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variance as well. The second procedure involves
optimal linear estimation based on the correlation
function that accounts for both within-storm vari-
ability of rainfall and variability due to fractional
coverage of rainfall. The work reported here repre-
sents a part of the continuing effort in the National
‘Weather Service (NWS) to provide River Forecast
Centers (RFCs) and Weather Forecast Offices
(WFOs) with more accurate real-time precipitation
analysis procedures in support of operational hydro-
logic forecasting.

The organization of this paper is as follows.
Section 2 describes the estimation problem and the
solution approach. Sections 3 and 4 describe the first
estimation procedure. Section 5 describes the second
estimation procedure. Section 6 describes parameter
estimation. Section 7 describes the validation experi-
ment and presents the results. Section 8 provides
summary and conclusions.

2. Description of the problem and the proposed
approach

The problem of estimating spatial distribution of
rainfall may be described as follows. Obtain an esti-
mate of the unknown rainfall amount. z,, at an arbi-
trary location, u,, within the estimation domain. A,
using nearby rain gage measurements in A. 2, ....Z,,
at locations. uy, ..., u,, respectively. Assuming, for the
sake of argument. isotropy in the correlation structure
of rainfall, we may define the estimation domain. A. to
be the circie centered at the point of estimation. u,,
whose radius equals the spatial correlation scale of
rainfall. The goal is then to obtain an estimate that
approximates as closely as possible the conditional
expectation, E(ZylZ,=z,,...,Z,=z2,], where E[], Z,
and z; denote the expectation operator, the random
variable representing rainfall amount at u;, and the
observed rainfall amount at u;, respectively. For nota-
tional brevity, we define z={Z =z,....Z,=z,}.
Throughout this paper, random variables are denoted
by uppercase letters whereas their experimental values
are denoted by corresponding lowercase letters.

If the joint probability distribution of Zy, Z,, ..., Z,
is multivariate normal, the optimal linear estimate
(Schweppe, 1973, p. 96), or equivalently the simple-
kriging estimate (Journel and Huijbregts, 1978,
P- 561), is identical to the conditional expectation

E[Zylz], and hence is the best statistical estimate
obtainable in every reasonable sense of the word
(Schweppe. 1973, p. 97). For rainfall, however. the
optimal linear estimate is not as good as the condi-
tional expectation because its probability distribution
is skewed in general.

[n full coverage situations, estimates that are com-
parable to conditional expectation may be obtained by
using nonlinear estimation procedures such as dis-
junctive kriging (Matheron. 1975; Journel and
Huijbregts, 1978: Azimi-Zonooz et al., 1989) or indi-
cator (co-) kriging (Journel. 1983, Seo, 1996), but at
the expense of about an order-of-magnitude (or
larger) increase in computational requirements. In
fractional coverage situations. the goodness of
opumal linear estimates deteriorates because of prob-
ability mass at zero. which adds skewness to the prob-
ability distribution of rainfall. Also, in fractional
coverage situations, nonlinear estimation procedures
based on transformation of continuous variables, such
as disjunctive kriging, are not directly applicable
because of the discrete probability mass at zero. Indi-
cator (co-) kriging, on the other hand, is capable of
handling fractional coverage situations (Seo, 1996)
but only at the expense of a significant increase in
computational requirements, and hence is not consid-
ered operationally viable at this time. In light of these
observations. the objective of this work is to develop
estimation procedures that explicitly account for rain-
fall vanability due to fractional coverage, but are
computationally significantly less demanding than
indicator (co-) kriging.

The first step in the first estimation procedure,
referred to herein as the Double Optimal Estimation
(DOE), is to rewrite the conditional expectation,
E(Z,z], as follows:

E[Z);z]EJ:ZOfZOIZl...A.Zn(ZOiZl'"":n)dz() (la)
= Jm- 7021, .. za(20lzy, ... 2y) dzg (1b)

- Jm “ofgoizn..... @21 . 2)/ PrIZy > Olz] dzg

-Pr(Zy > 0lz] (1c)

=E[Zylz, 25 > 0]-Pr{Z, > 0lz] (1d)
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In the above, f701z1. . za(20l2), .-, 2,) denotes the con-
ditional probability density function of Z, given z,
and Pr{-] denotes the probability that the event
bracketed will occur. Similarly, the conditional var-
iance Var[Zylz] may be written as:

Var(Zylz] = E[Z2 2] - E*[Z,z] (2a)
=E[Z3lz. 2 > O)-Pr(Zy > Olz] - £2[Zylz, 2 > 0]
-Pr*[Z, > Olz] (2b)

=Var(Zylz, zy > 01-Pr{Z, > Olz] + E*[Zyz, 2, > 0]
Pr(Z, > Olz]»{ I - Pr{Z, > 0lz}} {2¢)

The next step in DOE is then to estimate
ElZylz,zp > 01, Var(Zylz, 2, > 0], and Pr(Z, > Olz],
from which estimates of E[Z,lz] and Var({Z,lz] may
be obtained via Eq. (1a)-(1d), Eq. (2a)-(2c), respec-
tively. Motivation for such an approach stems from
the preceding discussion on skewness: because con-
ditioning on {z, > 0} reduces skewness in the prob-
ability distribution of Z,, the optimal linear estimate
of E[Zylz.z > 0] is expected to be a better approxi-
mation of E[Zylz,z, > 0] than the direct optimal
linear estimate of E[Zylz] is of E[Z,lz]. Hence. if
Pr{Zy > 0lz] can be estimated accurately, we may
expect that the indirect estimate of E[Z,lz] based on
Eq. (1a)-(1d) be more accurate than the direct esti-
mate of E[Z,lz]. In the following two sections. we
describe how Pr{Z, > 0lz], E[Zlz.z, >0]. and
Var{Zylz,zo > 0] in Eq. (la)=(1d). Eq. (22)=(2¢c).
may be estimated.

3. Estimation of Pr{Z, > 0iz]

The conditional probability Pr(Z, > 0lz] is esti-
mated from the indicator kriging estimator (Journel.
1983; Solow. 1986: Seo. 1996) via the following con-
ditionai-probability approximation of the conditional
expectation of an indicator random variable:

P"[Z’)>‘O|Z]z E[lou‘=l.|,[‘a=l.v,... [ =7 } (3)

In the above, the indicator random variable, / Y
defined according to:

) 1if Zj>0
= " ()

where. following our notational convention, i
denotes the experimental value that the random vari-
able /, takes on. For notationai brevity, we define
i={ly=i,h=i,,....[,=i,}. By the definition in
Eq. (4), we have ElL]= Pr{Z; >0} and
Var(l;) = EIf | - £°[1]] = Pr(Z; > 0)(1 - Pr(Z; > 0)).

As in indicator kriging, the nzht—hand side of
Eq. (3) is estimated by the following simple kriging
estimator:

E Ll =E11] + >\ (i,— ETI]) (5)

H [\43

where the asterisk signifies that the estimate is only
an approximation ot the conditionai expectation. The
optimal weights. A, are obtained by minimizing
E[{E'[Iojl]—/r)} I:

()\y,....}\n)=P()P“ (6)

where P, and P are the (1) X (n) and (n) X (n) indica-
tor covariance vector and matrix whose jth and ijth
entries are given by Cov(ly, 1;] and Cov{l,, 1;], respec-
tively. The estimation variance is given by:

Var[Iyli1= Var(ly]- P,P~' P} @)

From the definition of the indicator random variable
in Eq. (4), Cov{l;, 1;] is written in terms of uni- and
bivariate probabilities at and between «, and u,
respectively:

Cov[I, 1)
= E[I1]- ETLIETT) (8a)
=Pr(Z,>0.Z, > 0)=PrZ > 0IPr(Z, > 0]  (8b)

[n practice, in order to ensure positive definiteness of
the covariance matrix £ (and hence to guarantee valid
solutions of the optimal weights) in Eq. (6), it is
necessary to assume that occurrence of rainfall is
wide-sense second-order homogeneous (Karlin and
Taylor, 1975, p. 445). Then, Covi/, /;] may be
expressed as:

Covll;, [[1=07-p;(lu; — ;) 9

In the above, oj denotes the locally (i.e. within A)
homogeneous indicator variance. and p;(lu;—u;l)
denotes the indicator correlation coefficient, where
lu;—u;l denotes the Euclidean distance between u;
and u;. The locally homogeneous indicator variance,
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a?, can be rewritten as:

=E[I*]-E*(I] (10a)

=ElAl™! J I*(u) du] - EX[IAN J I(u)du]  (10b)
A A

=m,(1—-m,) (lOC)

where m, denotes the expected fraction of rain area in A.
Under the assumption of local homogeneity, we also
have E[l)]=E[[]=m; in Eq. (5). The homogeneity
assumption implies that occurrence of rainfall is equally
likely everywhere in A, which is reasonable in the
absence of pronounced local orographic or lake effects.

Because of lack of rain gage data, real-time estima-
tion of time-varying p,(-) is extremely difficult (if not
impossible). For this reason. we used climatological
estimates of p,(-) in this work (see also Section 06).
Being a measure of spatial association of rainy or
non-rainy patches, the indicator correlation function,
p;(+), does not in general undergo abrupt changes.
Hence, if stratified according to the stage of storm
development (e.g. developing, mature, and dissipat-
ing), storm type (e.g. convective and stratiform), and
seasonality (e.g. warm and cold), climatological esti-
mates should provide a good approximation to time-
varying p,(-). Advantages of using climatological
variograms in rainfall estimation have long been
recognized by a number of researchers (see. e.g.
Bastin et al.. 1984: Lebel and Bastin, 1985: Lebel
et al., 1987: Seo. 1996). On the other hand. the trac-
tion of rain area in A can undergo drastic changes over
a very short period of time, depending on how much
the areal extent of the storm happens to be overlap-
ping with the fixed field of view, A. For this reason.
the expected fraction of rain area in A, my, is estimated
in this work every hour from real-time gage data (see
also Section 6).

4. Estimation of E[Z,lz,zo > 0]

The conditional expectation E[Zylz, zo > O] is esti-
mated using the following linear estimator:

E*[Zylz, 29 > 01=E[Zylzo > 0]

+ I T@-ElZlz > 0D (11)

The optimal weights, I';, in Eq. (11) are obtained by
minimizing the conditional error variance.

El(Zo - E"[Zolz, 2 > OD?lzy > O:
(0}, T T) =000 (12)

where Qy and Q are the (1)x(n) and (n)x(n)
covariance vector and matrix whose jth and ijth
entries are given by the conditional covariances.
Cov(Zy,Zilzg > 0] and Cov(Z;,Zlzg > 0], respec-
tively. The estimation variance is given by:

Var'(Zylz, % > 0= Var(Zylzy > 01~ QoQ ™' Of

(13)
Under the assumption that both the rainfall amount,
Z, and the occurrence of rainfall, /, are locally

second-order homogeneous. the expected amount of
positive rainfall in A, mg, may be written as:

mg

=E[Zlz > 0} (14a)
=E[Z]/PrlZ > 0] (14b)
=E[Z]/El] (14c)

:EUIAN"J Z(w) du}/E[nAu‘*f [wdu]  (14d)
A JA

=m/m, (1de)

where Eq. ( 1 4b) follows tfrom Egq. (1d), and m denotes
the expected spatially-averaged rainfall over A. The
assumption that rainfall amount is locally homoge-
neous is reasonable in the absence of pronounced
local orographic or lake etfects. The locally homo-
geneous variance of positive rainfall, op, may be
written as:

ok

=Var[Z|z > 0] (15a)

=Var(Z]/Pr{Z > 0] - E*(Zlz > 0)(1-Pr{Z > 0])
(15b)

=o /m; —mg(1 —my) (15¢)

In the above. Eqg. (15b) follows from Eq. (2¢), and o?
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denotes the locally homogeneous (unconditional)
variance of rainfall in A:

2

a
=E[Z°]- E*(Z] (162)

=E[IIAH’IJ’ Z2(u) du] - E*[lAN" L Z(u)du] (16b)
A

Because both my and afq are specified largely by the
storm dynamics, they can be very fast-varying in
time. For this reason, my and 0,2; are estimated in
this work every hour from real-time rain gage data
(see also Section 6). The next two subsections
describe how the conditional expectation
E[Z;]zy > 0] in Eq. (11) and the conditional covar-
iances, Cov(Zy,Zlzy > 0] and Cov{Z;,Zlzo > 0], in
Eq. (12) may be specified.

4.1. Specification of Cov(Zy, Z;lzy > 0]

The conditional covariance Cov(Zy, Z;zy > 0] may
be obtained from the following set of operations:

Covi{Zy, Zilzy > 0]
=E[ZyZ|zg > 0] - E[Zylzy > 0)E[Z]zo > 0] (17a)

=E[ZyZ\z; > 0,2y > 0)-Pr{Z; > Olz, > 0]
+E[ZyZ,)z,=0.2y > 01-Pr{Z,=0lz, > 0]
- E[Zylzy > O1(EZ1z9 > 0.5, > 0]
Pr{Z; > 0lzy > 0]+ E[Z;lzg > 0. z;=0]
-Pr(Z;=0lzy > 0]) (17b)

=(E[ZoZlz; > 0,29 > 0] - E[Zplzy > 0)-E[Z;lz; > 0O])
-Pr{Z; > 0lzy > 0] (17c)

=Cov[Zy, Z]zy > 0,z; > 0)-Pr(Z; > 0lzy > 0] (17d)

Under the assumption that positive rainfall amount is
wide-sense second-order homogeneous (Kariin and
Taylor, 1975, p. 445), we may write
Cov(Zy, Z;\zg > 0,z; > 0] in Eq. (17d) as:

Cov(Zo, Zilzy > 0,2 > 0] =0g-pr(lu; — u;l) (18)

In the above, pg(lu;—u;l) denotes the correlation
coefficient of positive rainfall, which is estimated

climatologically in this work (see also Section 6).
The conditional probability Pr{Z; > 0lzy > 0] in Eq.
(17d) is given by Eq. (8a), (8b) and Eq. (9) as:

Pr{Z; > 0lzyg > 01=(1 —my)-p;(lu; — ugl) + m, (19)
We then have:
CovlZo, Zilzo > 01=0-pg(l; ~ ug)-((1 = my)

-pr(lu; = uol) +my) (20)

4.2. Specification of Cov(Z,;, Z;1zy > 0]

By definition, we have:
CoviZ;, Zjlzo > 01 = E[Z,Z;lz > 01 - E[Z]zy > 0]
ElZlz > 0] (21)
In the above, E[Z,Z;|zy > 0] can be rewritten as:

EIZ,Z;lzo > O]

=E[ZZlz > 0.5, > 0.z, > 0]
-Pr(Z; > 0,Z, > 0lzy > 0]

+E[Z,Z1zg > 0.5;=0.2;, > 01-Pr{Z;=0,Z; > 0lz5 > 0]
+E[Z,Z]zy > 0.2, > 0.5,=0]-Pr(Z, > 0.Z;=0lz, > 0]

+E[ZZ]z) > 0.2,=0.2,=0]-Pr(Z,=0.Z,=01z > 0]

(22a)

=E[Z,-Zjll() > 0. > 0. gy > 0]
-Pr{Z; > 0.Z; > 0lzy > 0] (22b)

=E[Z,Z]z; > 0.5, > 01-Pr(Z; > 0.Z; > 0lzy > 0]
(22¢)
In arriving at Eq. (22¢) from Eqg. (22b), we have used
the assumption that positive rainfall is locally second-
order homogeneous, and therefore conditioning on
{zo > O} has no effect on E[Z;Z;lz; > 0,z; > O].
The conditional expectation £[Z;|z, > 0] in Eq. (21)
can be rewritten as:

E[Zlzy > 0]

=E[Zz; > 0,z > 0]-Pr(Z; > Olzy > 0]



[
<

+E{Z,!Z, =O. 2 > O]'P"[Z,’ZOL'{O > O] (233)

=E[Zlz; > 01-Pr{Z; > 0lzy > 0] (23b)
We then have:
Cov(Z;,Z;1zy > 0]

~E[Z[z, > 01Pr(Z, > Olzy > O-E[Z,)z, > 0]
-Pr(Z; > 0lzy > 0] (24)

In the above, E[Z,Z]z; > 0.7, > 0] and
Pr{Z; > 0lzy > 0] are given by Egs. (18) and (19),
respectively. Specification of PriZ; > 0.
Z; > 01z > 0] in Eq. (24) requires estimation of
trivariate cumulative distribution among Z, Z;, and
Zo as functions of lu; ~ u;i, lu; = uqi, and lu; — uyi at the
cutoff of zero rainfall. Empirical estimation of this
distribution using, for example. radar rainfall data, is
left as a future endeavor. In this work.
PriZ;>0,Z; > 0lzy > 0] is approximated by the
indicator kriging estimator as described below.
First. using the identity Pr{Z; > 0]=Pr(Z, > 0]
under the assumption of local homogeneity, we write:

Pr(Z; > 0.Z, > Olzy > 0] = Pr(Z, > 0lz, > 0.z, > 0]
Pr(Z, > 0lz; > 0] 125)

where Pr{Z; > 0lz; > 0] is given by Eq. (19). To
specify Pr(Z, >O|z_,» >0.5,>0] in Eg. (25). we
use. as in the esumation of Pr(Z, > 0iz] in Eq. (3),
the conditional-probability approximation of the con-
ditional expectation of an indicator random variable.
Pr(Zy > 0lz; > 0.z; > 0] = E[lpll;= I.;=1]. Then,
from Eq. (5), we have:

Pri(Zy > 0lz; > 0,z; > Ol =m; +(w; +w;)(1 —my)

(26)
where
;= {py(lug = u;) = py(lu; = ;1o  (lug = 1)} /
{1=pi(lu; - u;h)) (27)
w;= {py(lug = ;1) = py (lu; = 1)y (lug = 11)} /
(1=pj(lu;— ;1)) (28)
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Reasonableness of Eq. (26) can be easily checked by
evaluating its dependence on the geometry among u,,
up and u; as specified by lug=—u;l, lu;~ul, and
wg—w;l. It is also easily verified that
Cov{Z;,Z,|\Zy > 0] thus obtained via Eq. (24) is
reduced. as it should. to Eg. (20) when j = 0.

S. Direct estimation of E[Z,lz]

A simpler and computationally less expensive alter-
native to DOE described above is to use the simple
kriging estimator to directly estimate rainfall amount.
based on the correlation function that accounts for
both within-storm variability and variability due to
fractional coverage. This approach. referred to herein
as the Singie Optimal Estimation (SOE). is described
below. As will be seen. SOE is identical to the so-
called best linear unbiased estimator (BLUE) if the
rainfall coverage is full. Hence. the only distinction
being made by the term SOE is that it specifically
refers to BLUE under fractional coverage conditions.
The estimator used in SOE is the same as that in
simple kriging:

E[Zylz]=E[Z,) + :\':A,(:,—E(ZJ) (29)

r=1

Under the assumption that rainfall amount is locally
homogeneous. the unconditional expectations. £[Z,]
and E{Z/], in Eg. (29) are given by m in Eq. (14a)-
(l4e). The opumal weights. .\;s. are obtained by
minimizing the error variance. E((ZQ—E*[Zolz]):]:

(A Ay A)=C,C7! (30)

where C, and C are the (1) x (1) and (n) x (n) covar-
iance vector and matrix whose jth and ijth entries are
given by Cov(Z,,Z;] and Cov(Z;, Z;], respectively.
The estimation variance is given by:

Var™(Zylz) = Var(Z,] - 0,0~ ' 0 (31)

Under the assumption that rainfall amount is locally
second-order homogeneous. the unconditional
variance Var{Z,] in Eq. (31) is given by ¢ in
Eq. (16a) and Eq. (16b).

The first step in specifying Cov[Z;, Z;] is to write:

CovlZ;, Z;]

=E[zZ)-EZIEZ] (32a)
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=E1ZZ); > 0.5, > 01-Pr{Z, > 0.2, > 0]
- ElZilz, > OV-E[Z,\z; > 01-Pr{Z, > 01-Pr(Z, > 0]
(32b)

Under the assumption that both positive rainfall
amount and occurrence of rainfall are wide-sense
second-order homogeneous (Karlin and Taylor.
1975, p. 445), we use Eq. (18). Eq. (8a), Eq. (8b).
Eq. (9), Eq. (14a)—(14e) to specify the terms in
Eq. (32b), which yields:

COV[Z,‘,Z]'] =0';}'irl[( | —m!)-pR(lu,v —liji)-p,(|u,~ - lll;i)
+mpmy(1 —my)pi(lu;— i)+ or-mi-pp(lu; — uil)

(33)

Eq. (33) has been empirically verified in the study of’

climatological variability of mean areal rainfall
through fractional coverage (Seo and Smith. 1996).
Note in Eq. (33) that. if the rainfall coverage is full
(1.e. m;=1), the covariance is specified exclusively
by the inner variability term (the last term), and that.
if there is no inner variability (i.e. g =0), the covari-
ance is specified exclusively by the intermittency
term (i.e. the second term). It is easy to ensure that
Eq. (33) constitute a valid covariance model: for
example. if both pg(l-) und p,(I-) are of the
exponential or the gaussian model (Journel and
Huijbregts. 1978, pp. 164—165). pg(i-)-p,(I-D) is also
of the same model. and hence Eq. (33) is a valid
covariance (Journei and Huijbregts. 1978, p. 172).

6. Parameter estimation

Both DOE and SOE require specification of the
following parameters: (1) mg, the expected amount
of positive rainfall in A. (2) 0%, the variance of posi-
tive rainfall in A. (3) m,, the expected fraction of rain
area in A. (4) pg(lhl), the spatial correlation function
of positive rainfall. where (4l denotes the separation
distance, and (5) p;(lAl), the spatial correlation func-
tion of occurrence of rainfall.

Reliable estimation of time-varying my, mg, and o
based on rain gage data only from the current hour is
very difficult due to lack of data points. [deally,
recursive estimation procedures that make use of
rain gage data not only from the current hour but

also from the previous hours wiil have to be used.
We only note here that such procedures are under
development. and will be reported in the near future.
In this work. m ., myg, and a,:e are estimated every hour
using rain gage data only from the current hour: the
e§timat0}'s used are my=n,/n. mp = t/n,) Xz, and
0= L3/ (n, = D= (X)) /{n,(n, = D}, j=1....
n,, where n, is the number ot positive gage data in
A. n is the number of all gage data in A. and Zp; is the
Jth positive gage datum in A. Impiicit in the above
estimators is the assumption that rain gage data are
spatially independent of one another. which, accord-
ing to sensitivity analyses. is reasonable for purposes
of estimating m, and mp.

Climatological estimation of p,(iAl) and pg(lhl)
based solely on hourly rain gage data is extremely
difficult (if not impossible) due to sparsity of gage
networks. In this work. p,(ihD) and pg(lhl) are esti-
mated climatologically from hourly radar rainfall
data from the Weather Surveillance Radar-1988
Doppler version (WSR-88D) at Tulsa. Oklahoma.
The period covered is late August 1993 through
early May 1994. The reader is kindly referred to Seo
and Smith (1996) for indicator and conditional (on
occurrence of rainfall) correlograms at adjacent
WSR-88D sites (i.e. Frederick. Oklahoma. and Little
Rock. Arkansas): those at Tulsa are very similar, and
hence are not shown here. Thev suggest that both
indicator and conditional correlation functions are
well-modeled by the isotropic exponential model
with nugget etfect: for example. for p,(ih]):

it h=10
p,uh!)={ - (34)
proexp(—hAi/L)y if h>0
where pyq is the lag-0 indicator correlation coefficient
and L, is the scale parameter.

Use of radar rainfall data in estimation of correla-
tion functions of gage rainfall is not completely with-
out base. for example if radar rainfall is a linear sum
of gage rainfall and a white-noise error in space, the
conditional correlation function of gage rainfall is
identical to that of radar rainfall (Creutin et al.,
1988: Seo and Smith. 1991). Because of various
sources of systematic errors in radar observation of
rainfall (Wilson and Brandes. 1979: Austin, 1987;
Smith et al.. 1996; Seo et al.. 1998) and differences
in sampling scale between radar and rain gages,
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however, the above assumption is not true in general
(Krajewski et al., 1996). Representativeness of the
correlation functions of hourly gage rainfall as esti-
mated from hourly radar rainfall data is currently
under investigation, and will be reported in the near
future.

7. Validation

To evaluate DOE and SOE. cross validation was
performed using hourly rain gage data, which
involved the following steps: (1) at each hour, with-
hold rain gage data one at a time. (2) at each time.
estimate rainfall at the withheld gage location using
surrounding, non-withheld rain gage measurements
available for that hour, and (3) for each withheld
gage location, compare the estimates against the
revealed gage measurement. The hourly gage data
used are from the operational network under the
WSR-88D radar umbrella at Tulsa, Oklahoma (see
Fig. 1: the radar umbrella of radius of 230 km circum-
scribes the square area), covering April. June, July,
and August of 1994. Because the estimation proce-
dures do not require parameter-tuning of any kind,
no calibration data sets were necessary. Because
SOE and DOE are being developed as potential

S |
(5]
£
-
=
3 8
e
k]
0
Q
3_.
o A
-0 100 200 300
distance in km

Fig. 1. Hourly rain gage network under the Tulsa, Oklahoma,
WSR-88D umbreila.

estimated rainfall in mm by RDS

0 10 20 30 40
ground-truth rainfail in mm

Fig. 2. Scatter-plot between observed and estimated rainfall from
RDS.

alternatives to the existing precipitation analysis pro-
cedures, validation was focused largely on how SOE
and DOE compare with the reciprocal distance-
squared method. abbreviated as RDS (also known as
the inverse distance-squared method, Chow et al..
1988. National Weather Service. 1993), which is
one of the long-standing gage precipitation analysis
procedures for operational hydrologic forecasting in
NWS.

The number of nearest rain gage data used is 15 for
all estimation procedures. FEstimates less than
0.25 mm are truncated to zero in accordance with
the fact that most rain gages in the network have the
minimum detectable rainfall amount of one-hun-
dredth of an inch. Figs 2 and 3 show scatter-plots of
estimated versus observed hourly rainfall from the
cross validation for RDS and DOE, respectively.
The scatter-plot for SOE (not shown) is closer to
that of DOE than that of RDS. The tighter the scatter
is around the straight line, the better the estimates are.
Out of 19204 data points, 13 506 are associated with
the observed rainfall amount of zero. It is seen that the
DOE estimates form a tighter scatter around the
straight line than the RDS estimates. The type of scat-
ters seen in the figures are not at all unusual for cross
validation of hourly point rainfall (even though the
study area has one of the densest operational rain
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estimated rainfall in mm by DOE

10

0 10 20 30 40
ground-truth rainfall in mm

Fig. 3. Scatter-plot between observed and estimated rainfall from
DOE.

gage networks in the US), and serves to illustrate
extremely large variabilities of rainfall at that
space—time scale. Also contributing to the large scat-
ter is the fact that the validation data come largely
from the convective season.

1010 1002 10M

101-2

{ground-truth - estimated rainfail*2 in mm~2

10~-6

1006 1004  10A2 1000 1002 10M
estimation variance in mmA2 by SOE

Fig. 4. Scatter-plot between (estimated rainfall — observed rain-
fall)? and estimation variances from SOE.

1002

1082

(ground-truth - estimated rainfall)*2 in mm"2

106

106 104 102 1000 1002 ‘ 10Md
estimation variance in mm*2 by DOE

Fig. 5. Scatter-plot between (estimated rainfall — observed rain-
fall)? and estimation variances from DOE.

Figs 4 and 5 show scatter-plots of (estimated rain-
fall — observed rainfall)® versus estimation variance
from SOE and DOE, respectively. The tighter the
scatter 1s around the straight line. the better the
variance estimates are. It is seen that the DOE esti-
mates form a tighter scatter. The tendency to over-
estimate estimation variance by both SOE and DOE
is due primarily to sampling errors associated with
estimating conditional variance. 0%, and expected
fraction of rain area, m, from a small number of
rain gage data in A: similar resuits have been observed
in Seo et al. (1990) and Seo and Smith (1991). Other
contributing factors include nonhomogeneities in
occurrence of rainfall and positive rainfall in A,
unrepresentative correlation functions due to lack of
stratification according to rainfall climatology and
storm dynamics, and to lack of representativeness in
the correlation functions of gage rainfall estimated
from radar rainfall data. The biases seen in Figs. 4
and 5 could have been reduced if we had obtained
estimation variances by cross-validating against the
actual error variance in real time. Such an approach,
however, requires that the gage network be of high
density, and hence is not considered operationally
viable in many parts of the country. The traces of
parabolic curves appearing in Fig. 5 over the straight
line are due to the fact that £[Z,lz] and Var{Zlz] are
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Fig. 6. Percent reduction in mean error and root mean square error OVer various ranges of amount of observed rainfall.

functionally related to each other by the common
terms. E[Zylz,zy > 0] and Pr{Z, > 0lz] (see Eq. (1d)
and Eqg. (2¢)). i

To help quantitatively assess the performance of
SOE and DOE relative to that of RDS. we introduce
two measures; percent reduction in absolute mean
error and percent reduction in root mean square
error, abbreviated as PRiIAME and PRiRMSE. respec-
tively. For example, the percent reduction in absolute
mean error by SOE over RDS estimates. or PRIAME-
(SOE), 1s defined as:

PriAME(SOE) = 100 x { AME(RDS)
- AME(SOE)}/AME(RDS) (35)

where AME(RDS) and AME(SOE) denote the
absolute mean errors (i.e. the absolute values of
mean error) of RDS and SOE estimates, respectively.
Analogously, the percent reduction in root mean
square error by DOE over RDS estimates, or PRIRM-
SE(DOE), is defined as:

PriRMSE(DOE) = 100 x {RMSE(RDS)
-RMSE(DOE) } /RMSE(RDS) (36)
where RMSE(RDS) and RMSE(DOE) are the root
mean square errors of RDS and DOE estimates,
respectively. By definition, we have PRIAME(RDS)

= PRiIRMSE(RDS) = 0 (%), and perfect estimates
will yield PRIAME(:) = PRIRMSE(:) = 100 (%).

Fig. 6 shows. in the form of dotcharts. PRIAME(")
and PRiIRMSE(:) over various ranges of observed
rainfall amount. They indicate that: (1) DOE esti-
mates are more accurate and less biased than RDS
estimates over all ranges of rainfall amount, (2) the
improvement of DOE over RDS is most significant
over areas of no to light rainfall. and (3) SOE esti-
mates are in general more accurate than RDS est-
mates. but more biased over ranges of no to small
rainfall amount.

Because tforecasters interpret estimated rainfall
fields primarily through visualization. 1t 1s important
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29.4 mm
273 mm
252 mm
23.1 mm
21.0 mm
18.9 mm
18.8 mm
14.7 mm
12.8 mm
10.5 mm
8.4 mm
6.3 mm
: 42mm
< ¥l 2imm
0 mm

200 300

distance in km

100

0 100 200 300
distance in km

Fi

-

g. 7. An example of RDS-estimated hourly rainfall field.
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Fig. 8. An example of DOE-esumated hourly rainfall field.

to examine visual differences among them. Figs. 7 and
8 show examples of RDS- and DOE-estimated rainfall
fields. respectively. They are obtained by performing
estimation on the HRAP grid (National Weather Ser-
vice. 1993). The grid size is approximately 4 X 4 km”
in the study area. The radar umbrella circumscribes
the square plotting area in the figures. The SOE-
estimated field looks similar to the DOE-estimated.
and hence is not shown. The corresponding radar
rainfall field. which is also on the HRAP grid and
free of visually recognizable errors associated with
radar observation of rainfall. such as ground clutter.
ground returns from anomalous propagation (AP),
bright band enhancement. etc.. is shown in Fig. 9.
It is seen that Fig. 8 has a more “*structure’ " to both

200 300

distance in km

100

distance in km

Fig. 9. Hourly radar rainfail field corresponding to Figs. 7 and 8.
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Fig. 10. Percent r=aucuon in root mean square €rror over various
distances 1o the nearest gage from the point of esumauon.

no-rain areas and raintall over rain areas than Fig. 7.
and. in reference to the radar rainfall field. looks to be
the more realistic of the two. In this visual com-
parison. it is extremely important to keep in mind
that what is meant by an “estimated’’ rainfail field
in this work refers to a conditional '‘expectation’
field, as opposed to a conditional **simulation’” field
(see. e.g. Deutsch and Journel. 1992): the distinction
is that., whereas the latter represents a plausible
realization of what could have occurred. the former
represents the ensemble average of many such reali-
zations (hence the circular rainfall gradients surround-
ing rain gage locations in Figs. 7 and 8).

In Fig. 7. the unrealistically pronounced patterns of
circular gradients in “expected’’ rainfall around the
gage locations suggest that RDS estimates may be
prone to larger errors than SOE or DOE estimates
near gage locauons. Fig. 10. which shows
PRiRMSE(-) us stratified according to the distance
between the point of vailidation and the location of
the nearest gage. confirms that SOE and DOE esti-
mates are significantly more accurate in the immedi-
ate vicinity of rain gage locations than RDS estimates.

8. Summary and conclusions

Two gage-only rainfall analysis procedures that
explicitly account for both within-storm variability
of rainfall and variability due to fractional coverage
are described: (1) double optimal estimation (DOE)
involving analogues of indicator and simple kriging to
estimate probability of rainfall and rainfall amount
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given raining, respectively, and (2) single optimal
estimation (SOE) involving an analogue of simpie
kriging. To compare the estimation procedures with
the reciprocal distance-squared method (RDS), cross
validation was performed using hourly rain gage data
from the operational network under the Tulsa,
Oklahoma, WSR-88D umbreila.

Resuits indicate that: (1) DOE estimates are more
accurate and less biased than RDS estimates over all
ranges of rainfall amount, (2) the improvement of
DOE over RDS estimates is most significant over

~areas of no to light rainfall, (3) SOE estimates are in
general more accurate than RDS estimates, but more
biased over ranges of no to small rainfall amount, and
(4) SOE and DOE produce much more realistic-
looking ‘‘expected’’ rainfall fields than RDS.
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