsm. A plausible explanation for low variability in the
maximum unit discharge plot is that flood peaks are bounded
above. Cosra [1987] notes that “*drawing of envelope curves
through time raises the question of the existence of expected
limits to peak discharges in the United States. Perhaps some
atmospheric limits are being approached and the limiting
curve has begun to stabilize.”’ Model assumptions concern-
ing boundedness can have a pronounced effect on extreme
flood quantile estimates [see Hosking, 1984; Smith, 1987].

The regional flood frequency mode! developed in section 2
accomodates both bounded and unbounded flood peak dis-
tributions. The generalized Pareto distribution is bounded
above if the shape parameter & is positive. If k is negative.
the distribution is unbounded and *‘thick-tailed.”” Exponen-
tial upper tails, the case in which k equals 0. represent a
middle ground between the thick-tailed and bounded alter-
natives. By requiring the shape parameter k to be the same
for all basins in the model of section 2. we force all basins to
have the same upper tail thickness properties.

Figure 2 provides a closer look at variability in maximum
unit discharge for the Central Appalachians. In this figure
Appalachian Plateau basins, at the western end of the region,
are distinguished from Piedmont basins. at the eastern end of
the region. For the 11 Piedmont basins larger than 80 square
miles. maximum unit discharge is greater than 200 cfsm for
5. For all Piedmont basins maximum unit discharge is greater
than 100 cfsm. For the nine Appalachian Plateau basins with
drainage area greater than 80 mi’. seven have maximum unit
discharge values less than 100 cfsm. The largest maximum
unit discharge for Appalachian Plateau basins is 200 cfsm. It
appears that big floods in the Appalachian Plateau are quite
different from big floods in the Piedmont.

The apparent contrasts in extreme flood characteristics
are surprising because the two regions are only separated by
approximately 100 miles. A plausible explanation can be
found in the typical paths of tropical storms [Cry, 1965].
Paths of tropical storms are such that their influence is
generally greatest along the eastern edge of the Central
Appalachians and decreases with distance from the Atlantic
Ocean. Indeed. the flood of record for each of the Piedmont
basins is associated with a tropical storm. For Appalachian
Plateau basins the flood of record can come from a potpurri
of events. Notable is the March 1936 flood, for which
snowmeit was a major contributing factor [Grover. 1937].

The apparent contrasts in extreme floods are also surpris-
ing in view of geologic contrasts between the two regions.
Piedmont basins are generally underlain by a thick mantle of
saprolite with large subsurface storage capacity. Thin soils
with small subsurface storage capacity form on sedimentary
rocks of the Appalachian Plateau. Figure 3 shows the annual
peak distribution for Seneca Creek in the Piedmont and
Buffalo Creek in the Appalachian Plateau (drainage area for
both basins is approximately 100 mi?). The central portions
of their annual peak distributions differ: the roles. however,
are reversed from Figure 2. "~Average' floods in the Appa-
lachian Pleateau basin are larger than average floods in the
Piedmont basin. As suggested above. the contrast between
moderate floods in the Appalachian Plateau and Piedmont
can be attributed in large part to geologic control. The effects
of geologic control can also be clearly demonstrated in the
Valley and Ridge province. White [1976] has shown that
carbonate basins in the Valley and Ridge differ significantly
from noncarbonate basins in the central portion of the annual
peak distribution. Figure 4 shows sample distributions for
Little Lehigh Creek. which is underlain by carbonates, and
Passage Creek, which is underlain by sandstone and shale.
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Median annual flood for the sandstone-shale basin is approx- We illustrate below that the regional flood frequency
imately twice median annual flood for the carbonate basin. model developed in section 2 can accomodate the diverse
The contrasts appear, however, to diminish in the upper tail.  processes relevant to extreme floods in the Central Appala-
From big floods we obtain a very different picture of Central chians. The regression model for the scale parameter (equa-

Appalachian floods than from smaller floods.

tion (8)) is chosen to be
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TABLE L. Upper Order Stutistics of Annuai Flood Peaks From the Appalachiun Plateau
tIndicated by a 0 in the Second Columni and Predmont
(Indicated by a | in the Second Column
D‘AA }" T } An e ) e )" PISERS
USGS Gage No. mi* ety NS oS e cts

03061500 0 115, R 460, R.320. 9,150, 9.170. 9.300.
03080000 0 121. h.350). A.820. 6.910. 9.930. 10.900
03208300 0 2R6. 28.900. 31300, 33.800. 46.600. 39.000
03079000 0 82 15,300, 15,600 16.600. 16,300, 30.000.
03066000 0 R6.2 4410 4.5310. 4,900, 4.920. 6.8300.
03038500 0 IRE 10400, HH 100, 11.400. 12.400. 18.000.
03053500 0 A 10,300, 10,300 11.600. 12.000. 13.000.
01645000 | 101, 15000 16,000 16.000. 25.900. 26.100.
02030000 ! [ 6. 470 L 100, 21.600. 23.000. 32.000.
02030500 | 226, 10.900. 11.300. [4.100. 16.000. 42.200.
02028500 | 94.6 12.200. 13.700. 17.500. 30.000. 70.000.
01663500 1 287, 23.000 26.900. 28.800. 33.700. 60.000.
01644000 | 332, 20.300. 27.600. 35.600. 48.700. 78.100.
01662000 | 195. 10.500 14.200. 18.000. 21.900. 32.000.

One square mile equals 2.590 km*: | cubic foot per second equals 0.0283 m's.

S;=exp{c+ b log(A) ~ hX} (17

where A, is drainage area of basin / and X, is a 0-1 indicator
function which takes the value 1 if the basin lies in the
Piedmont and 0 if the basin lies in the Appalachian Plateau.
Equation (17) states that the scale parameter is a power
function of drainage area and that Piedmont basins differ
from Appalachian Plateau basins by a multiplicative factor of
exp (b,) in the scale parameter.

Fourteen stations from the Appalachian Plateau and Pied-
mont (see Table 1) are used to estimate parameters for the
model of (17). The period of record is 1942-1981 (40 years).
The threshold value is the 0.88 quantile («, equals the order
statistic Y, ;¢,). The estimated parameters are & = —0.29.
¢ =3.06, b, = 0.93, and b, = 1.52.

The estimate of the shape parameter & is negative, sug-
gesting that flood peaks are unbounded and thick-tailed. On
the basis of this evidence. we certainly can not attribute
behaviour of the maximum unit discharge piot to bounded-
ness of flood peaks. A likelihood ratio test can be con-
structed to determine whether we can rule out the bounded
and exponential tail alternatives. To do so we test whether
the estimate of k is significantly different from 0. The
likelihood ratio statistic is of the form

An= = (LS, by, b5, 0V = L& by, 62 £)] (18

where ¢, b,. and b, are maximum likelihood estimators
obtained from (12) under the constraint that A equal 0. The
likelihood ratio statistic has a limiting chi-squared distribu-

TABLE 2. Estimated Flood Quantiles for Seneca Creek
Obtained From the Regional Generalized Pareto Mode!
and the At-Site Lognormal model

Estimated Discharge. cfs

Return Interval. Generalized Lognormal
years Pareto Model Model
10 16.300 8.800
100 40.900 18.200
1.000 89.000 32,600

The sample annual peak distribution for Seneca Creek is shown in
Figure 3. One cubic foot per second equals 0.023 m™’s.

tion with 3 degtrees of freedom [see Bickel and Doksum,
1977]. The value of the likelihood ratio statistic (3.6) has a
significance level of less than 0.90. The evidence for un-
bounded thick-tailed flood peaks is thus not particularly
strong.

The estimate of the coefficient b, implies that the scale
parameter for Piedmont basins is nearly 5 times (exp (1.52))
larger than the scale parameter for Appalachian Plateau
basins of the same drainage area. A likelihood ratio test is
constructed to test whether the estimate of b, is significantly
different from 0. The likelihood ratio statistic is of the form

Ap= = 2ULA(E. by 0. k) = Lyle. by, by B)] (19

The value of the likelithood ratio statistic (29.4) has a
significance level greater than 0.99. This result strongly
supports the need to distinguish extreme floods in the
Piedmont from extreme floods in the Appalachian Plateau in
our regional frequency analysis.

Table 2 shows quantile estimates for Seneca Creek (the
Piedmont station of Figure 3) obtained using the regional
model ot equation t17) and an at-site lognormal model (using
the maximum likelihood estimators recommended in the
National Research Council report ~"Estimating Probabilities
of Extreme Floods ). For Seneca Creek the regional gener-
alized Pareto model vields significantly higher estimates of
extreme floods than the at-site lognormal method. The
fundamental assumption of our regional model is that the
large flood values shown in Figure 3 for Seneca Creek likely
reflect different processes than the smaller flood values. By
including data from extreme floods at other sites in our
regional analysis. we are more confident that the large floods
of Figure 3 are not atypically large. Furthermore. by exclud-
ing data from smaller loods we are more confident that our
estimates of extreme Hood quantiles truly reflect extreme
flood processes.

5. SumMMAaRY aND CONCLUSIONS

A regional flood frequency model is developed for esti-
mating recurrence intervals of extreme floods. The region-
alization procedure developed in this paper differs notably
from previous procedures in that the index flood is a large
quantile rather than the mean annual flood. Based on Pick-




NN Tt

and’s [1975] characterization of the upper tail of distribution
functions. exceedances of the specified quantile are assumed
to have a generalized Pareto distribution. The generalized
Pareto distribution has two parameters: a shape parameter
and a scale parameter. The shape parameter does not vary
from basin to basin. implying that annual peak distributions
for all basins have the same upper tail thickness. Covariate
information. such as drainage area or indicator functions for
basin geology. 15 incorporated in the flood frequency model
through a regression equation for the scale parameter (equa-
tion (8)1. The particular form of the regression model chosen
for the scale parameter is dictated in large part by computa-
tional fractability.

An at-site estimator is used for the threshold quanule at
each site. Exceedances of the estimated quantile. for all
sites. are pooled in order to estimate the unknown scale and
shape parameters. Likelihood-based inference procedures
are developed in section 3 for parameter estimation and
hypothesis testing. Inference procedures are derived under a
site to site independence assumption. At the end of section 3
it is noted that inference procedures are valid under a weaker
““conditional independence’” assumption.

The regional flood frequency model is applied in section 4
to annual flood peak data from 14 stations in the Central
Appalachian region. The example is artificial in restricting
attention to Appalachian Plateau and Piedmont basins. The
example does illustrate the contrasts that arise in comparing
extreme floods with smaller floods in the Central Appala-
chians and their potential consequences for estimating ex-
treme flood quantiles (similar issues are raised by Wayvlen
and Woo [1982] for western Canada).

A limitation on the practical utility of the procedure
developed in this paper is imposed by flood measurement
error. In situations where measurements of extreme floods
are poor (for example, high gradient mountain streams. as
documented by Jarretr [1987] and Wolman and Costa [1984]:
see also Porter and Walker [1985]). tail procedures.” like
the method developed in this paper. should not be used.
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