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ABSTRACT

Indicator cokriging (Journel 1983) is examined as a tool for
real-time estimation of rainfall from rain gage measurements. The approach
proposed in this work obviates estimation of time-varying statistics of
rainfall by using ensemble or climatological statistics exclusively, and
reduces computational requirement attendant to indicator cokriging by
employing only a few auxiliary cutoffs in estimation of conditional
probabilities. Due to unavailablity of suitable rain gage measurements,
hourly radar rainfall data were used for both indicator covariance
estimation and a comparative evaluation, Preliminary results suggest that
the indicator cokriging approach is clearly superior to its ordinary kriging
counterpart, whereas the indicator kriging approach is not. The improvement
is most significant in estimation of light rainfall, but drops off
significéntly for heavy rainfall. The lack of predictability in spatial
estimation of heavy rainfall is borne out in the integral scale of indicator

correlation: peaking to its maximum for cutoffs near the median, indicator



correlation scale becomes increasingly smaller for larger cutoffs of
rainfall depth. A derived-distribution analysis, based on the assumption
that radar rainfall is a linear sum of ground-truth and a random error,
suggests that, at low cutoffs, indicator correlation scale of ground-truth
can significantly differ from that of radar rainfall, and points toward
inclusion of rainfall intermittency, for example, within the framework

proposed in this work,

1. INTRODUCTION

In recent years, a number of works using kriging has been reported
in the area of estimating point or mean areal rainfall using rain gage
measurements (Chua and Bras 1982, Creutin and Obled 1982, Bastin et al.
1984, Tabios and Salas 1985, Lebel et al. 1987, Lebel and Laborde 1988,
Barancourt et al., 1992, and others). Although recognized as superior to
heuristic or ad-hoc ones, kriging approaches in rainfall estimation,
specifically those using linear kriging, has not been as readily and widely
accepted in operational hydrology as once thought. The main reasons for
this are seen as: 1) kriging requires time-varying statistics of each
individual rainfall field at hand, but in real-world situations reliable
estimation of them is practically impossible due to lack of data, and 2)
because of highly skewed nature of rainfall distribution, the margin of
improvement that linear kriging can consistently provide may not be large
enough to warrant its routine application.

With respect to the first point, a number of researchers (Bastin et



al. 1984, Lebel et al. 1987) have used so called 'climatological kriging’ in
which, instead of estimating time-varying semi-variogram for each
realization of rainfall field, climatological or ensemble semi-variograms
are estimated from long-term records, parameterized with respect to
seasonality and rainfall depth, and then used in the framework of ordinary
kriging for estimation of mean areal rainfall. With respect to the second
point, nonlinear estimation may be attempted. For example, in the context
of rainfall estimation using rain gage measurements and radar rainfall data,
disjunctive cokriging has been shown to provide significantly better
estimates of hourly rainfall than its linear counterparts (Azimi-Zonooz et
al. 1987). )

This work is an attempt to address the above points in rainfall
estimation via indicator cokriging (Journel 1983, Journel and Posa 1990,
Suro-Perez and Journel 1991). Making use of the conditional probability
interpretation of the conditinal expectation of an indicator random
variable, indicator cokriging allows nonparametric, nonlinear estimation of
spatial random functions. It may be viewed as an equivalent of disjunctive
kriging (Matheron 1975) in that bivariate probability distribution is
utilized following its discrete approximation by a set of indicator
covariances at various cutoffs (Journel 1983). Unlike lognormal (Journel
and Huibjbregts 1978) or disjunctive kriging, however, indicator cokriging
requires neither distributional assumptions nor variable transformations.

In this work, particular attentions are paid to 1) use of
climatological or ensemble indicator statistics in place of time-varying

statistics of rainfall, and 2) reduction in computational requirement by



reducing the number of auxiliary cutoffs used in estimation of conditional
probabilities. To evaluate its performance, the indicator cokriging
approach is compared with its indicator and ordinary kriging counterparts,
Due to unavailability of suitable rain gage measurements, however, radar
rainfall data were used for both indicator covariance estimation and
performance evaluation,

This paper is organized as follows: description of aspects of
indicator cokriging which make the proposed approach attractive in rainfall
estimation, description of indicator cokriging, presentation of indicator
covariance structure of rainfall as obtained from radar rainfall data,
description of issues and approaches taken in implemention of indicator
cokriging, description of comparative evaluation, and presentation of
conclusions and future research recommendations. Because radar rainfall
data suffer from various types of error, indicator covariance structure of
radar rainfall may not represent that of ground-truth rainfall very well.
In Appendix, we examine how the two may differ by assuming that radar

rainfall is a linear sum of ground-truth and a random error.

2. INDICATOR COKRIGING APPROACH IN RAINFALL ESTIMATION

Indicator cokriging utilizes bivariate probability distribution in
the form of covariances of indicator variables at various cutoffs (see the
following section), Estimation of indicator covariances from rainfall data
calls for construction of experimental indicator variables at various

cutoffs, which amounts to a natural stratification of rainfall variability



with respect to rainfall depth. Accordingly, indicator statistics are
well-suited for ensemble or climatological representation.

Since both indicator cokriging and disjunctive kriging utilize
bivariate probability distribution, it may be expected that they perform
comparably to each other given that the statistics required are perfectly
known, When ensemble or climatological statistics are used, however,
disjunctive kriging is seen as less suitable for real-time estimation in
that, regardless of the sample (i.e., posterior) statistics of the data at
hand, the unconditional mean of its estimate will be given by the ensemble
or the climatological (i.e., a priori) mean because of its unbiasedness
property (Journel and Huijbregts 1978, p575).

Linear cokriging under second-order homogeneity includes ordinary
and simple types (see Journel and Huijbregts, 1978, for difference between
ordinary and simple kriging, and, e.g., Seo et al., 1990, for an extension
to cokriging), the choice depending on whether the spatially constant mean
of the variables is known or not. Analogously, depending on whether the
spatially constant mean of the indicator variables (or, equivalently, the
cumulative distribution of the original variable) is known or not, two
different formulations of indicator cokriging is possible, leading to the
ordinary cokriging analogue (Suro-Perez and Journel 1991) and the simple
cokriging analogue (Journel 1983). What makes indicator cokriging
attractive in real-time estimation is that it does have the ordinary
cokriging analogue, for which one may forego the extremely difficult (if not
impossible) task of estimating time-varying cumulative distribution of

rainfall from a very small number of data (while using ensemble statistics



for indicator covariances), and still achieve the unbiasedness in the
(unknown but spatially constant) mean. Disjunctive kriging, on the other
hand, may be viewed as a simple kriging analogue in that the mean must be
known a priori.

Indicator cokriging assumes second-order homogeneity of indicator
variables, and hence, at least on theoretical grounds, we are limited to
dealing with rainfall fields that satisfy at least the bivariate version of
the strong homogeneity (Karlin and Taylor 1975). Checks on such a
condition, however, require an independent analysis of a large number of
different realizations, and were not within the scope of this work. In the
following, we present a brief description of indicator cokriging in a
general context for reference purposes (see also Journel, 1983, Journel and
Posa, 1990, Suro-Perez and Journel, 1991), which may seem somewhat redundant
to those who are already familiar with ordinary éokriging. Though estimates
of mean areal rainfall is of more direct interest in operational hydrology,
we pay in this work our attention mainly to estimation of point rainfall so

that distributional characteristics of the estimates may also be examined.
3. ESTIMATION VIA INDICATOR COKRIGING

Define the indicator random variable, I(u:z.), as follows:

1if z(u) <Lz,
i(uize) ={ (1)
0 if z(u) Dz

where z(u) is the measurement at location u, and z. is the cutoff. Under



the assumption that indicator variables are second-order homogeneous,
indicator cokriging amounts to performing ordinary cokriging of collocated
experimental indicator variables at multiple cutoffs a number of times to
estimate conditional cumulative probability distribution function (cdf) of
the original variable, from which conditional expectation may be obtained

via numerical integration.

Indicator Cokriging

For each cutoff zu, k=1,...,K, estimate the conditional expectation
E[I(uo: zew) | I(usi 25 )=i(usi2ey), i=1,...,N,j=1,...,M] at an arbitrary location
up using the following linear estimator, where N and M are the number of

measurements at u;’s and the number of cutoffs z.;’s used in the estimation,

respectively:

. M N

i*(wiza) = 2 2 WilZaezey) iluitzey) ; (2)
Jj=1 i=1 ‘

where z4 is the main cutoff, and z, J=1,....M, Jj#k, are the auxilary

cutoffs. In Eq.(2), wi(zw zj)'s are the optimal weights to be determined by
minimizing the error variance, E[{I(u¢iz«) - i*(ug: z ) }?] under the following

M unbiasedness constraints:

N
.lei(zckzq;) = B for j=1,...,M (3)
1=

where



1 if j=k
51:,, = {
0 if j=k

The optimal weights are obtained by solving the following ordinary cokriging

analogue of the indicator cokriging system:

[ Qze.za1) ... Uzenza) U... 0 | [W(zazer) ]
QUzaiza) ... Uzanza) O ... U'| | Wz, zon)
8] 0 0...0 A1
[0 e U 0.0 [ ™ |
[ Qo( Zek, Za1) ]
Qo( Zek, Zen)
_ (4)
S
I S

where Q(zca, Zcn) is the (NxN) indicator covariance matrix whose ij-th entry is
CovlI(ui:ze), I(ujizen)], Wz ze;) is the (Nxl) optimal-weight vector whose
i-th entry is wi(2zek, Zcj), Qo(Zck. Zcj) is the (Nx1) indicator covariance vector
whose i-th entry is Cov[I(ugiza),I(usizei)l, U is the (1xN) unit vector,
U=[1,...,1], 0 is the (1xN) zero vector, 0=[0,...,0] and A; through Ay are
the Lagrange multipliers. The estimation variance associated with i*(uos za)

is given by:



Var[i*(uo za)]
M
= Var[I(uo: ze)] -.ZIWT(ch.ch) Qo(Zex, Zej) - A (5)
J:

The indicator covariance, Cov{I{ui:zw),I{ujizen)], is given by:

CovlI(usizea), I(ujizen)]
E[I(ui:zem) [(ujizen)] - E[I(UiiZea)] E[I(uji2Zen)] (6a)
Priz(ui) £zcs, 2(u;) zenl - Prlz(u;) <za] Priz(u;) <zl (6b)

where zs and z.. are two generally different cutoffs. The corresponding
indicator correlation is written as:
Cov[I(ui:zen), I(UjiZen)]

Cor[I(uiizea), [(ujizen)] = (7)
O Oin

The indicator variance 021. is written as:

0% = Priz(u) £zal (1-Prlz(u;) <z]) (8)

The indicator cokriging estimate, i*(ugiza) in Eq.(2), also has the

following conditional probability interpretation:

E[I(uoi za) | T(usi zej) =i (Uit ze;), i=1, ..., N, j=1, ... ,M]

= Pr{z(uo)szee| I(uiszej)=i(uiizey), i=1,... N, j=1,... ,M] (9)

Then, once i'(uoiz«)’s are obtained for all za's, k=1,...,K, the conditional



estimate of the original variable at ug, z'(uo), can be obtained, e.g., from
the 8ufollowing discrete approximation of the expectation operation (Journel

1983):
z'(w) = rx di*(uo: x)
0

x tiizcw[i'(m:zc.m) - 1*(uoizer)] (10)
where zu- denotes the mid-point between zy and 2z y..

Both in structure identification and computation, indicator
cokriging can be very costly as 1) indicator covariances at all pairwise
cutoff combinations have to be modelled, and 2) a linear system of dimension
{(N+1)xM} has be solved K times. If all the cross terms vanish in the
indicator cokriging system, i.e., CovlI(u;:Zea), [(u;:2en)]=0 if m#n (see
Solow, 1986, and Hu, 1988, for examples of such spatial processes),
indicator cokriging is reduced to indicator kriging (Journel 1983, Young
1987, Journel and Posa 1990, Alli et al. 1990, Suro-Perez and Journel 1991),
which greatly reduces computational requirement, In spatial prediction,
zero indicator cross-covariances imply that, relative to the reference
cutoff, the knowledge of how much smaller or larger the nearby measurements
are of no additional value, so long as they are known to be either smaller
or larger. Rainfall processes, however, are of diffusion-type, for which
indicator cross-covariances do not vanish, As will be seen later in this
paper, significant differences in performance exist between the indicator
cokriging and the indicator kriging approaches,

Analogously to ordinary block kriging, indicator block cokriging can

10



also be performed for estimation of block averages, by cokriging for spatial
averages of indicator variables over a range of cutoffs. These estimates
constitute an estimate of the cdf of the point variable because they may be
interpreted as fractions or percentages, within the block, of the point
values that are less than the corresponding cutoffs. The block estimate may

then be obtained by evaluating the spatial mean from the cdf thus estimated.

Ensemble Versus Real-Time Statistics

As noted, the approach taken in this work was to use ensemble
statistics of indicator covariance in cokriging. The price for using
ensemble covariances instead of time-varying ones may vary depending on: 1)
whether estimation variances are sought or not, 2) choice between indicator
cokriging and indicator kriging, and 3) effectiveness of stratifying
ensemble statistics with respect to important climatological and‘
meteorological factors,

0f the three, the last factor is difficult to assess because
extensive analyses of meteorological observations have to accompany, No
such efforts were made in this work for the sake of simplicity, and hence
ensemble statistics used in this work are simply the sample statistics
obtained from using all the available data of the same type regardless of
seasonality, type of storm, etc.

A few specific comments may be made on the first two factors. If
one is interested only in estimates and not in estimation variances, it can

be easily shown that indicator kriging (as well as simple or ordinary
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kriging) may be performed using correlation (or, in the case of indicator
kriging, conditional probability) instead of covariance. In the case of
hourly rainfall, it is observed that spatial correlation scale exhibits much
smaller temporal variability than spatial mean or variance does (see, e.g.,
Seo and Smith 1991). It is seen to suggest that, if estimation variances
are not sought, substituting ensemble correlation for time-varying
correlation should not significantly reduce the kriging performance.

In the case of indicator cokriging, however, covariance, and not
correlation, must be used (i.e., conditional probability does not suffice,
and bivariate probability must be used) even if estimation variances are not
sought., It is due to the fact that indicator variables at different cutoffs
have varying degrees of variability (analogously to ordinary cokriging where
different variables have different variabilities). The mechanics of
cokriging is such that, with other conditions being equal, a relatively
larger/smaller weight will be given to the experimental value of a variable
(indicator or original) that has a smaller/larger variability. In indicator
cokriging, this variability is specified by the indicator variance, for
whose evaluation the univariate cdf (i.e., indicator mean) must be known.

Compared to climatological statistics of indicator correlation,
climatological statistics of indicator variance may be considered as a less
potent substitute in real-time estimation for time-varying statistics
because cdf of rainfall fields can have substantial temporal variability.
It is important to reiterate, however, that this substitution may result in
increase in estimation variance but does not affect the unbiasedness in the

mean,
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4. INDICATOR COVARIANCE STRUCTURE OF RAINFALL

In general, the estimation domain of a drainage basin or a sub-basin
frequently includes not only rain area but also no-rain area, The indicator
cokriging approach offers a wunified framework in which rainfall

intermittency may also be dealt with,
Consideration for Intermittency

Conditioning on the intermittency of rainfall, indicator covariance

may be decomposed as follows:

Cov[I(viz), I(uizc)]
=Pr{z(v) £z, z(u) £z.] - Pr[z(v)<z] Priz(u)<z] (11a)
{ Pr[0<z(v) <z, 0<z(u) £z.] - Pr[0<z(v) <z] Pr{0<z(u) <z.] }
{ Pr{z(v)=0,0<z(u) <z] - Pr[z(v)=0] Pr{0<z(u)<z.] }
{ Pr{0<z(v) <z;,z(u)=0] - Pr[0<z(v)<z] Pr[}z(u)z()] }
{Pr[z(v)=0, z(u)=0] - Pr{z(v)=0] Pr[z(u)=0] } (11b)

I

+

+

+

The four terms in Eq.(11b) represent indicator covariances for rain area,
between rain and no-rain areas, and for no-rain area. The last three terms
reflect the nature of intermittency, and depend on various factors such as
geometry of rain area, fractional coverage of rain area, and rainfall

distribution,
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In indicator cokriging, if all the joint probability terms in
Eq.(11b) can be estimated with accuracy, taking intermittency into account
only amounts to adding a cutoff at zero rainfall, and hence adds no
difficulty. In our problem, however, substantial additional data and effort
are needed in structure identification to handle intermittency. The reason
is that, unlike the non-intermittency term of Pr[0<z(v)<z;,0<z(u)<z],
intermittency terms such as Pr[z(v)=0,0<z(u)<z.] and Pr[z(v)=0,2z(u)=0] are
functions of fractional coverage of rain area, which is highly variable in
time. The implications are that fractional coverage has to be estimated in
real-time, and that the climatological estimates of the intermittency terms
have to be obtained over a range of values of fractional coverage (ideally
from zero to 100 percent), or parameterized in terms of fractional coverage.
For a direct estimation of intermittency terms, one may adopt an approach
similar to Barancourt et al. (1992), in which rainfall fields are stratified
with respect to the fractional coverage for an ensemble characterization of
rainfall intermittency. On the parameterization approach, work is under way
and the results will be reported in the near future. In this work, for the
sake of simplicity, we assume that it rains everywhere in the estimation
domain (by choosing it to include only the rain area), and thus all the
intermittency terms vanish. Hence, in the developments to follow, it is to
be understood that by indicator covariance we in fact mean indicator

covariance conditional on occurrence of rain,

14



Data Used

Data in the form of rain gage measurements suitable for covariance
estimation were unavailable as typical operational rain gage networks are
not dense enough. As an alternative, we used radar rainfall data to
estimate ensemble statistics of indicator covariance. They are from the
Korea Meteorological Administration (KMA)'s weather radar (DWSR-88C by EEC)
at Mt. Kwanak (629 m above MSL) near Seoul, one of the network of five
covering the southern Korean peninsula and vicinity, The radar has a
wavelength of 5.6 cm and beamwidths of less than 1.2 degrees. At the
base-scan (elevation angle of 0.5° ), digital dBZ data were available on a
4x4 km grid, and not in the polar form, at every 5 minutes. The data cover
July through September in 1989, and include significant rainfall events from
warm fronts, extratropical cyclones and typhoons (see Kim et al., 1989, for
detailed meteorological descriptions).

Because indicator cokriging wutilizes bivariate probability
distribution, it is important that the radar rainfall data possess the
essential distributional characteristics of rainfall as observed by rain
gages on the ground, For this, we used a simplified version of the
range-dependent climatological Z-R conversion (Calheiros and Zawadzki 1987).
The conversion function fen( ) in R=fen(Z), where Z is the raw radar

reflectivity factor in dBZ and R is the radar rainfall, satisfies:

rf‘u(u) du = rfizr(v) dv (12)
R z
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where fiu( ) and f',.( ) are the experimental probability density functions
of 10-minute gage rainfall and radar reflectivity factor of spatial
resolution of 4x4 km? respectively, for the i-th annulus of the range
stratification (see Seo et al., 1992, for details).

Radar rainfall data thus obtained preserve ensemble univariate cdf
of 10-minute gage rainfall at every range ring. They are then integrated to
yield hourly rainfall data, and verified against hourly rain gage
measurements from the KMA's operational rain gage network. It was found
that the hourly radar rainfall data thus obtained have little bias in the
ensemble mean and are reasonably well-correlated with rain gage data
(ensemble cross-correlation coefficient ranging from 0.50 to 0.61) between
the ranges of 60 and 240 km, (see Seo et al., 1992, for details). It is
noted here that the magnitude of the cross-correlation is comparable to that
of RADAP II data from a WSR-57 radar (2.2° beamwidth, 10 cm wavelength) at
Oklahoma City (Seo and Smith 1991). In the following, we present examples
of ensemble indicator correlation as obtained from the hourly radar rainfall
data, and describe how they may be parameterized for application of

indicator cokriging in rainfall estimation.
Indicator Covariance Structure of Radar Rainfall

Figures 1 and 2 show examples of the conditional probability as a
function of the lag distance h, Pr{z(u+h)<z]z(u)<z.], at different cutoff

combinations as estimated from hourly radar rainfall data. Also shown in

the figures is the weighted least-squares fit of the exponential model in
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the following form:

Prlz(u+h) <z;|z(u) L2]
= {1 - n(z,2) - Prlz(u)<z1] } e™*) + Prlz(u) <z]

for z1 2z (13)
where h is the Fuclidian distance |u-v|, L(z;,z) is the correlation
distance, and n(z;,z.) is the nugget effect term. The corresponding

indicator covariance is written as:

Cov[I(u+hizy), I(uiz)]
= Prlz(w)<z] { 1 - n(z,z) - Prlz(u) <z] } ™
for z1 2z (14)
Hence, for the exponential model, indicator covariance is completely
specified by univariate cdf, nugget effect and correlation distance. The

integral scale of indicator correlation is given by:

Lo(z1, 2c) = pos(2Z1,2c) L(z1, 2c) (15)

In Eq.(15), po+(z1,2) is the lag-0 correlation coefficient, which can be

written in terms of the nugget effect as follows:

0o+ 21, Zc)

= lim Cor[I(u,z), I{u+h,z:)] (16a)
h—0

= Prlz(u)<z.] {1 - n(z1,z) - Pr(z(u)<z] }/(on o) for z12z (16b)
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Figure 3 displays Lo(z1,2.) as a function of cutoffs as obtained from the
hourly radar rainfall data, The indicator correlation scale is at the
maximum of 18.5 km near the median rainfall depth of 2 mm (i.e., z=z.=2 mm),
and decreases as either cutoff deviates from the median (destructuration
effect, Journel and Posa 1990). Small and steadily decreasing correlation
scale at higher cutoffs indicates lack of spatial predictability in large
rainfall amounts, It is well known that rainfall distribution is
approximately lognormal, and Figure 3 is indeed similar to that of a
bivariate lognormal variable with comparable statistics, as obtainable from
theoretical indicator covariances of a bivariate standard normal variable
(Journel and Posa 1990). The most notable difference is the presence of a
significant nugget effect in the radar rainfall data (see Figures 1 and 2),
which can be attributed, at least partly, to various sources of error (of
random nature in particular) associated with radar observation of rainfall
and post-processing.

It is not readily clear how the indicator correlation scale of
ground-truth rainfall might differ from Figure 3. When both rain gage
measurements and radar rainfall data are used in estimation, it is often
assumed that radar rainfall is a linear sum of gage rainfall and a random
error (Creutin et al. 1988, Seo and Smith 1991). In Appendix, we follow a
similar approach to examine how indicator correlation scale of ground-truth

may differ from that of radar rainfall,
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5. IMPLEMENTATION OF INDICATOR COKRIGING

Because of the computational burden of solving K linear systems of
dimension (N+1)xM, where K is the number of discretization points used in
numerical integration, and N and M are the numbers of surrounding
measurements and cutoffs used in estimation of conditional probabilities,
respectively, only a small number of cutoffs may be used in actual
implementation. Given that, selecting cutoffs bears great importance as it
pertains to 1) how closely the set of indicator covariances sampled at the
limited number of cutoffs approximates the information content of a full
bivariate distribution, and 2) how accurately the numerical integration
evaluates the conditional expectation.

Literature reports an application of indicator cokriging using nine
cutoffs (Suro-Perez and Journel 1991) for comparison against indicator
principal component kriging (see Suro-Perez and Journel, 1991, for its
description, and Lajaunie, 1992, for possible theoretical inconsistencies).
In that application, apparently the same set of cutoffs used in estimation
of conditional probabilities is used again for numerical integration of
conditional expectation. Such a practice, however, is seen to suffer from
the conflicting problem that the cutoffs chosen for the estimation of
conditional probabilities cannot in general be suitable for the numerical
integration, and vice versa,

From the viewpoint of estimation of conditional probabilities, we
would like our choice of cutoffs to minimize the estimation variance

Var[i*(uo:za)] when cokriging for i'(upiza), preferably at all cutoffs zu,
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k=1,...,K. From the viewpoint of numerical integration, on the other hand,
the choice of cutoffs (i.e., discretization points) depends strictly on the
shape of the conditional cdf being estimated. In light of these
observations, we took the approach in this work to use as many
discretization points in numerical integration as the desired accuracy calls
for, but to use only a very small number of optimally selected (in the sense
that estimation variance is minimized) cutoffs for estimation of conditional

probabilities,
Choosing Cutoffs for Estimation of Conditional Probabilities

In cokriging for i*(upiza) using a total of M cutoffs, where zu
belongs to the set of K discretization points used in numerical integration,
the problem of finding optimal cutoffs may be stated as follows: find M-1
cutoffs of the auxiliary indicator variables, which, along with the cutoff
Zzx« of the main indicator variable, minimize the estimation variance
associated with i*(uoiza).

The optimal auxiliary cutoffs depend in general on the particular
spatial configuration of the surrounding measurements in reference to the
point of estimation, the indicator covariance structure, the univariate cdf,
and the magnitude of the main cutoff, zu. In this work, we chose M=3 (i.e.,
two auxiliary cutoffs plus the main cutoff), based on a numerical experiment
indicating that increasing the number of cutoffs brings only a minor
additional reduction in estimation variance.

The two optimal auxiliary cutoffs can be found by actually
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indicator-cokriging with various pairwise combinations of cutoffs, and
locating the minimum for each main cutoff =zu. Numerical experiments
indicate that, given the same bivariate probabilistic structure, the optimal
auxiliary cutoffs, when expressed in fractions of the main cutoff 2z, show
little dependence on z«. For the cases examined in this work, typical
optimal auxiliary cutoffs are about 0.6 z« and 1.5 za, for all k=l,...,K,
They are in accordance with the intuition that deploying both a smaller and
a larger cutoffs makes a better sampling strategy than having either two
smaller or larger ones. Also, as one might expect, two auxiliary cutoffs
shift farther apart for a sparser network, and closer for a denser one.

‘ Because the discretization points in numerical integration, z«'s,
k=1,...,K, can vary depending on the integration method used and the
accuracy desired, the approach described above requires evaluation of
indicator covariance at arbitrary cutoffs. This, however, can be easily
done by interpolating the nugget effect, n(z;,z), and the correlation
distance, L(zi,z), on contour surfaces similar to Figure 3.

Numerical experiments also indicate that optimal auxiliary cutoffs
resulting from the above two-dimensional minimization can also be obtained
from a one-dimensional version of indicator-cokriging with only one
auxiliary indicator variable (i.e., M=2). In the latter case, the two
cutoffs yielding the two smallest estimation variances constitute the
optimal set of auxiliary cutoffs. In this work, the one-dimension
minimization is performed, with the main cutoff set equal to the ensemble
median, for a dozen or so points to obtain individual optimal multiplicative

factors, which are then averaged to yield average factors. Note that this
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adds only a minimal amount of computation of solving a linear system of

dimension (N+1)x2 a dozen or so times.

6. VALIDATION

In order to evaluate the indicator cokriging approach using
real-world data via, e.g., cross-validation, the data have to come from a
rain gage network that is sufficiently dense so that, relative to the
correlation scale of rainfall, surrounding measurements used in point
estimation are not too distant. Also, the rain gage measurements have to be
of good resclution and quality in order to evaluate performance at both ends
of the rainfall distribution. Unfortunately, no satisfactory
network-measurement combinations were available, and, as an alternative, we
used hourly radar rainfall data as ground-truth rainfall fields, from which
pseudo-rain gage measurements were generated by sampling at random
locations. Due to this artificiality, however, performance evaluation was

limited to only a few cases, and thus results are only preliminary,

Description of the Comparative Evaluation

Three approaches using indicator cokriging (ICK), indicator kriging
(IK), and ordinary kriging (OK) are compared. From the pool of hourly radar
rainfall fields of 1989, we selected two fields (Hour 15, July 26, 1989, and
Hour 15, August 22, 1989), for which the radar umbrella captures most of the

areal extent of the rainfall system. They are then assumed to be
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ground-truth rainfall fields. Each field represents an area of 384x448 km?,
each radar rainfall datum representing a 4x4kn’ bin, Within each field, 330
gage locations (1/520km®) were randomly selected. In Korea, for example,
this is between the density of telemetry networks for real-time flood
forecasting in selected river basins, and the density of the current
nationwide meteorological gage network. Then, for each field, point
estimation was performed at the center of each bin over the entire rain area
using 10 nearest neighbors, In all estimation approaches, ensemble
statistics obtained from the radar rainfall data of 1983 were used. As
intermittency was not considered, rain gage measurements reporting no

rainfall were excluded from estimation.

Resul ts

Table 1 shows statistics of the ground-truth and the estimates. The
most notable difference is with the variance of estimates. In terms of
percentage of the variance of ground-truth explained by estimates, IX

brings about 7 to 8 percent improvement over OK, whereas improvement by IK

over OK is only about 1 to 2 percent, Figures 4 through 6 show
scatter-plots of ICK-, IK- and OK-estimates versus ground-truth,
respectively, for Case 1. All three approaches similarly underestimate

large rainfall amounts. The most notable difference is at small amounts,
where ICK-estimates are clearly better than OK-estimates. Similar features
are observed for Case 2 as well. Figures 7 through 10 show reductions in

absolute mean error (AME) and mean square error (MSE) by ICK and IK over OK



for various rainfall amounts. Levels 1 through 10 in the x-axes correspond
to hourly rainfall amounts in mm of 1) 0.0 ~ 0.4, 2) 0.4 ~ 0.8, 3) 0.8 ~
1.4, 4) 1.4 ~ 2.1, 5) 2.1 ~ 3.0, 6) 3.0 ~ 4.0, 7) 4.0 ~ 5.3, 8) 5.3 ~
7.0, 9) 7.0 ~ 10.0, and 10) 10.0 ~ 35.8, respectively. For both ICK and
IK, improvements are most significant for light rainfall. For heavy
rainfall, however, only ICK is seen to provide any improvement. Similar
performance characteristics can also be observed in Figures 11 and 12, where
empirical cdf’s of ground-truth, ICK- and OK-estimates are shown together.
In each figure, the cdf of ICK-estimates is closer to that of assumed
ground-truth, The cdf's of IK-estimates (not shown) are very similar to
those of OK-estimates,

In Korea, for example, operational rainfall-runoff models used for
real-time flood forecasting typically take estimates of mean areal rainfall
(MAR) over sub-basin areas of about 350 kn?. To examine relative
performance in MAR estimation at this scale, MAR estimates over subareas of
16x16 km’ are compared with ground-truth, Figures 13 and 14 show reductions
for Case 2, by ICKX and IK over OK, respectively, in absolute error in MAR
estimates and in mean square error in point estimates within each subarea.
In each figure, the reference point of zero reductions is marked by a cross.
It is seen that ICK clearly outperforms OK with a reduction in MAR error as
high as 1.8 mm for hourly rainfall. IK, on the other hand, is seen to bring

little improvement over OK.
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7. CONCLUSIONS AND FUTURE RESEARCH RECOMMENDATIONS

Indicator cokriging is used to estimate spatial distribution of
rainfall from rain gage measurements. The proposed approach uses ensemble
statistics exclusively in order to avoid real-time estimation of
time-varying statistics of rainfall, and uses only a few, but optimally
selected, auxiliary cutoffs to reduce computational requirements. A
comparative evaluation indicates that the indicator cokriging approach is
clearly superior to its ordinary kriging counterpart. The improvement is
most significant for light rainfall, but drops off significantly for heavier
rainfall, Due to the use of radar rainfall data in place of rain gage
measurements in covariance estimation and validation, however, the results
are only preliminary.

The lack of predictability in spatial estimation of heavy rainfall
is borne out in the integral scale of indicator correlation, as obtained
from hourly radar rainfall data: peaking to its maximum for cutoffs near the
median, indicator correlation scale becomes increasingly smaller for larger
cutoffs of rainfall depth. The indicator correlation scale also exhibits
similarity to that of a bivarirate lognormal variable, which reflects the
diffusional nature of spatial rainfall process. Hence, as evidenced in this
work, indicator kriging may not be considered as an alternative to indicator
cokriging in rainfall estimation.

A derived-distribution analysis based on linearity between radar
rainfall and ground-truth indicates that indicator correlation scale of

ground-truth rainfall can be significantly greater than that of radar



rainfall at low cutoffs, and points toward inclusion of rainfall

intermittency, for example, following the approach proposed in this work.
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APPENDIX

Here, we examine how a random error introduced in the rainfall

observation process might affect indicator covariance structure of rainfall

data., Let us assume the following observation equation:

z(v) = B x(v) + &(v) (A1)

where z(v) 1is the observed rainfall at location v, x(v) is the true

rainfall, &(v) is the random error, and 8 is a known constant representing a
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systematic bias. Denoting the experimental values of the random variables,
z(v), x(v) and £(v) as z,, %, and e,, respectively, we have e.,2-8x, due to the
nonnegativity of z,. The conditional probability, Prlz(v)<z|x(u)<x],
where z. and x. are arbitrary cutoffs for observed and true rainfall,

respectively, is given by:

Priz(v) <z |x(u) <xc]

@ Zc‘va
:J J feev.avn (ey, xo|x(u) <xc) dey dxy (A2a)
0 J-Bx
© [Zc-fXy fx(v)(xv)
= feixw(ed]xy) dey dxy for x(u)<x. (A2b)
-Bxy Prix(u) <x.]

where fg(.xw|s(ev, Xv|x(u)<xc) is the conditional joint pdf of &(v) and
x(v), and fyv)(x) is the marginal pdf of x(v). Assuming that &(v) is

independent of {x(u)<xc} for u#v, we may write:

Priz(v) <z.|x(u) <xc]

= Jodb(—b’xv.zc-ﬁxv) fane (xe]x(u) <xe) dxy (A3a)
= j‘f¢' ( "va. Zc'BXv) PI‘[X(V) ng‘x(u) ch] dxv (A3b)
0
where
I‘ Zc-BXy
¢( -BXy, Zc‘va) = fE(v)lx(v)(ev va) de, (A4)
‘va
¢ ’ (‘va. Zc"BXv) = d¢( 'va. ZC‘BXV)/dxv (As)
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Analogously, Pr{z(u)<z.] is given by:

Priz(u) <z.]

[+ 4]
= L—)qﬁ'( -Bxy, 2e-Bx.) Prlx(v) <x] dx. (A7)
To obtain Prlz{v) <z;|z(u) £z.], we first write:

Prlz(v) <z;|z(u) <z]

@ ZI‘BXV

= J j fewrxwi+(ey, xv|2z(u) <z) dey dxy (A8)
0 J-Bxy
@ ZI—BXV fx(v)(xv)

= fewxv)(ev]xy) dey —————— dx, for z(u) <z (A9)
0 }-Bxy Prlz(u) <2]

Assuming ¢(v) is independent of {z(u)<z} for uzv (i.e., &(v) is now a

white-noise process in space), we may write:

Prlz(v) <z;|z(u) <z.]

= L)¢("BXV,ZI'BXV) fx(v)\'(xv'z(u)gzc) dx, (A10)

= J—z’('ﬁxv,zl-ﬁxv) Prix(v) <x¢|z(u) <z] dx, (A11)

where ¢(-8%,z1-B%y) and ¢’ (-B%y,z1-6%,) are as defined in Egs.(A4) and (A5).

If u=v, we have by definition:



if 2122.:
Priz(u) <z;|z(u) Lz.] = (A13)

[ Prz(u) <z]
Priz(u) <z]

if 21< z¢

Given the bounded nature of the random error (i.e., ew=-8%,), a

reasonable candidate for fg(ur(vi(evlz~) is the truncated normal:

feizev (evlzm)

1 ! .
= —~ exp{-(ev-m)*/20°} (A14)
(27!)1 0{1’¢(_Bzrv)}

In Eq.(Al4), m and o are the mean and variance of the untruncated normal
variable, and ¢(-82~) is its cumulative probability defined as:
1

¢(x) = [x ————— exp{(x-m)%/20%} dx (A15)
J-o (20)% 0 :

Then, ¢(-Bx.,z1-Bx.) in Eq. (A10) is given by:

¢(ZI'BXV) - ¢(_va)
o -Bxy, 21-Bxy) = (A16)
1 - ¢(-Bxv)

Using the Leibnitz rule, -¢’(-Bxv,21-B%) in Eq.(All) is given by:

-¢’ (-Bxv, z1-Bxv)

B
= 172 exp(-(erXv—m)z/Zoz}
(2n)"° o {1-¢(-Bxv)}




B {1-¢(z1-Bx)} 22
- exp{-(-Bx,-m)“/20°} (A17)
(21)'% 0 {1-¢(-Bx.)}?

We are now in a position to evaluate Cov[I(uth:z;), I(uiz.)] via
numerical integration for arbitrary values of h, 2z and z given the
bivariate pdf of the random function x( ). In this work, it is assumed that
x( ) has a bivariate lognormal distribution with parameter values that are
comparable to ensemble statistics of the hourly radar rainfall data used.
Also, parameter values used for the truncated normal density function are
based on error statistics of radar rainfall data compared against rain gage
measurements,

Figures Al and A2 show indicator covariances of z( ) and x{ ) at
selected cutoffs of 0.5 and 2.2 mm when 3=1 (i.e., no bias). Note that the
random error (truncated normal in this case) significantly reduces the
integral scale of indicator correlation at the lower cutoff. We may
interpret the linear observation equation in Eq.(Al) as describing the radar
observation of rainfall, where now x( ) is the ground-truth, z( ) is the
radar rainfall, B is the bias factor, and ¢( ) is the random error. The
above results suggest that the indicator correlation scale of radar rainfall
(Figure 3 in the text) does represent that of ground-truth except at very

low cutoffs.
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Table 1. Statistics for Ground-Truth and Three Types of Estimates

Ground-Truth  I(X-Estimate IK-Estimate OK-Estimate
Mean (mm) 3.4 (5.3) 3.7 (5.5) 3.6 (5.6) 3.8 (5.7)
Variance (mm?) 10.6 (26.4) 5.9 (11.3) 52 (9.6) 5.1 (9.2)
Maximum (mm)  27.5 (35.8)  12.6 (18.0) 11.6 (17.2) 12.0 (18.1)
0o 0.65 (0.79) 0.62 (0.78) 0.61 (0.78)

Unparenthesized numbers are for Case 1, the parenthesized for Case 2,

Po is the cross-correlation coefficient with ground-truth,

Numbers of data are 3597 for Case 1 and 3803 for Case 2.
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