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Multiscale Study of the Spatial Variability in the Cluster Analysis of Rainfall

ABSTRACT

There are three issues that should be considered in the cluster analysis of rainfall stations:

(1) input data inciuding concerns on the data length, scale, and transform, (2) analysis methods
based on dissimilarity measure, correlation matrix, or cognitive approaches, and (3) groupings
which generate non-overlapping regions or transition zones between regions. We reviewed these
three issues and paid additional attention to the scales used in the input data. Regions determined
from different scales of input data could be varied. To reduce the regionalization uncertainties by
using a single scale time series, it will be useful to generate two-dimensional, scale-based data
which covers a range of scales as input in cluster analysis. A multiscale approach using the
continuous wavelet transform (CWT) is proposed to investigate the nonstationary characteristics
of rainfall for studying the spatial variability in the cluster analysis of rainfall. The scalogram
generated from CWT has a higher dimension to analyze the scale-dependent variances. The
rainfall over Iowa was used for demonstration. The regions determined by using 3- to 30-day
scales can reduce the local small features by using one small scale (e.g., 3-day) input or improve
the over-smoothed regions by using one large (e.g., 30-day) scale input.

Key Words: Cluster analysis; wavelet transform; principal components analysis; rainfall; Iowa, USA.
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1. INTRODUCTION

The purpose of cluster analysis of rainfall stations, also called regionalization, is to decompose a
large complex area into several smaller homogeneous regions for research and applications in
climatology and hydrology. Wide regionalization studies using cluster analysis and multivariate
statistics have been published in the last 20 years. In general, to study regionalization, three
issues -- input data, analysis methods, and groupings -- should be discussed for the interpretation
of the subregion features. For example, in the input data issue, the spatial variations of rainfall
could be a function of temporal scale indicating that the results from the cluster analysis of
rainfall could be varied by using hourly, daily, weekly, monthly, seasonal, or annual rainfall data.
The selection of an appropriate temporal scale is really dependent on the purpose of application.
There could be multiple options involved in each of issues.

First, we briefly review these three issues required for cluster analysis and then focus on the
temporal scale problem in regionalization. The continuous wavelet transform (CWT) is applied
in the analysis of nonstationary characteristics of rainfall and in the multiscale study of its spatial
variability. Rather than using a single scale input data (e.g., 3-day average), the homogeneous
regions can be determined based on a range of scales of rainfall (e.g., 3- to 30-day scales). This
provides an option to investigate short- and long-term spatial variabilities of rainfall. In section
2, we discuss concerns in input data, analysis methods, and grouping for regionalization; in
section 3, the CWT is introduced; in section 4, a demonstration of the application of CWT to
cluster analysis is shown; and section 5 contains the conclusions from this study.

2. CONCERNS FOR REGIONALIZATION

Regionalization study is to delimit homogeneous regions based on the spatial variability of one
or more physical variables (e.g., rainfall, temperature, etc.). The results from the regionalization
study could be varied according to three issues: (1) input data, (2) analysis methods, and

(3) groupings. There are several options in each issue which make it very difficult to compare
performances among the different options. In this section we provided an outline (Figure 1)
which includes concerns that should be considered in a regionalization study.

2.1 Input Data

Quality control of input data is critical for outlier detection before processing. Outliers, usually
extremely high values in the positive tail of a distribution, can produce distortions in the
correlation coefficients calculation which are sensitive to most correlation matrix-based
multivariate statistical analyses. If no outlier detection is performed for quality control, then a
robust analysis method, such as the robust principal components analysis, will be useful to
separate outliers from clusters. In addition, rain gages could be moved during data collection.
Inconsistency checks of rainfall using double-mass analysis (DMA) is necessary to make an
appropriate correction, particularly if monthly or annual data are used for long-term rainfail
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analysis. The trend analysis is also required to check temporal inhomogeneity and remove
nonclimatic induced variations.

Because rainfall stations are grouped based on the similarity of input data characteristics, the
regions determined from cluster analysis could vary with data length, scale, and form. Form
indicates that the input data is of a raw or transformed type. All three of these factors could
change the clustering results.

2.1.1. Length of data

Assume daily rainfall data for over 20 years are available. We may use the entire 20 years of data
or select a portion of the data (e.g., 5 years) as input. If the regions obtained from cluster analysis
are different when we use different length of input data, it implies that regions could be changed
with time due to climate change. A basic assumption is that the regions determined from a time
period are homogeneous in that time period only. Sequentially analyzing a short time period of
data can be used to study changes in the region, while a longer time period data could be
necessary for long-term estimation of rainfall or water resources management.

2.1.2. Scale of data

Regions determined from cluster analysis are sensitive to the scale of input data. The selection of
an appropriate scale is really dependent on the application purpose. For example, Richman and
Lamb (1985) used 3- and 7-day summer rainfall to determine homogeneous regions for a short-
time weather forecast, climate change study, and crop-yield modeling. Gadgil and Iyengar

(1980) used the mean 5-day rainfall to study the relationship between rainfall distribution and the
monsoon. Gong and Richman (1995) used the 7-day rainfall to study the growing season. Fovell
and Fovell (1993) used monthly temperature means and rainfall accumulations to specify climate
divisions. Jackson and Weinand (1994) discussed the annual and seasonal variables in the study
of tropical rainfall. Johnson and Hanson (1992) studied the spatial variations for daily summer,
daily winter, monthly summer, and monthly winter.

A preliminary comparison might be helpful to decide the scale of the input data. Van
Regenmortel (1995) first evaluated the percentage of cumulative variance explained by the
principal components analysis for daily, 5-day, 10-day, and monthly rainfall sum. He then
selected the 10-day average rainfall to study the soil-moisture status and drought assessment. In
general, daily or weekly rainfall showed high frequency and local features, while the monthly or
annual rainfall characterized by its low frequency and large spatial scale. An option of using a
range of temporal scales as input might be useful in a regionalization study. The CWT,
described in more detail in section 3, provides the capability for generating a scalogram which
reflects the rainfall intensity distribution over a range of scales.
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2.1.3. Transform of data

An appropriate transform of data can enhance required features and reduce ‘noise’ effects. For
example, daily data are not normally distributed, and square-root or logarithmic transformation
can reduce the skewness of the distribution so that the impact of extreme values on the
computation of correlation coefficients will be reduced (Van Regenmortel, 1995). In the climatic
pattern analysis of 3- and 7-day summer rainfalls, Richman and Lamb (1985) evaluated the input
data as raw, square-root, and log,, transformed; they selected the square-root transform after
checking the differences of means and standard deviations before and after the transforms.
However, if the purpose of the regionalization is to identify the location of short duration storm
events, the raw data could be more appropriate as input. In general, these nonlinear transforms
work as low-pass filtering and could reduce the number of homogeneous regions.

In addition to the above simple numerical transforms, more complicated transforms, such as the
Fourier transform, CWT, etc., are also available by investigating the similarities in the frequency
or scale domain. In spectral analysis, data are transformed from time domain into frequency
domain using Fourier transform, and stations are grouped based on the frequency distribution
which reflects similar periodical features. Spectral analysis is useful for stationary time series
analysis. To study long-term seasonal or annual cycles in rainfall, regions can be defined based
on the distribution of first several harmonics amplitudes (Kirkyla and Hameed, 1989). Using
monthly rainfall, Krepper et al. (1989) applied spectral analysis to study interannual, annual, and
intraannual variability and delineated the transition zone between wet and dry regimes. In
addition, maximum entropy spectral analysis is a robust way to deal with short-length time series
(Leite and Peixoto, 1995). CWT, the method used in this paper, generates a two-dimensional,
time-scale distribution for analyzing nonstationary characteristics of rainfall and provides more
detailed information embedded in a one-dimensional time series for cluster analysis.

It is possible to determine regions by comparing probability distribution functions based on the
regional analysis in the L-Moments methodology (Guttman, 1993). Easterling (1989) studied the
regionalization of thunderstorm rainfall by use of the incomplete gamma distribution. Other
statistical parameters, such as entropy, can also be considered as ancillary information in
regionalization study.

2.2 Analysis Methods

Methods used in regionalization study can be divided into three categories: methods based on
dissimilarity measure, cognition, or correlation matrix.

2.1.1. Methods based on dissimilarity measure

Consider x; is an M-point vector of the time series at station i. The dissimilarity between two
stations, x; and x;, can be measured as a function of:
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(1) Euclidean distance: dx;, x) = [(x; - )" (x;- x)1”*,

(2) Manhattan distance: d(x;, x;) = by -x;l + Lo -l + .+ Doy x4,
(3) Mahalanobis distance: dix;, x) =[(x;- x)"C" (x;- x)I",

(4) the theta angle between stations: Ax;, xX;) = cos'[(x] X)) / (bl b} , or

(5) inverse correlation coefficient: rix;, x) =105 y) Ly,

where y, = x, - X, X is the mean of x;, T means the transpose, and C is the covariance
matrix of (x; - x)).

Euclidean distance, the theta angle, and the inverse correlation coefficient have been used in the
comparison of several cluster analysis methods by Gong and Richman (1995), while the
Manhattan distance and Mahalanobis distance are more robust for noisy data.

In general, there are two types of techniques in this category, hierarchical and nonhierarchical
clustering approaches. In a hierarchical clustering (e.g., linkage method, Ward’s method, etc.)
stations can be grouped via either top-down (division) or bottom-up (merger) by partition
patterns from a dissimilarity matrix. Nonhierarchical clustering methods (e.g., K-means, vector
quantization (VQ), etc.), specify a set of centroids of K groups. Based on the distance between
one station and each centroid, the station is assigned to the nearest group. After the assignment
of each station, the new centroids of clusters are recomputed, and the assignment of each station
is repeated. The iterative procedure will continue until there is no change to the members in each
group. A detailed review of these two cluster techniques can be found in Gong and Richman
(1995). In this category, each station must belong to one and only one group, and a hard
boundary exists between regions. It is impossible to identify the transition zones if they exist
between regions.

2.2.2. Methods based on cognition

Cognitive methods, such as fuzzy logic, neural networks, etc., have been widely studied for
cluster analysis. Fuzzy clustering uses the membership coefficients to describe the degree of one
station belonging to a group. The range of membership coefficients is zero to 1, and the sum of
coefficients at one station must be equal to 1. This approach indicates that a station could belong
to several groups with different degrees of membership. Fuzzy clustering is a generalization of
grouping whereas in hard clustering at each station, only one of the membership coefficients is 1
and the remainder are zeroes. For example, assuming there are K clusters, the fuzzy K-means
algorithm is implemented in an iterative computations as follow (Bezdek, 1981):

(D Select K groups and compute their centroids ¢;, j=1, 2, ..., K.
@) Compute the membership coefficients, u(x;, ¢;) with a given real number p (> 1),
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3) Update the new centroids ¢/,

u(x;,c)
=1

i
and recompute new u {x;, ¢;) according to (2).

4) The process will terminate if the max lu(x;, ¢;) - u (x;, ¢;)l over all membership
coefficients is less than a predefined small threshold, then stop; otherwise go to
step (3).

As in most cluster analysis methods, the fuzzy K-means clustering requires information on the
number of clusters and the locations of associated centroids. To avoid these problems, some
adaptive and optimal fuzzy clustering algorithms have been published (e.g., Gath and Geva,
1989). The closeness of one station to each group can be described as a function of the
membership coefficient providing the means to determine the fuzzy boundaries between regions.

There are various neural networks which provide unsupervised learning mechanism for cluster
analysis. For example, the Kohonen’s self-organizing-feature-maps (SOFM) method, which is
similar to the K-means method, has the capability to extract features from large data sets without
supervision (Kohnonen, 1982). However, compared with the K-means method, a priori
assumption of the number of clusters is eliminated in the SOFM method. In the SOFM method,
the lattice structure of neurons in the output layer can show the topological features among
neurons. By introducing fuzzy membership for output neurons, Sim and Huntsberger (1991)
proposed fuzzy SOFM so that, during the training, one or more winners in the output layer for
any input vectors are allowed. For an input neuron, those output neurons which are closer, in
terms of distance measure, have a membership value of 1, and others have a value in the range of
1 and zero. The membership value then adjusts the connection weights to reflect the similarity in
clustering. Therefore, the fuzzy SOFM method provides the ability of overlapping clusters in the
input space.
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2.2.3. Methods based on correlation matrix

There are three popular multivariate statistical methods widely used in this category: empirical
orthogonal functions (EOF), principal components analysis (PCA), and common factor analysis
(CFA). In the EOF method, the dispersion matrix is solved using singular value decomposition
(SVD). The dispersion matrix can be either the covariance matrix or correlation matrix. The
correlation matrix was adopted by most regionalization studies since standardized data were used
to minimize the impact from stations with higher variability. However, the covariance might be
more appropriate for locating the individual climate regions with large variance in cyclone
climatology (Overland and Preisendorfer, 1982). The eigenvectors derived from the correlation
matrix represent the orthogonal basis functions. The rainfall time series at each station is a linear
combinations of these basis functions. The corresponding eigenvalues represent the amounts of
the total variance that are explained by each eigenvector.

In PCA, a PC loading factor is equal to the multiplication of the associated EOF coefficient and
the square root of the corresponding eigenvalue. Loading factors represent the correlation
between stations and components. The difference between CFA and PCA/EQF is that CFs are
extracted only from the variance between two or more stations and not the total variance for all
stations as in the PCA/EOFs ( Béarring, 1988). According to the assignment of the dispersion
matrix, there are six basic operational modes in PCA depending on which parameters are
selected as variables, individuals, and fixed entities (Richman, 1986). S (Spatial)-mode (e.g.,
Dyer, 1975; Richman and Lamb, 1985; Bérring, 1988; Johnson and Hanson, 1992; Van
Regenmortel, 1995) and T (Temporal)-mode (e.g., Gadgil and Iyengar, 1980) are the two major
modes used for regionalization. The S-mode, adopted by most applications, assigns the time
series from one station as one column in the matrix, while T-mode is done in the opposite way.
Therefore, the S-mode clusters stations with similar temporal patterns, but T-mode separates
observations into subsegments with similar spatial characteristics. The T-mode analysis requires
additional steps to determine the number of regions.

The rotation of principal components, using varimax method (e.g., Richman, 1986) or oblique
method (e.g., Jackson and Weinand, 1995), attempts to maximize the variance of the component
loadings between each component for producing a few large loading factors and reducing other
factors making it easy to discriminate stations. In a systematic methodological review, Gong and
Richman (1995) performed an intercomparison of various cluster analysis methods and indicated
that the rotated PCA could be more accurate than other methods.

In PCA, the number of reserved components will be determined before the rotation procedure is
performed. A simple procedure is based on the distribution of N sorted descending eigenvalues,

Only the first K components, where A, > threshold (say, 1.0), are used in the rotation procedure.
The variance explained by each component is defined as
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k=1

The total accumulative variance of the first K components Fy where Fy =f, + f, + ... + fx
provides ancillary information in the determination of the number of groups. The higher F X
values (e.g., 0.8) will reserve more original information. It is possible that the number of groups
will be reduced by checking the associated loading factors after the rotation.

‘Rule N’ is another approach in the determination of number of groups (Preisendorfer and
Barnett, 1977). In ‘Rule N’, a Monte Carlo simulation is used to generate a set of uncorrelated
Gaussian variables, then eigenvalues are compared to the distribution of these variables for
selecting the number of components. However, there are probably no ‘perfect’ answers for this
problem (Ferre, 1995), particularly when rainfall is not changing rapidly between regions. In
addition to the above objective determination, the purpose of applications and the interpretation
of regions are two major factors in the decision of the number of clusters.

2.3. Groupings

In general, regions after cluster analysis can be displayed as either (a) hard and nonoverlapping
boundaries or (b) transition zones in the overlapping among regions. Methods based on
dissimilarity distance assign one station to one and only one region in the former case, while
methods based on cognition and correlation matrix are good for both cases. In a rotated PCA, a
station is assigned to the component which has the highest loadings factor, or uses the component
loading as an indicator of the correlation between each station and component. The loading
isopleths with a constant (e.g., 0.65) may be selected to specify the boundary. There could be an
overlapping or open space between regions. A station in an overlapped space means it is highly
associated with the overlapped regions, while a station in an open space means it has the
transition characteristics of the neighboring regions.

3. CONTINUOUS WAVELET TRANSFORM (CWT) IN MULTISCALE STUDY

To study the nonstationary characteristics of rainfall, CWT provides the capability to investigate
temporal variation with a different scale. The CWT is defined as the convolution of a time series
x(r) with a wavelet function () shifted in time by a translation parameter 5 and a dilation
parameter a (Morlet et al., 1982):

Loy
S(b,a) 7 f.mx(t)ll!( . )at
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where * is the complex conjugate, and a (> 0) and b are real numbers and can be varied
continuously. The calculation of S(b,a) is more efficient using the corresponding Fourier
transform:

S(b,a)=/a f " X(0)P " (aw)e P dw

where X(w) and ¥ (w) are the Fourier transform of x(¢) and {(z), respectively. The scalogram is
defined as IS(b,a)*. The wavelet function yi(¢) has to satisfy the admissibility condition (i.e., zero
mean), and localization support (i.e., fast decay from its center). The approximated Morlet
wavelet with a constant ¢ (¢=5.3 used in this paper) is adopted here.

Atz

q!(t):e icte 2

Apparently, the Morlet wavelet is a modulated Gaussian function with a zero mean and unit
standard deviation. The magnitude of the Morlet wavelet is a Gaussian function which means
the amplitude of data is smoothed via a low-pass filter. One advantage of using this low-pass
filter is to reduce the Gibb’s phenomena in its operation. For example, if the sum of 10 days’
data from a daily data set is generated by multiplying a rectangular window with 10-day length to
the original data, then the straight truncation at both edges in a rectangular window could cause
the Gibb’s phenomena while the Gaussian-type Morlet wavelet can reduce such kind problem.

The localization feature of () makes that S(b,a) are computed only by data in the cone of
influence (COI). As shown in figure 2, only data between b, and b, can influence the value of
S(by, a,). Due to no information beyond edges of input data, S(b,a) has uncertainties in the
shaded areas. Using the Morlet wavelet, the radius of the COI at point b is 2a. The scale is
linearly proportional to the wavelength (or period). The period is 1.2 times the scale if ¢=5.3 in
Morlet wavelet. Mayer, et al. (1993) discussed the impact of edge effects in implementation and
proposed a method to reduce the uncertainties.

Wavelet variance (WV) is defined as the integration of the scalogram over time for given scales.
Therefore, the WV is a function of scale which represents the marginal density function of energy
and shows the relative intensities of a time series at different scales. It is similar to the power
spectrum generated from the Fourier transform. The difference is that the scale is used in the
WV while the frequency is used in the Fourier transform; the scale and the frequency have a
reciprocal relationship.

4. DEMONSTRATION

The rainfall stations in the state of Iowa, United States, are used to demonstrate the resulits of
using different time scales. The TD-3200 Daily Summary Observations from National Climatic
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Data Center (NCDC) provided quality controlled daily rainfall data. We arbitrarily selected 1992
data, checked the associated quality flags, and rejected any stations which had suspected,
missing, accumulated, or invalid data. Only 70 stations were reserved after the careful quality
check.

4.1. Data analysis

Figures 3 and 4 show the CWT of daily and monthly rainfall, respectively, at a rainfall station in
Iowa. Data for only 1 year (1992) are used in figure 3, while 20 years’ (1973-1992) monthly data
are used in figure 4. The associated scalograms show the dynamic variations as a function of the
temporal scale. Due to uncertainties at both edges of the scalogram, the WVs shown here have a
little distortion when the scale is large. The nonstationary characteristics in daily rainfall are
typically different from the semi-stationary characteristics of monthly rainfall. As shown in
figure 4, the long-range trend is identified with the scale 10, which is equivalent to the 12-month
period. The scalogram generated from CWT is applicable for cluster analysis if a range of scales
is interested in applications.

4.2. Regionalization

To compare the regions determined from different scales of input data, we tried four scales:
3-day, 15-day, 30-day, and 3- to 30-day scales. Raw data were used in each process since no
outliers had been detected. The rotated PCA was applied in this regionalization study. Figure 5
shows the loading factors of the first four principal components using the scalogram of a 3- to
30-day scale as input. Only correlation coefficients greater than 0.5 are displayed with the
stations, and the single contour line represents the correlation coefficient 0.65. The isolated
regions are easily identified from each loading factor.

Figure 6 displays the mosaiced regions derived from figure 5 where the central small region is
corresponding to the Sth loading factor. There are several stations (e.g., stations 5, 34, 57, 41,
etc.) that are not firmly linked to one cluster. They are located in transition zones between two or
more regions. These stations can be assigned to one or more clusters when the threshold used in
the contour line decreases, and this could generate some overlapping areas among regions. The
rotated PCA objectively provides loading factors, but it is a little subjective in selecting the
thresholds in a grouping.

Figures 7-9 show the regions using the 3-day, 15-day, and 30-day rainfall data, respectively.
Apparently, more local small regions appeared in the smaller scale (e.g., 3-day) data while the
larger regions are generated from the larger scale (e.g., 30-day) data. Particularly, there are more
transition zones or uncertainties between regions when using the smaller scale data. Comparing
these figures with figure 6, the multiscale input data can integrate the information from a range of
scales and compromise the uncertainties using a single scale in input data.

11 J.J. Pan, S.T. Li, and S. Cong



5. CONCLUSIONS

In this paper, we introduced a multiscale study of the spatial variability using CWT. The CWT
provides an option to consider the range of scales in the input data which can reduce the local
small regions using one small scale input, or improve the over-smoothed regions by using one
large scale input in regionalization studies. We also reviewed concerns of input data, analysis
method, and grouping issues in the cluster analysis of rainfall stations. The selection of options
in each issue is dependent upon the purpose of applications. It will be helpful for future
regionalization studies if a committee with members from the climatology and hydrology
communities can generate a guideline which provides details of the regionalization procedure
and comments or suggestions on these issues.
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Figure Captions
Three issues in the cluster analysis of rainfall stations.

Cone of influence and uncertainties in the scalogram of continuous wavelet
transform.

The continuous wavelet transform (CWT) of daily precipitation. (a) data,
(b) CWT, and (c) wavelet variance (WV).

The continuous wavelet transform (CWT) of monthly precipitation. (a) data,
(b) CWT, and (c) wavelet variance (WV).

The first four principal component station loadings using varimax rotation. The
input data have scales 3- to 30-day generated from CWT. Only loading factors

which are greater than 0.50 are shown. The contour line is equal to 0.65.

Regions determined from 3- to 30-day scales. Numbers refer to the stations used
in this study.

Regions determined from 3-day scale. Numbers refer to the stations used in this
study.

Regions determined from 15-day scale. Numbers refer to the stations used in this
study.

Regions determined from 30-day scale. Numbers refer to the stations used in this
study.
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Daily Precip. 1/92 — 12/92 (lowa Station 1D=130200)

E T t 1 (a) Data T i I T
<2k -
&
fhis “
gO\AA A AAL Ah AA [\J\h I\.AI AM A AM AAM .S AAAMA
0 50 100 150 ‘ 200 250 300 350
Time (in days)
(b) CWT (c) WV
@ 0 0 © ~ ! W e\ =3 @:Jﬁ\j} B
10F o R = ((S}O é
2k N (D
2 -
R — ‘
40 | 1 1 sl 1 i

150

200
Time (in days)




Monthly Precip. 1/73 - 12/92 (lowa Station ID=130200)
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Cluster Analysis of Rainfall Stations in IOWA (using 3 to 30-day scale)
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Cluster Analysis of Rainfall Stations in IOWA (using 3—-day scale)
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Cluster Analysis of Rainfall Stations in IOWA (using 15-day scale)
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Cluster Analysis of Rainfall Stations in IOWA (using 30—-day scale)
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