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ABSTRACT

Procedures for real-time estimation of rainfall fields using rain gage and radar rainfall
data are described. Based on multiplicative decomposition of expectation of rainfall into
conditional expectation of rainfall given raining and probability of rainfall, the procedures
explicitly account for both within-storm variability of rainfall and variability due to fractional
coverage of rainfall. As a result, in addition to the accuracy of radar rainfall data in estimating
rainfall given that it actually rained, that in discerning rainfall from no rainfall can also be taken
into account. The assumptions required are that the occurrence of rainfall is locally equally
likely everywhere, and that positive rainfall is locally second-order homogeneous. To evaluate
the estimation procedufes, a cross-validation experiment was performed using hourly radar

rainfall data from the Tulsa, Oklahoma, Weather Surveillance Radar - 1988 Doppler (WSR-88D)



and hourly rain gage data in the area. It is shown that, on the average, multi-sensor estimates are
significantly more accurate than either mean field bias-corrected radar rainfall data or gage-only
estimates, but that, for specific purposes of detection and estimation of large rainfall amounts,

mean field bias-corrected radar rainfall data may be the most accurate.



INTRODUCTION

With the nationwide implementation of Weather Surveillance Radars - 1988 Doppler
(WSR-88D), real-time radar rainfall data are now routinely available for operational hydrologic
forecasting in the United States (Fread et al. 1995). Direct use of radar rainfall data in
quantitative operational hydrologic forecasting, however, 1s in general unacceptable because of
various sources of error associated with radar observation of rainfall (Wilson and Brandes 1979,
Austin 1987, Smith et al. 1995). In thé National Weather Service (NWS), to produce rainfall
estimates that are of suitable quality to input to streamflow prediction models, the following
steps are typically taken; a series of automatic quality control of raw radar rainfall and rain gage
data, correction for mean field bias in radar rainfall data, multi-sensor estimation of rain‘fall
fields using rain gage and bias-corrected radar rainfall data, and interactive quality control of
rainfall fields from multi-sensor estimation (Hudlow 1988, Shedd and Smith 1991, NWS 1995).

Though both bias correction and multi-sensor estimation use radar rainfall and rain gage
data, they serve fundamentally different purposes in that, whereas the former is to obtain radar
rainfall data that are free of radar umbrella-wide multiplicative biases due, e.g., to lack of radar
hardware calibration and temporal changes in the raindrop size distribution (Smith and
Krajewski 1991), the latter is to estimate rainfall fields that would be observed by an extremely
dense network of rain gages (say, one gage per 4x4 km*). The combined effect of bias correction
and multi-sensor estimation is that, on the average, the multi-sensor estimates are more accurate,

at any scale of spatio-temporal aggregation (i.e., beyond the aggregation scale of the data itself),



than rainfall estimates obtainable from either the radar rainfall or the rain gage data alone. The
purpose of this work is to develop multi-sensor rainfall estimation procedures intended for
operational implementation at NWS River Forecast Centers (RFC) and Weather Forecast Offices
(WFO) in support of operational hydrologic forecasting.

Joint use of radar rainfall and rain gage data in rainfall estimation has been dealt with by
a number of researchers (Wilson 1970, Crawford 1977, Brandes 1979, Eddy 1979, Krajewski
1987, Creutin et al. 1988, Azimi-Zonooz et al. 1989, Seo et al. 1990). Though optimal
estimation procedures such as cokriging are shown to be superior to heuristic ones, none of the
existing formulations offer an objective framework in which, in addition to within-storm
variability of rainfall (or, inner variability, Barancourt et al. 1992), variability due to fractional
coverage of rainfall (or, spatial intermittency) can be explicitly accounted for. It is an extremely
important consideration for two reasons. The first is that, within the radar umbrella (for WSR-
88D, the effective range is 230 km for rainfall estimation), the spatial coverage of, e.g., hourly
rainfall is almost always fractional, and therefore accurate delineation of rain area (a spatial
intermittency consideration) is as important as accurate estimation of rainfall over rain area (an
inner variability consideration). The second is that radar rainfall data contain not only errors in
radar estimation of rainfall given that rainfall is detected (an inner variability consideration), but
also errors in radar detection of rainfall (a spatial intermittency Consideration), Accuracy
assessment of radar rainfall data as a function of range indicates that, at far ranges, the latter 1s at
least as important as the former (Kitchen and Jackson 1993, Smith et al. 1995). The multi-sensor
rainfall estimation procedures described in this work differ most significantly from the previous

ones in that they explicitly account for both types of rainfall variability and both types of error in



radar observation of rainfall. Mathematically, they are straightforward extensions of the gage-
only rainfall estimation procedures of Seo (1995), to which frequent references are made
throughout this paper.

This paper 1s organized in the following sections; description of the problem, estimation
of the probability of rainfall, estimation of the amount of rainfall given raining, direct estimation
of rainfall, operational considerations and parameter estimation, verification, and conclusions

and future research recommendations.

PROBLEM DESCRIPTION

The problem of optimally estimating spatial distribution of rainfall using radar rainfall
and rain gage data may be stated as follows. Estimate rainfall at an arbitrary location u, under
the radar umbrella, using radar rainfall and rain gage data within the estimation domain, A, that
would be measured by a rain gage if one existed at that location. We denote this unmeasured
ramnfall by Z,,. Assuming, e.g., isotropy in the correlation structure of rainfall, we may define
the estimation domain, A, to be the circle centered at the point of estimation, u,, whose radius
equals the spatial correlation scale of rainfall. Our goal is then to estimate
E[Z, lZg1=zg1,...,Z@=Z@,Zn=zﬂ,...,Zm=zm,], where Z 's and Z,'s are the rain gage and the radar
rainfall data at locations, u/'s and u/'s within A, respectively, and the upper- and the lowercase
letters signify random variables and their experimental values, respectively. For notational
brevity, we define Z,={Z =z,,....2 =z} and Z,={Z ,=z,,....2 =7}

As in gage-only estimation of Seo (1995), the first step in our first approach to multi-



sensor estimation is to rewrite E[Z , Q(},ZR} and Var[Z,, |ZG,ZR] as follows:

E[Z, 24,2 )=E[Z, 2, Z;,2,,>0] Ptz 2, Z] (1)
Var[Z,,Z,Z,]
=Var[Z,, Z,Zy,2,,>0]Pr[z,, 2,2 J*E1Z 4 2, Z,,2,,>01{1-Pr[z,, Z, Z, ]} (2)

We then estimate Pr[z,, 7.2, E[Z,, 1ZG,ZR,ng>O], and Var[Z,, [ZG,ZR,ng>O] via optimal linear
estimation, from which estimates of E[Z,, Z.Z.] and Var[Z,, {ZG,ZR] can be obtained via (1) and
(2). The rationale behind the approach is given in Seo (1995) based on considerations of
skewness in probability distribution of rainfall under fractional coverage conditions. Another
motivation for the approach is that (1) mirrors the multiplicative decomposition of a rainfall
estimate into the probability of rainfall and the conditional estimate given that it actually rained.
It hence appeals as a natural multi-sensor nonlinear estimator when both the estimation accuracy

and the detection accuracy are considered in radar rainfall data.
ESTIMATION OF Pr{z,, Z,,,Z,]

Pr(z, Z,Z] in (1) and (2) is estimated via indicator cokriging (Journel 1983, Solow
1986, Seo 1996), based on the following conditional probability approximation of the

conditional expectation of an indicator random variable:

P r[ZgO IZG’ZR]:E[I{zg(PO} HG’IR] (3)



In the above, we defined 1= {1, 10,7101 010 oL iugno0y ™ ooy} aNA

= {L 150, r150)s- - Lm0y T zmony § » Where the indicator random variables, ., and I,,,.,, are

defined as:

r1if z>0

g0y = (4a)
L0ifz,=0

J 1ifz>0
(4b)

Vo0 =

L 0ifz=0

E[L, 0.0, ﬁg,IR] in (3) may be estimated by the following indicator cokriging estimator:

E*[I{ng>0} 'IGJR]
n m

= E[I{zg0>0 ] 2 A’g (l {zg1>0} [ {zg1>0} ]) + E )\‘ (1 {zrj>0} ~ [I'zrp()}]) (5)
1=1 =1

where n and m are the numbers of rain gage and radar rainfall data in A, respectively. In (5), the

optimal weights, A,’s and A.s, that minimize E[(I,, 0., - E'L,, .00, [, ])* 11;,I] are given by:

r PGG PGR 1 !
)\' rl: m\) [P PRO ‘ ‘ (6)
L PRG PRR J

(A

gl,n.

where P, P (=Pg.'), and P, the nxn, nxm, and mxm indicator covariance matrices whose ij-

th entries are given by Cov{I .op.1g-0,], COVIL 0y, limpny ], and Cov{l .10, ], Tespectively,



and P, and Py, are the 1xn and 1xm indicator covariance vectors whose i-th entries are given by
CoV[I,g0p- 1125001 )y COV[L oy Lizeonn ], Tespectively.  Cov[Ion Lo, COVIIn a0, ], and

Cov[l 0yl iap0;] are written as:

>0

(137} PR PR, T W TR (7a)
(%) PR PR L T AT W G T (7b)
CoVII 01l 0170 P lu,-uj ) (7¢)

respectively, lu-u, |is the

{zr>0}>

where 0, and o, are the standard deviations of I, and I
Euclidean distance between u; and u, and py( kD, pr( b and p,( : |) are the spatial correlation

functions of I,.,,, between I, and I, ,, and of I,.,,, respectively. Under the assumption

that occurrence of rainfall is equally likely everywhere in A, we define m, =E[I,,.,,], which may

>0

now be interpreted as the fraction of rain area within A. Then, we may also write o,°=m,(1-m,).

ESTIMATION OF E(Z,,Z,Z, .z >0]

E[Z, [Zg,ZR,zgo>O] in (1) and (2) 1s estimated by the following linear estimator:



E'[Z,Z5,Z,2,4>0]

n m
=E[Z,,lz,,>0]+Z T (2,-E[Z, lz,,>0])+Z T, (2,-E[Z, [z,,>0]) (8)

g gl ) g0

1=1 =1

In (8), the optimal weights, I,'s and T','s, that minimize E[(Z,,-

E'[Z, 2, Z4,2,0>0]) Z5,Z4,2,>0] are given by:

r QGG Qar 1'1
(ng'"’Fngrl"“’Fm):{QOG QOR] l i (9)
L QRG QRR J

where Qgg, Qur (7Qgs'), and Qyy are the nxn, nxm, and mxm conditional covariance matrices,

whose ij-th entries are given by Cov[Z_.Z. |z >0], Cov[Z_,Z, |z.,>0], and Cov[Z, ,Z. lz >0],

girgy g0 gty gl > gl

respectively, and Q,; and Q,; are the 1xn and 1xm conditional covariance vectors, whose 1-th

Z. lz,>0], respectively.

g0>r g0

Z_ lz.,>0] and Cov[Z

and j-th entries are given by Cov[Z,Z, iz,

For specification of E[Z,, z.,>0] in (8), the reader is kindly referred to (23) of Seo (1995).

o gl

E[Z, lzg0>0] in (8) is specified analogously as follows:

E[Z,[z,,>0]
=E[Z, z,;>0,2,,>0]Pr[z,>0 lz,;>0]+E[Z, lz,=0,2,,>0]-Pr[2,=0 [z,,>0] (10a)
=E[Z, [z,>0]-Pr[z,>0 lz,,>0] (10b)
=m;-{(1-my)py( hu-u, [j+m, ) (10¢)

In obtaning (10c) from (10b), we have used the definition, m,=E[Z, lz,j>0], and the assumption

10



that the fraction of rain area observed by radar is the same as that observed by a dense network
of rain gages (see also Operational Considerations and Parameter Estimation Section), i.e.,
m=my,, where m; =E[I..,].

For specification of Cov[Z_,Z. [z >0] in (9), the reader 1s kindly referred to (24) through

g>™g) g0

(27) of Seo (1995). To specify Cov[Z,,Z, lz,,>0] in (9), we first write:

g

Cov[Z_.Z. lz.,>0]

glor) “g0

=E[Z,Z, z,,>0]-E[Z, [z,,>0]-E[Z, lz,>0] (11)

g1 g0 T g0

In the above, E[Z,Z, &go>0] can be written as:

E[Z,Z,lz,,>0]
=E[Z,Z,z,>0,2,>0,2,,>0] -Pr[z,>0,2,>0 [z ,>0] (12a)
=E[Z,Z, 2,>0,2,>0,2,,>0] Pr[2,,>0 z,>0,2,>0] -Pr[z,>0 lz,>0]-Pr[z,>0]/Pr[z,,>0] (12b)
=E[Z,Z, l2,>0,2,>0] Pr{z,>0 2,50 2,>0]-Pr(z,>0 lz,>0] (12¢)

The three terms in (12c) are specifies as follows. Pr[z>0 fzgi>0] 1s given by the second term in

(10c). E[Z,Z,lz,;>0,2,>0] is given by:

1) “gi
oTg

E[Z,Z,lz,>0,2,>0]=0,0,p(lu-u,) (13)

where 0, and o, are the standard deviations of positive gage and positive radar rainfall,

11



respectively, and p( fui-uJ l) denotes the conditional cross-correlation coefficient between Z, and

Z,. Pr[z,>0 (zgi>0,z,j>0] is estimated by the indicator cokriging estimator described by (3)

through (6):

E[z,>0 z,>0,,>0]
zE[I{zg(bO} [I{Lgi>0}:1’1{zrj>0}=1] (14a)
=Myt W, (1-my)+w,(1-my) (14b)
where
W4, ={ Pyl [up=u, | )-prl | U;-u 1Pl uo-u)[ )3 1'pIc:(' u;-u; D} (15a)

W= {Pr| uo‘uji)'plc(iui'“j‘)'plg(}uo‘uil)}/{ 1-p( u-ul)} (15b)

Z_lz_>0] is completely analogous, and is not given here.

Specification of Cov([Z,,Z, z,,

As in gage-only estimation of Seo (1995), a simpler and computationally less expensive
alternative to the above estimation procedure, which we now call Double Optimal Estimation
(DOE), is to directly estimate E[Z,, Z.2Z,] and Var[Z,, Z.,,Z,] using the correlation structure
that reflects both within-storm variability and variability due to fractional coverage. This
estimation procedure, which we now refer to as Single Optimal Estimation (SOE), is described

in the next section.
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DIRECT ESTIMATION OF E[Z,, Z,,.Z,]

For SOE, we first write:

E'Z,2,Z¢]
n m
=E [Zg0]+Z)\‘gi(zg1-E [Zgi])+2}“rj(zrj_E[Zq])
=1 i=1

In the above, E[Z ] and E[Z ] can be written as:

E[Z,]
=E[Z,|2,>0]-Pr[z,>0]

:mg. m[g

E[Z,]
=E[Z,|2,>0]-Pr[z,>0]

=Im, My

In (16), the optimal weights, A,’s and A_’s, that minimize E[(Z,-E"[Z, Z,,Z,])* Z;,Z;] are

given by:

r CGG CGR 1.1
(Agis Aoy )= [Cog Cog K

L Crg Crg

13

(16)

(17a)

(17b)

(18a)

(18b)

(19)



where C;, Cgr (=Cy'), and Cyy, are the nxn, nxm, and mxm unconditional covariance matrices

whose ij-th entries are given by Cov[Z,,Z ], Cov[Z,,Z ], and Cov[Z_,Z ], respectively, and C,,

g g

and C,; are the 1xn and 1xm unconditional covariance vectors whose i-th and j-th entries are
given by Cov[Z,,Z,] and Cov[Z,,Z], respectively. Specification of Cov[Z,,Z,], as a function

of 0., my, p,(|u-u), and Pl ur-ug]), is given by (33) of Seo (1995). Cov{Z,,Z,] and

a1

Cov[Z,,Z,] are specified in an analogous manner. For example, we have for Cov[Z ,Z ]:

giv

Cov[Z,.Z,]

a1

=E[Z,,Z,]-E[Z,]E[Z,] (20a)

gi>
=E[Z,.Z,]2,>0,2,>0]-Pr[z,>0,2,>0]-E[Z,|z,>0]-Pr[z,>0] E[Z,] z,>0] -Pr[z,>0] (20b)
=0g'0r' {mlg(l -mlg)} * {mk( 1 ‘m{r) } I/l'pc(l ui-uj ‘ ) plc( 1 ui-uj i )

+mg'm'r.0g-0r'plc(* ul-uj i )+0g.0r'mIgAmk.pc( i ui-uj l ) (200)

Specification of Cov[Z,,Z, ] is completely analogous to that of Cov[Z,,Z,], and is not given here.

OPERATIONAL CONSIDERATIONS AND PARAMETER ESTIMATION

To estimate rainfall at a single point using SOE and DOE as described above in
generality, a linear system of dimension (n+m) will have to be solved once and twice,
respectively, where n and m denote the numbers of rain gage and radar rainfall data in A,
respectively. Such an approach, however, makes the size of the linear system much too large for

operational implementation. To minimize the computational requirements, we use only the
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single radar rainfall datum collocated with the point of estimation, u, (i.e., m=1). Under this
simplification, both SOE and DOE require specification of the following parameters;

m, - mean of positive gage rainfall in A, m, - mean of positive radar rainfall in A, 0, - variance
of positive gage rainfall in A, 0,” - variance of positive radar rainfall in A, my, - fraction of rain
area in A as would be observed by a dense network of gages, m, - fraction of rain area in A
observed by radar, p,(|-|) - spatial correlation function of positive gage rainfall in A, Prl]]) -
spatial correlation function of indicator gage rainfall in A, p(|0|) - lag-zero cross-correlation
coefficient between positive gage and positive radar rainfall in A, and p,(]0]) - lag-zero cross-
correlation coefficient between indicator gage and indicator radar rainfall in A.

Estimation of p,(|-|) and p,(|-

), either in real time or climatologically, is practically
impossible because of sparsity of gage networks. To circumvent the problem, we use both radar
rainfall and rain gage data to infer statistics of gage rainfall under a set of simplifying
assumptions. Such an approach seems inevitable in that, if there exist enough rain gage data to
allow reliable estimation of the second-order statistics of gage rainfall, multi-sensor estimation

may not be necessary in the first place (i.e., gage-only estimation may suffice). The assumptions

used are:

po(l-D=pd]-]) 1)
Pl D=px(]-]) (22)
m,=m, (23)
m,=m, (24)
0;=0; (25)
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It can be easily shown that (21) holds when radar rainfall is a linear sum of gage rainfall and a
white-noise error in space (Creutin et al. 1988, Seo and Smith 1991). The sufficient condition
for (22) is that the bivariate probability distribution of occurrence of rainfall observed by radar is
the same as that observed by a dense network of gages. (23) implies that mean field bias-
corrected radar rainfall data are also locally unbiased. (24) states that, locally, the fraction of
rain area observed by radar is the same as that observed by a dense network of gages. (25) states
that, locally, hourly radar rainfall has approximately the same magnitude of variability as hourly
gage rainfall. Because of range degradation, beam blockage, spatial variability in raindrop size
distribution, etc., the above assumptions are not true in general. Nevertheless, use of radar
rainfall data in parameter estimation via, e.g., (21) through (25) can easily be justified by the fact
that estimation of local second-order statistics of gage rainfall, based on rain gage data alone, is
practically impossible due to sparsity of gage networks.

Real-time estimation of locally varying p(]-|) and p,(|-|) also poses a difficulty because
the number of radar rainfall data in A, 1.e., within the circle whose radius equals the spatial
correlation scale of rainfall (or, equivalently, the greater of the correlation scale of positive
rainfall and the indicator correlation scale of rainfall), would typically be too small to obtain
reliable estimates of them. Also, evenif p(|-|) and p,(||) may be estimated locally, the
associated computational burden would be too heavy for operational implementation. For these
reasons, p,(|*]) and p,(|-|) are treated in this work as spatially uniform, and hence estimated
once only from the current hourly radar rainfall field under the assumptions of translation
invariance and isotropy.

Estimation of m, and 0,” amounts to estimating E[m,|Z,Z,] and E[0,’|Z_Z ], where Z,

16



and Z, are the rain gage and the radar rainfall data in A, respectively. With (21) through (25), m,

may be estimated via the following maximum likelthood estimator (Kitanidis 1986):
m, = U" Corr' Z / {U" Corr" U} (26)

where U is the Ix(n+m) unit vector, i.e., U=(1,...,1)’, Corr is the (n+m)x(n+m) spatial correlation
coefficient matrix, and Z is the (n+m)x1 vector of rain gage and radar rainfall data, i.e.,
Z=(Z,Z,). Similarly, following a number of assumptions concerning the prior probability
distribution of 0; and the likelthood function of Z (Raiffa and Shlaifer 1961, Kitanidis 1986), 0;

may be estimated via the following Bayesian estimator:

o, = {1/(n+tm-2)} (Z-Um,)" Corr' Z (27)

If rain gage and radar rainfall data are sampled sparsely in space such that Corr reduces to an

identity matrix, we have for (26) and (27):

n m
m, = {l/(ntm)} (L z, + X z)) (28)
=1 j=1
n m
o = {l/(n+tm-2)} { Z(z,-m) +Z (z;-m) } (29)
=1 =1
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Computationally, (26) and (27) are too expensive for operational implementation: as
approximations, we used in this work (28) and (29) instead. Estimation of m,, is completely
analogous to (26) and (28), with z, and z_ replaced by i,,..,, and i,,..,,, respectively.

p.(]0]) and p,(]0]) are estimated climatologically from long-term records of
synchronized and collocated pairs of hourly radar rainfall and rain gage data. It is important to
point out that, though not considered in this work for the sake of simplicity, p.(|0|) and p,(|0])
can be stratified acéording to range so that range degradation in radar estimation of rainfall given

raining and radar detection of rainfall (Kitchen and Jackson 1993, Smith et al. 1995) can be

taken into account.
VALIDATION

To evaluate the estimation procedures, a cross-validation experiment was performed
using hourly radar rainfall data from the Tulsa, Oklahoma, WSR-88D and hourly rain gage data
in the area. This site has one of the densest operational rain gage networks in the country, and
therefore is well-suited for cross validation. The reader is kindly referred to Fig 1 of Seo (1995)
for the rain gage network and the radar umbrella. The data used cover April through November
of 1994,

As noted, the multi-sensor estimation procedures described in this work use mean field
bias-corrected radar rainfall data. Owing to the large number of rain gages available at this site
(about 200), it was concluded that the sophisticated, operational bias estimation procedure

(Smith and Krajewski 1991) may be substituted by the following, simple sample bias estimator:
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k
B=(14) S {z,/2,} (30)

1=1
where B is the estimated bias at the current hour, and k is the number of radar-gage pairs. §"is
then multiplied to the radar rainfall data at the current hour to obtain bias-corrected radar rainfall
data.

For ntercomparison purposes, four estimation procedures were included in the cross-
validation experiment; gage-only estimation using the reciprocal distance-squared method
(Chow et al. 1988, NWS 1993), radar-only estimation using the bias-corrected radar rainfall data
directly above the withheld rain gages, multi-sensor estimation using SOE, and multi-sensor
estimation using DOE. They are denoted as GAG, RAD, SOE, and DOE, respectively. Because
of space limitations, we are not able to provide examples of rainfall fields as obtained from
GAG, RAD, and SOE/DOE: the reader is referred to, e.g., the Arkansas-Red River Basin River
Forecast Center's (ABRFC) Home Page on the World-Wide Web at
‘http://gopherpc.abrfc.noaa. gov/abrfc. html.'

Figs 1, 2, and 3 show, for each month, the mean error of the estimates (a positive mean
error implies underestimation), the root mean square error of the estimates, and the cross-
correlation coefficient between observed and estimated rainfall, respectively. The reduction in
root mean square error by SOE over RAD estimates ranges from 0.1 to as much as 0.4 mm per
hour. It is seen that, in June, July, and August, multi-sensor estimation is not as effective as in
other months whereas bias-corrected radar rainfall data are prominently superior to rain gage-
only estimates: it can be explained by the rainfall climatology thé.t summer rainfall in the area

occurs primarily due to localized convection, and hence the spatial correlation scale tends to be
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small. Comparatively large biases in DOE estimates in the summer months (Fig 1) is peculiar,
and suggests that DOE may not be as robust as SOE when data exhibit very large va;iabilities.
Figs 4, 5, and 6 show scatter-plots for November 1994 between observed rainfall and GAG,
RAD, and SOE estimates, respectively. The scatter-plot for DOE estimates is very similar to
that for SOE estimates, and hence 1s not shown. A perfect estimator would produce a scatter on
the 45-degree line. It can be seen that the multi-sensor estimates produce a significantly tighter
scatter.

Figs 7 and 8 show the mean and the root mean square errors of the estimates,
respectively, over various ranges, bounded from below, of observed rainfall. They are useful for
assessing performance in estimation of large rainfall amounts. Fig 9 shows, at various cutoffs,
the conditional probability that the estimated rainfall is greater than the cutoff given that the
observed rainfall is. It is useful for assessing performance in detection of large rainfall amounts.
Figs 10 and 11 are completely analogous to Figs 7 and 8, respectively, except that the ranges of
observed rainfall are bounded from above. They are useful for assessing performance in
estimation of small to moderate rainfall amounts. The five figures may be summarized as
follows: 1) RAD estimates are, expectedly, substantially better than GAG estimates under all
criteria considered except for overall unbiasedness (see Fig 7) and detection of small rainfall
amounts (see Fig 9), 2) DOE estimates provide little or no improvement over SOE estimates
under all criteria considered except for estimation of no to small rainfall amounts (see Fig 11), 3)
multi-sensor estimates have a more pronounced tendency to underestimate large rainfall amounts
than RAD estimates (see Fig 7): for specific purposes of estimation and detection of rainfall

amounts of a half an inch or more, RAD estimates are better (Figs 8 and 9), 2) on the average,
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however, multi-sensor estimates are significantly better than RAD estimates over any areas of
rainfall and/or no-rainfall (see Fig 11).

Fig 12 show the root mean square errors of the estimates for various gage network
densities. The network density was varied by randomly eliminating a half and three quarters of
the gages in the original network of about 200. They suggest that, as long as there exists at least
a single rain gage within the radius of influence, defined as the spatial correlation scale of
rainfall, effectiveness of multi-sensor estimation is not very sensitive to the number of additional
rain gages available.

Figs 13 and 14 show scatter-plots between (observed - estimated rainfall)* and estimation
variances from SOE and DOE, respectively. An ideal estimator would produce a tight scatter
centered around the 45-degree line. They indicate that DOE variance estimates are slightly more

accurate than SOE variance estimates.
CONCLUSIONS AND FUTURE RESEARCH RECOMMENDATIONS

The conclusions may be summarized as follows:

[) On the average, multi-sensor estimates are significantly more accurate than either the bias-
corrected radar rainfall data or the gage-only estimates. Therefore, streamflow prediction
models, such as those used at the National Weather Service River Forecast Centers, are
better-served by inputting multi-sensor estimates.

2) For specific purposes of detection and estimation of large rainfall amounté, however, bias-

corrected radar rainfall data may provide the most accurate rainfall estimates: it points out the

21



importance of accurate correction of mean field bias in radar ranfall data, e.g., for flash-flood
forecasting at the National Weather Service Weather Forecast Offices.

3) Multi-sensor estimation based on double optimal estimation (DOE) of the probability of
rainfall and the amount of rainfall given raining offers little or no improvement over that
based on direct, single 6ptimal estimation (SOE). DOE, nevertheless, offers a methodology
that allows objective assimilation of both continuous (e.g., rainfall amount) and binary
variables (e.g., rain or no-rain).

Areas of further enhancement include the following:

1) Incorporate climatological correction for orographic enhancement,

2) Account for range degradation of radar rainfall data by stratifying lag-zero conditional and
indicator correlation coefficients according to range,

3) Investigate stratification of lag-zero conditional and indicator cross-correlation coefficient
according to amount of radar rainfall to reduce the tendency for multi-sensor estimates to

underestimate large rainfall amounts.

22



ACKNOWLEDGMENTS

This work is supported by the Advanced Weather Information Processing System

(AWIPS) Program of the National Weather Service. Special thanks are due to Paul Tilles of

Research and Data Systems Corp. for operational testing and verification of this work.

23



REFERENCES

Austin, P. M., Relation between measured radar reflectivity and surface rainfall, Mon. Wea.
Rev, 115, 1053-1070, 1987.

Azimi-Zonooz, A., W. F. Krajewski, D. S. Bowles, and D -J. Seo, Spatial rainfall estimation by
linear and non-linear co-kriging of radar-rainfall and raingage data, Stoch. Hydrol.
Hydraul., 3, 51-67, 1989.

Barancourt, C., J. D. Creutin and J. Rivoirard, A method for delineating and estimating rainfall
fields, Water Resour. Res., 28(4), 1133-1144, 1992.

Brandes, E. A., Optimizing rainfall estimate with the aid of radar, J. Appl. Meteor., 14, 1339-
1345, 1975.

Chow, V. T., D. R. Maidment, and L. W. Mays, Applied Hydrology, McGraw-Hill, 1988.

Crawford, K. C., Consideration for the design of a hydrologic data network using multivariate
sensors, Water Resour. Res., 15(6), 1752-1762, 1979.

Creutin, J. D., G. Delrieu, and T. Lebel, Rain measurement by raingage-radar combination: a
geostatistical approach, J. Atmos. Og:eanic Technol., 5(1), 102-115, 1988.

Eddy, A., Objective analysis of convective scale rainfall using gages and radar, J. Hydrol., 44,
125-134, 1979.

Fread, D. L, R. C. Shedd, G. F. Smith, R. Farnsworth, C. N. Hoffeditz, L. A. Wenzel, S. M.
Wiele, J. A. Smith, and G. N. Day, Modermization in the National Weather Service River

and Flood Program, Weather and Forecasting, 10(3), 477-484, 1995.

24



Hudlow, M. D_, Technological developments in real-time operational hydrologic forecasting in
the United States, J. Hydrol, 102, 69-92, 1988.

Joumnel, A. G., Nonparametric estimation of spatial distributions, Mathematical Geology, 15(3),
445-468, 1983.

Kitanidis, P. K., Parameter uncertainty in estimation of spatial function: Bayesian analysis,
Water Resour. Res., 22(4), 499-507, 1986.

Kitchen, M., and P. M. Jackson, Weather radar performance at long range - Simulated and
observed, J. Appl. Meteor., 32, 975-985, 1993.

Krajewski, W. F., Cokriging of radar-rainfall and rain gage data, J. Geophys. Res., 92(D8),
9571-9580, 1987.

National Weather Service, National Weather Service River Forecast System (NWSRFS) User’s
Manual, Office of Hydrology, National Weather Service, 1993.

National Weather Service, Stage III User's Guide, Office of Hydrology, August 1995.

Raiffa, H., and R. Schlaifer, Applied ‘statistical decision theory, The MIT Press, Cambridge, MA,
1961.

Seo, D.-J., Real-time estimation of rainfall fields using rain gage data under fractional coverage
conditions, submitted to Water Resour. Res., September 1995.

Seo, D.-J., Nonlinear estimation of spatial distribution of rainfall - An indicatér cokriging
approach, to appear in Stoch. Hydrol. Hydraul., 1996.

Seo, D.-J., Krajewski, W. F., D. S. Bowles, Stochastic interpolation of rainfall data from rain
gages and radar using cokriging, 1. Design of experiments, Water Resour. Res., 26, 469-

477, 1990.

25



Seo, D.-J., W. F. Krajewski, A. Azimi-Zonooz, and D. S. Bowleé, Stochastic interpolation of
rainfall data from rain gages and radar using cokriging, 2. Results, Water Resour. Res.,
26, 915-924, 1990. |

Seo, D.-J,, and J. A. Smith, Rainfall estimation using raingages and radar - A Bayesian approach:
2. An application, Stoch. Hydrol. Hydraul., 5, 31-44, 1991.

Seo, D.-J., and J. A. Smith, Characterization of the climatological variability of mean areal
rainfall through fractional coverage, to appear in Water Resour. Res., 1996.

Shedd, R. C., and J. A. Smith, Interactive precipitation processing for the modernized National
Weather Service, Preprints, 7th Inter. Conf. On Interactive Information and Processing
Systems for Meteorology, Oceanography, and Hydrology, AMS, New Orleans, January
13-18, 1991.

Smith, J. A, and W. F. Krajewski, Estimation of the mean field bias of radar rainfall estimates, J.
Appl. Meteor., 30(4), 397-412, 1991.

Smith, J. A, D.-J. Seo, M. L. Baeck, and M. D. Hudlow, An intercomparison study of NEXRAD
precipitation estimates, submitted to Water Resour. Res., 1995.

Solow, A. R., Mapping by indicator kriging, Math. Geol., 18(3), 335-352, 1986.

Wilson, J. W, Integration of radar and raingage data for improved rainfall measurement, J. Appl.
Meteor., 9(3), 489-497, 1970.

Wilson, J. W, and E. A. Brandes, Radar measurement of rainfall, Bull. Amer. Meteor. Soc., 60,

1048-1058, 1979.

26



Fig 1 -
Fig 2 -
Fig 3 -
Fig 4 -
Fig 5 -
Fig 6 -

Fig 7 -

Fig 8 -

Fig 9 -

Fig 10 -

Fig 11 -

Fig 12 -

Fig 13 -

List of Figures and Their Captions

mean error of the esumates (a positive mean error implies underestimation)
root mean square error of the estimates
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scatter-plot between observed rainfall and RAD estimates
scatter-plot between observed rainfall and SOE estimates
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rainfall
Same as Fig 7, but for root mean square errors
Conditional probability that the estimated rainfall (Zest) exceeds the cutoff (Zcut) given
that the observed rainfall ( Zobs) does |
Same as Fig 7, but the ranges are bounded from above
Same as Fig 8, but the ranges are bounded from above
root mean square errors of GAG, RAD, and SOE estimates for various numbers of rain
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Adaptable Parameters - Gage-Only Analysis

Parameter Current Description
Default
distmin 0.1 Specifies the separation distance in km in
correlation modeling. No changes are
recommended.
itype 2 Specifies the type of gage-only analysis

nbors

procedure to be used (itype=1: Reciprocal
Distance-Squared method (RDS), itype=2: Single
Optimal Estimation (SOE), itype=3: Double
Optimal Estimation (DOE)). Computationally,
RDS is the least expensive, DOE the most
expensive.

If there are less than 50 gages or so under the radar
umbrella (assuming that they are fairly well-scattered), RDS
is recommended. If there are more gages, SOE is
recommended. DOE, developed primarily to assimilate
satellite and lightning data in the future, is twice as
computationally expensive as SOE, and hence is not
recommended at this time.

4 Specifies the number of surrounding rain gage
measurements to be used in the estimation
procedure (if that many gages indeed exist
within the radius of radius (see below)). The
maximum is 20.

This parameter has a huge impact on both the accuracy of
estimates and how the estimated rainfall field looks like.
If nbors=1, the estimate will be the same as the nearest
rain gage datum (if there exists at least a single rain gage
within the radius of radius): it will produce something that
looks nothing like a rainfall field. Theoretically, the
larger nbors is, the more accurate the estimates are (if
that many rain gages indeed exist within the radius of
radius). Computationally, however, the larger nbors, the
more expensive. With the recommended value of 4, this
trade-off between accuracy and computational burden should
not be an issue at most sites because of the sparsity of
rain gage networks.

rainmin 0.01 Specifies the minimum detectable rainfall depth

in mm. No changes are recommended.

rangei 52. Specifies the indicator correlation scale in



coroi

coroOpi

rangec

coroOc

coroOpc

radius

36.

52.

km. It represents a characteristic scale for
spatial intermittency of rainfall. The default
value is obtained from climatological analyses
of WSR-88D hourly rainfall data in the Southern
Plains. Until site- and seasonality-specific
estimates of rangei can be obtained, no changes
are recommended.

Specifies the lag-0 indicator correlation
coefficient. No changes are recommended.

Specifies the lag-0+ indicator correlation
coefficient. No changes are recommended.

Specifies the conditional correlation scale in
km. It represents a characteristic scale for
within-storm variability of rainfall. The
default value is obtained from climatological
analyses of WSR-88D hourly rainfall data in the
Southern Plains. Until site- and seasonality-
specific estimates of rangec can be obtained,
no changes are recommended.

Specifies the lag-0 conditional correlation
coefficient. No changes are recommended.

Specifies the lag-0+ conditional correlation
coefficient. No changes are recommended.

Specifies the radius of influence in km. For
example, with the default value of 52, rain
gage data outside of the circle of radius of 52
km are not used in estimation. Theoretically
speaking, radius should always be equal to
max{rangei,rangec}. However, because we do not
have site- and seasonality-specific estimates
of rangei and rangec yet, it is recommended
that radius be adjusted to account for
differences between, e.g., cellular/convective
and widespread/stratiform rainfall fields.
Generally speaking, radius for a convective
storm should be smaller than for a stratiform
storm.

It is recommended that the sensitivity of the analysis field
on radius be familiarized by displaying gage-only analysis
fields for a range of values of radius (say, 20 to 100 km)
so that a visual ‘feel’ may be acquired for what the
appropriate values of radius should be for the regional and
seasonal climatology of rainfall (and, ideally, synoptic
conditions as well).



Adaptable Parameters - Multi-Sensor Analysis

Parameter Current Description

Default

itype

1

Specifies the type of multi-sensor estimation
procedure (itype=1: Single Optimal Estimation
(SOE), itype=2: Double Optimal Estimation
(DOE) ) .

DOE, developed primarily to assimilate satellite and
lightning data in the future, is computationally twice as
expensive as SOE, and hence is not recommended at this time.

nbors

3

Specifies the number of the nearest gage
measurements to be used in estimation (if that
many gages indeed exist within the radius of
influence: in multi-sensor estimation, the
radius of influence is computed in real time
from radar rainfall data).

Theoretically speaking, the larger the value of nbors, the
more accurate the estimates will be. As in gage-only
estimation, however, the larger the value of mnbors (if that
gages indeed exist within the radius of influence), the
computationally expensive. Changing nbors does not

as great an impact in multi-sensor estimation as it

in gage-only estimation. The current default of 3 (if
many gages indeed exist within the radius of influence)
is strongly recommended unless excessive CPU/elapsed time
becomes a problem, in which case nbors may be lowered to 2
(the procedure will still produce reasonable-looking
rainfall fields even with nbors=1).

many
more
have
does
that

distmin

rainmin

crscori

0.

0.

0.

1

01

80

Specifies the separation distance in
correlation model in km. No changes are
recommended.

Specifies the minimum detectable rainfall depth
in mm. No changes are recommended.

Specifies the lag-0 indicator cross-correlation
coefficient. Loosely speaking, this
quantifies, on the scale of 0 to 1, how
accurate radar rainfall data are, on the
averadge, in discerning rainfall/no-rainfall
from no-rainfall/rainfall.



The default value is obtained from climatological analyses
of hourly rain gage data and WSR-88D radar rainfall data in
the Southern Plains. Data analysis-permitting, crscori
should be estimated for each site as a function of range and
seasonality (ideally, it should also be stratified according
to storm type; e.g., convective versus stratiform). In the
meantime,

crscorc

0.85

no changes are recommended.

Specifies the lag-0 conditional
cross-correlation coefficient. Loosely
speaking, this quantifies, on the scale of 0 to
1, how accurate radar rainfall data are, on the
average, in estimating rainfall amount over
rain area (i.e., given that it is raining).

The default value is obtained from climatological analyses
of hourly rain gage data and WSR-88D radar rainfall data in
the Southern Plains. Data analysis-permitting, crscorc
should be estimated for each site as a function of range and
seasonality (ideally, it should also be stratified according
to storm type; e.g., convective versus stratiform). In the
meantime,

scali_def

scale_def

scali max

scale max

threshmin

36.

28.

70.

50.

no changes are recommended.

Specifies the default indicator correlation
scale in km. It is used whenever the indicator
correlation scale (the same as rangei in gage-
only estimation) cannot be obtained in real
time. Until site- and seasonality-specific
estimation of the parameter, no changes are
recommended.

Specifies the default conditional correlation
scale in km. It is used whenever the
conditional correlation scale (the same as
rangec in gage-only estimation) cannot be
obtained in real time. Until site- and
seasonality-specific estimation of the
parameter, no changes are recommended.

Specifies the maximum indicator correlation
scale in km. It is the upper bound for the
indicator correlation scale. No changes are
recommended.

Specifies the maximum conditional correlation
scale in km. It is the upper bound for the
conditional correlation scale. No changes are
recommended.

Specifies the minimum threshold value in mm for
multi-sensor estimates (display purposes only).
No changes are recommended.



