APPLICATION OF RELAXATION SCHEME
TO WAVE-PROPAGATION SIMULATION
IN OPEN-CHANNEL NETWORKS®

Discussion by Ming Jin,* D. L. Fread.’
and J. M. Lewis®

The authors found in their test Example 2 that two implicit
schemes. including the implicit four-point Preissmann scheme.
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did not generate proper solutions when the channel bed slope
was increased to 0.002 and larger values. and the authors fur-
ther suggested that the four-point implicit scheme is *“‘suitable
only for a relatively smooth or slowly varying flow regime
with a mild slope.”” This is contrary to the discussers’ expe-
rience with the NWS FLDWAV model, which is based on a
weighted four-point implicit (Preissmann-type) scheme that
yields two nonlinear. implicit finite-difference approximations
of the Saint-Venant equations that are solved by the Newton-
Raphson iterative technique. The discussers would not expect
any modeling difficulties for the flow conditions in the au-
thors’ Example 2. However. the four-point implicit scheme
does have numerical difficulties when the flow regime is es-
sentially critical or is in the transcritical (subcritical-supercrit-
ical or supercritical-subcritical transition) state. and particu-
larly when the flow has a transcritical moving interface in
which a supercritical flow region travels with a very rapidly
varying flood wave. e.g., a dam-break-induced flood wave.
None of the above conditions exists in Example 2 for channel
bed slopes less than about 0.006. Within the NWS FLDWAV
model. the discussers have developed two techniques to solve
this transcritical modeling difficulty. They are (1) an LPI (local
partial inertia) modified implicit scheme (Fread et al. 1996).
and (2) a characteristic-based upwind explicit scheme (Jin and
Fread 1997). It has been found that the new LPI technique
provides a very powerful enhancement to the weighted four-
point implicit scheme. because it enables the implicit scheme
to simulate any transcritical or mixed unsteady flow while re-
taining the four-point implicit scheme’s inherent accuracy and
computational efficiency.

The discussers tested the authors’ Example 2 for a range of
channel bed slopes varying trom 0.0002 to 0.02. using the
FLDWAV model. Fig. 10 shows the computed hydrographs at
x = 4,000 m in the channel (branch) 3.

Fig. 11 shows the time-variation of the computed Froude
numbers at x = 4.000 m. The conventional four-point implicit
scheme had no numerical difficulties in modeling the entirely
subcritical flow conditions of Example 2 with the bed slope
less than about 0.006. For subcritical flow conditions through-
out the routing reach for all times. a double-sweep solution
algorithm is used along with a free flow downstream boundary
condition consisting of the Manning equation with the friction
slope lagged one time step. With the bed slope larger than
about 0.008. the flow becomes supercritical throughout the en-
ure reach for all times. For this flow condition. a cascading
method of solution is used along with two upstream boundary
conditions [Q(r) and the Manning equation with friction slope
determined by the water surface slope lagged one time step].
Only the LPI technique provided the proper (stable and con-
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FIG. 10. Discharge Hydrographs at x = 4,000 (m)
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FIG. 11. Froude Numbers at x = 4,000 (m)
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FIG. 12. Computed Rating Curves at x = 4,000 (m)

sistent) solution for the bed slope of 0.007. in which a trans-
critical flow regime existed. The LPI technique modifies the
two inertial terms in the Saint-Venant momentum equation by
multiplying them by a factor (1 — F™) in which F is the local
time-dependent Froude number and m (varying between 1 and
10y 1s a coefficient controlling stability and accuracy. High
values of m provide more accuracy while small values of m
provide somewhat more stability in the numerical solutions.
In all situations except the one involving the transcritical flow.
the errors incurred in using the LPI factor (differences between
the LPI solution and the implicit solution without the LPI fac-
tor) were measured. In Fig. 10. the errors in the computed
peak depth (E,) and the relative RMS error in the computed
depth hydrograph (E,,,) are listed. The discussers derived an
indicator (/T) for the importance of the inertia terms in the
momentum equation (as a ratio of the inertia terms to the water
surface slope). i.e., IT = —0.5F*/(1 + 1.56F"). where ¢ =
(7 y")(N2av/91) in which n is the Manning's resistance co-
efficient. g is the gravity constant, A is a constant for Man-
ning’s equation (A = 1.49 for the English system units and A
= 1.0 for SI units), and v is the flow depth. It was found that
the expression (—100/T) can be used to approximate a con-
servative upper limit of the percentage errors incurred in using
the LPI technique. This is also shown in Fig. 11.

The computed rating curves (depth-discharge relations) are
compared in Fig. 12 with the single-value rating curves de-
rived from the Manning equation for steady flows for a range
of channel slopes (0.0002-0.02). Also, it is observed from Fig.
12 that the hysteresis effect (loop) is always present for each
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FIG. 13. Computed Depth Hydrographs at 4,000 (m)
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channel slope: however. it becomes insignificant as the slope
increases beyond 0.002 for the flow condition of Example 2.

Under the same conditions used by the authors in Example
2 with the channel bed slope of 0.0002. the discussers com-
pared the results at x = 4.000 m from FLDWAV with the au-
thors™ results. As seen in Fig. 13. somewhat different resuits
are obtained. Fig. 14 compares the depth-discharge relation at
this location from the authors’ Figs. 6 and 7 with that produced
by FLDWAV. Also shown are the results from a FLDWAV
simulation with an extended downstream boundary (increased
from 5.000 to 10.000 m) 1o verify the FLDWAV model's per-
formance in using the free-flow downstream boundary condi-
tion. As shown in Fig. 14, a significant loop exists in the com-
puted depth-discharge relation using the FLDWAV model.
whereas the authors’ results reveal little if any hysteresis ef-
fects in the computed depth-discharge relation. This could be
due in part to the authors’ choice of an unspecified A(r) as
their downstream boundary conditions, as indicated in their
Fig. 5. The discussers would like to know the basis for such
an apparent choice and the authors’ apparent inability to pro-
duce the loop in the depth-discharge relation at this location.
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Closure by Mustafa M. Aral,” Yi Zhang,®
and Shi Jin’

The writers wish to thank the discussers for their comments
and interest in the subject of wave propagation solutions in
open-channel networks. As clearly indicated in our paper, our
purpose was to provide a computational procedure that may
be used in the solution of a wide variety of problems in open-
channel networks. These problems. as demonstrated by several
applications in the paper as well as in other reports published
by the writers associated with the paper. range from subcritical
to supercritical applications in open-channel networks inciud-
ing transcritical cases (Aral et al. 1996). For all these cases,
the proposed method functions very well without any adjust-
ments as required in most other methods. Further. the emphasis
on our proposed method is on the solution of governing equa-
tions in conservative form. This is an essential component if
the flow solutions are to be used in contaminant transport anal-
ysis. which is the case for our overall interest on the subject
tAral and Zhang 1998: Zhang 1998).

With these points in mind. we provide the following re-
sponse to the comments of the discussers. In their discussion.
Jin et al. posed some questions regarding our Example prob-
lem 2. The discussers indicate that they did not experience
numerical difficulties in the solution of Example 2 when using
conventional four-point implicit scheme until the channel
slope was increased to 0.006 or larger. as opposed to our lim-
iting slope of 0.002. They also compared their result with re-
sults presented in the paper for Example 2 and found some
difference between the two results. Furthermore. they indicate
that in their application a significant loop exists in the com-
puted depth-discharge relation. while our results did not gen-
erate this loop. Probably they attribute these differences to
some potential problem with the proposed method. The answer
to the discrepancy is clearly in the application they have se-
lected. and not in the method.

We anticipate that the difference between their results and
ours is due to the use of a different downstream boundary
condition in Example 2. In our application. we used a constant
depth downstream boundary condition with depth v = 1.43 m
throughout the whole simulation period. while the discussers
used a free-flow downstream boundary condition consisting of
the Manning equation. The confusion occurred because we did
not clearly define the downstream boundary condition in our
paper. and we apologize for that. Since different downstream
boundary conditions were used in both applications. the results
are. of course. different. Furthermore, since the discussers used
a free-flow downstream boundary condition. the loop depth-
discharge relationship may be generated by using a loop-rating
curve based on the Manning equation in the downstream
boundary condition (Fread 1992) or by the backwater due to
the variant downstream water surface elevation. When a loop-
rating curve is used at the downstream boundary. the loop is
produced by using the friction slope S, rather than the channel
bottom slope S,. with the friction slope being different for the
rising and decreasing limbs of the hydrograph. In the paper.
because we used constant depth downstream boundary con-
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dition, the friction slope is obtained by the Manning equation
and the depth-discharge relationship should be a single valued
function. not a loop function. Actually, we used several meth-
ods. including Preissmann scheme, to compute Example 2: the
results were very close in each method. Finally. because down-
stream depth boundary condition is kept constant with a value
equal to the initial value (v = 1.43 m) in the paper. the trans-
critical or supercritical flow regime may appear earlier (when
channel slope S, equal to around 0.002). Our code using both
the Preissmann scheme and the implicit finite-element method
could not generate the proper result for this slope, while under
the same condition the relaxation scheme still produced the
correct results.

We hope that this response clarifies the questions posed by
the discussers and we appreciate their interest in our paper.
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