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Dynamic Flood Routing with Explicit and Implicit
Numerical Solution Schemes

By MingJ in' and D.L.Fread?, Member, ASCE

Abstract: A characteristics-based, upwind, explicit numerical scheme is developed for one-
dimensional (1D) unsteady flow modeling of natural rivers and implemented into the U.S.
National Weather Service (NWS) FLDWAYV model in combination with the original four-point
implicit scheme. The new explicit scheme is extensively tested and compared with the implicit
scheme. The study shows that the new explicit scheme provides improved versatility and
accuracy in some situations, such as particularly large dambreak waves and other unsteady flows
with near critical mixed-flow regimes. A technique for implicit-explicit multiple routing is

introduced to incorporate the advantages of utilizing both schemes within an application of the
FLDWAYV model.

INTRODUCTION

Channel flood routing has long been of vital concern as we have sought to predict the
characteristics of flood waves. Mathematical techniques to predict channel flood wave
propagation have continually been developed, and many channel routing models have been
proposed. Among the various channel routing models, those based on the complete one-
dimensional (1D) hydrodynamic (Saint-Venant) equations have found increasing applications.

The U.S. National Weather Service (NWS) has been developing a generalized channel flood
routing model, FLDWAYV (Fread 1985,1993) to replace the popular dynamic DAMBRK and
DWOPER models (Fread 1977,1978,1988; Chow et al. 1988). More model capability has been
added to the FLDWAYV model, including a Kalman filter estimator for real-time updating using
on-line observations (Fread and Jin 1993). A recent enhancement to the FLDWAYV model is the
addition of a characteristics-based, upwind, explicit solution scheme for the Saint-Venant
equations; this has been incorporated into the FLDWAYV model via an implicit-explicit multiple
dynamic routing technique.

The original numerical scheme used for dynamic routing in FLDWAY is based on the four-
point, implicit, nonlinear finite-difference solution of the Saint-Venant equations. The implicit
scheme has flexible requirements for selection of the computational time steps and distance
intervals which have been proven to be very efficient, and excellent numerical stability and
reliability in numerous unsteady flow modeling applications through many years of use.

The four-point implicit scheme was found to have numerical stability problems when the
flow changed from subcritical to supercritical flow or conversely (mixed-flow regime). A
mixed-flow technique was developed to enable the four-point implicit scheme to successfully
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treat many situations of such mixed flow conditions (Fread 1983, 1985). This technique
involved locating the control points where critical flow occurs, dividing the entire routing reach
at each time step into a series of subcritical and supercritical subreaches, and computing each
subreach separately using appropriate external and internal boundary conditions along with
appropriate subcritical or supercritical solution algorithms. In this technique, the correct
numerical characteristics transmission direction is maintained in the solution procedure in which
the supercritical flows are solved in a downstream marching direction while subcritical flows are
solved by a double sweeping process (upstream to downstream followed by downstream to
upstream). The latter is inherent in the efficient (computational time and storage) matrix solution
technique (Fread 1971) used in FLDWAV. This technique works well when control points are
easy to define and locate, such as the point where channel slope changes abruptly from
subcritical to supercritical or conversely, or when the Froude number has a large change
upstream and downstream of the point, at which an apparent hydraulic jump would occur.

In many mixed-flow situations, the flow can be near critical, or either slightly above or
below critical throughout a channel reach; in this case, it is not easy to locate the critical control
point which itself moves as the flow rate changes. This causes the four-point implicit scheme,
with the mixed-flow technique, to have numerical stability and accuracy problems when
modeling such mixed flows, with near critical state, where the Froude number remains both
temporally and spatially between about 0.9 and 1.1.

Also, it was observed that the four-point implicit scheme, with the mixed-flow technique,
has difficulties when solving the Saint-Venant equations for an instantaneous, or near-
instantaneous, very large dambreak-induced flood wave, which produces a moving supercritical-
subcritical mixed-flow interface.

In the literature, some techniques have been proposed to deal with unsteady flows having
strong shocks or mixed-flow regimes such as the Godunov method (Savic and Holly 1993); the
ENO explicit scheme (Yang et al. 1993); the TVD-McCormack scheme (Nakatani and Komura
1993); the McCormack, Lambda and Gabutti schemes (Fennema and Chaudhry 1986); the Beam
and Warming scheme (Fennema and Chaudhry 1987), and the Flux Difference schemes (Jha et
al. 1995). Although these techniques provide numerical tools for open channel flows with strong
shocks resulting from an instantaneous dambreak, all of them were proposed for only prismatic
or rectangular nonprismatic channels which are not representative of natural rivers.

The explicit scheme presented herein has the capability of not only effectively modeling
flows with strong shocks (near instantaneous dambreak waves) or subcritical/supercritical mixed
flows, but also dealing with natural river properties such as nonprismatic cross sections, off-
channel storage, channel cross sections with wide floodplains, various internal boundaries such
as dams and bridges, abrupt contractions or expansions of cross sections, etc.

The new scheme also has the capability of coping with a variety of external boundary
conditions, such as stage or discharge hydrographs, or rating curves defining single or looped
stage-discharge relations, so that it can be easily incorporated to model special mixed flows
simultaneously in an application which uses the four-point implicit scheme within the FLDWAV
model.

Unlike most spatially symmetric schemes, an upwind scheme is based on the local
characteristic direction, and thus always ensures the correct characteristic direction. Also, the
total variation diminishing feature of an upwind scheme makes it a favorable choice for modeling
waves with strong shocks.




In this study, a characteristics-based, upwind, explicit scheme for the conservation form of
the complete Saint-Venant equations for nonprismatic channels is constructed, extensively tested,
compared with the four-point implicit scheme, and implemented into the FLDWAYV model as an
additional available numerical solution scheme.

Also, a technique for explicit-implicit multiple routing has been developed so that one can
take advantage of these two numerical schemes and apply them to different subreaches of an
entire routing reach. This enhancement to the FLDWAYV model is reported herein.

MODEL FORMULATION
Governing Equations

The Saint-Venant equations of 1D unsteady flow in nonprismatic channels are the basic
equations used in the FLDWAYV model, i.e.,
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where x = distance along the longitudinal axis of the channel; t = time; Q = discharge; A = active
cross-sectional area; A, = inactive (off-channel storage) cross-sectional area; q = lateral inflow;
g = gravity constant; h = water surface elevation; B = wetted top width of the cross-section; L =
momentum effect of lateral flow (L=-qv,, where v, is the velocity of the lateral inflow in the
x-direction of the channel flow); S; = friction slope due to the bed resistance; n = Manning n; R =
hydraulic radius approximated by (A/B); K, = channel conveyance factor; A = system of units
coefficient associated with the Manning equation to determine the resistance slope (A = 1 for the
metric system, and A = 2.21 for the English system); S, = local loss slope; K, = expansion
(negative) or contraction (positive) coefficient; W, = wind term representing the resistance effect
of wind on the water surface; C, = nondimensional wind coefficient; and the wind velocity
relative to the water is V.=V, cos w + V, where V,, = velocity of wind, w = azimuth angle the
wind direction makes with the x-axis, and V = velocity of the unsteady flow.

To construct a characteristics-based, upwind, explicit scheme, the basic equations are
transformed into the conservation form of mass and momentum expressed in vector notation for
convenience, i.e.,
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where h, = the elevation of the channel bed at location X, and § = dummy variable for the
integration. The components of the state variable, U(x,t), in the conservation form of the basic
equations, are now (A+A,) and Q, while the most useful variable is water surface elevation, h.
However, it is easy to obtain h from the numerical solutions of (A+A, ), according to the cross-
sectional data of tabular values of channel wetted active and inactive top widths versus water
surface elevation. Also, the state variable integral functions, P, and P, in (7) can be easily
determined during the computations by a reverse table look-up algorithm.

Numerical scheme formulation

Since the principle of an upwind, explicit scheme is to use a one-sided, finite-difference
approximation for the space derivative, according to the time-dependent local characteristic
direction (eigen values or local characteristic velocity) similar to the derivations of Yang et al.
(1993), the flux in (5) is split into two parts with each corresponding to a local characteristic
direction. This can be done by splitting the Jacobian vector, G(U), into two parts in terms of a
split normalized Jacobian matrix, i.e.,
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where the split normalized Jacobian matrix is defined by the following:
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where i=1 for v+c, and i=2 for v-c; v = local cross-sectional average velocity, and ¢ = local
dynamic wave velocity; and the term (sgn) is the sign function. The flux in (5) can thus be split,
i.e.,

An upwind, explicit scheme for (12) can be constructed in which the subscript (j) refers to
the computational cross-section (node) number, and the subscript (n) refers to a point on the time
line, i.e.,
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where values of the state variable, U(x,t), are known at all computational nodes at time t,, and
values of U(x,t) for all interior nodes at time t**' can be directly obtained from it.

Boundary conditions

Most explicit schemes use the method of characteristics to treat external boundary
conditions. Although this method is efficient when treating channels of rectangular cross
sections, it is not as efficient when dealing with complicated nonprismatic channels or channels
with off-channel storage.

A technique has been developed to treat both external and internal boundary conditions more
effectively. An external boundary, such as a known stage or discharge hydrogragh for the
upstream and downstream boundaries, or a known relationship between stage and discharge,
such as a single or looped rating curve for the downstream boundary condition, is specified at the
most upstream cross section and at the most downstream cross section. Internal boundaries are
used for dams or bridges. All values of the state variable, U(x,t), can be determined if another
equation is provided for each boundary and solved in connection with the specified boundary
condition.



In this study, the extra equation for both external boundaries, or for the internal boundaries,
is derived by integrating the continuity equation, (1), for the first (i=1) and the last (i=N-1)
computational time and distance steps as:
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where i=1 for the upstream boundary, and i=N-1 for the downstream boundary (N is the total
number of computational cross sections); the bar stands for a temporal averaging, and the
underline stands for a spatial averaging, i.e., (A+A,) = 0.5[(A+A)+HA+A,),,,], Q = 0.5(Q™+Q™h);
and q is the time-averaged lateral inflow or outflow within the computational distance step.

Also, (15) can be applied to upstream and downstream reaches of a hydraulic structure
(internal boundary such as a dam or bridge), together with an appropriate internal boundary
equation (such as a weir equation) representing the relationship between flow through the
structure and water surface elevations both upstream and downstream of the structure.

A comparison of the upwind solutions, using (15), with implicit solutions for numerous
cases has shown that this method of treating boundary conditions works well for a variety of
external and internal boundaries.

Selection of Computational at and ax
Unlike unconditionally stable implicit schemes, most explicit schemes are restricted to the

Courant-Friedrich-Lewy (CFL) condition for numerical stability. For the upwind scheme
presented herein, the CFL condition can be written as follows:
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where C, = Courant number. A large value of C, (0.9-1.0) can be used for simple prismatic
channels. C, has to be reduced for complicated channel geometry such as rapid expansions and
contractions, rapid changes in slope, channel cross sections with wide floodplains, or a large
portion of off-channel storage due to an increased effect of the source term S(U}) in (13). In the
FLDWAY model, options are provided to input either at or C,.

After many years of experience with the selection of computational distance step values for
the NWS implicit dynamic routing models in numerous applications, and more recently
supported by a theoretical derivation (Fread and Lewis 1993), a criteria for ax is recommended as
follows:



where T, = hydrograph's time of rise (time from the significant beginning of increased discharge
to the peak of the discharge hydrograph) in hours; C, = bulk wave speed (the celerity associated
with an essential characteristic of the unsteady flow such as the peak or center of gravity of the
hydrograph) in mi/h; and M = function of the flow properties and generally varies between about
8 and 40 (a value of about 20 for M has proven to be generally acceptable).

Extensive testing in this study has shown that smaller computational distance steps for the
upwind, explicit scheme are needed in order to match the same accuracy as that of the implicit
scheme. Therefore, a somewhat larger value of M (30-40) is recommended for the reaches where
the explicit scheme is used.

TESTING EXAMPLES
Example 1 - Idealized dambreak problem

To examine the performance of the upwind, explicit scheme presented herein, an idealized
dambreak problem which has an analytical solution is solved with the upwind, explicit scheme;
these results are compared with those of the analytical solution. A dam in a wide, horizontal,
rectangular, and frictionless channel, with still water at constant depths of 12.1 and 0.61m,
upstream and downstream of the dam, respectively, is instantaneously removed across its entire
width at the beginning of the computation (t=0.0). The analytical solution is obtained by using
Stoker's method (Stoker 1957).

Fig. 1 compares the computed water surface profile from the analytical and the upwind,
explicit numerical solutions for the time t=10 s after the removal of the dam. This problem is
characterized by a sudden formation of a bore, or sharp wave front, that travels downstream. The
upwind, explicit scheme was also tested for different initial depth ratios (tailwater depth to the
reservoir depth) ranging from 0.05, as shown in Fig. 1, to a value as small as 0.000025. The
computational results compare closely with the analytical results, both upstream of the dam
(negative wave region) and downstream in the bore region where an insignificant computational
smoothing of the bore front occurs.
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Example 2 - Large dambreak waves

In this example, a 36.6 m high dam is located at 11.3 km of a 32.2 km routing reach. The
channel has irregular and nonprismatic cross sections at 0, 8.05, 11.3, 16.1, 124.1 and 32.2 km,
and the bed slope changes from 0.0042 upstream of the dam to 0.0019 downstream of the dam.
A constant Manning n of 0.04 is used. The dam fails, and the resulting dambreak peak discharge
and wave shape depend on the time of failure (T,) of the dam, the breach shape and dimensions,
and inflow into the reservoir. The time of failure is defined herein as the time from beginning of
the formation of the breach until the final formation of the specified breach size is attained. It is
assumed that the breach has the same shape as the nearly trapezoidal cross section of the dam at
time T,. Also, there is a small constant upstream inflow of 142 m?/s into the reservoir (upstream
boundary condition). The time of failure is an important parameter for the dambreak outflow and
the resulting dam failure flood wave. In both the implicit and the explicit solution schemes, the
breached dam is treated as an internal boundary within the entire 32.2 km dynamic routing reach.

It is found that for a time of failure of about 0.05 h or larger, both explicit and implicit
methods get approximately the same computational results. The computed attenuation of peak
discharge and peak stage elevation along the channel for T; = 0.05 h are shown in Figs. 2(a) and
2(b). Nonprismatic effects cause irregularities in the peak stage profiles at 16.1 and 24.1 km.
The computed hydrographs at the dam site from the explicit and implicit schemes are compared
in Fig. 2(c). Variable computational distance steps are used; these change from 0.5 to 0.3 km
upstream of the dam and 0.03 to 0.16 km downstream of the dam, respectively. The time step
used is 0.0025 h for the explicit solution scheme and 0.001 h for the implicit scheme.
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For this example, the implicit scheme experienced nonconvergence problems when the time of
failure was less than 0.05 h. This was due to a type of mixed flow in which a supercritical/
subcritical interface develops spontaneously below the dam and progresses downstream. The
formation of the supercritical regime was produced by an increase in the dam failure peak
outflow. The outflow increase was, in turn, caused by the decrease in the time of failure (T)
which reduces the extent that the reservoir level decreases as the breach forms and the breach
outflow begins to drain the reservoir. The resulting higher reservoir elevation when the breach
reaches its final and largest size produces a greater breach (weir-type) outflow than for the former
example with a T, = 0.05 h. The initiation of supercritical flow associated with the increased
breach outflow could also have resulted by increasing the bottom slope of the channel
downstream of the dam, reducing the Manning n in the downstream channel, increasing the
height of the original reservoir level and/or increasing the width of the dam breach.

The four-point implicit scheme with the mixed-flow technique (Fread 1985) is not capable
of modeling this type of mixed flow with a moving supercritical/subcritical interface; whereas
the characteristics-based, upwind, explicit scheme is capable of modeling such flows.

Results of the explicit scheme applied to a near instantaneous dambreak (T; = 0.02 h)
simulation for the same example previously described are shown in Figs. 3(a)-3(c). Profiles of
the computed Froude number along the downstream channel at times t=0.02, 0.05, 0.10, 0.15 and
0.20 h are shown in Fig 3(a). The moving supercritical/subcritical interface is shown in each
profile for the times 0.02, 0.05 and 0.10. The flow becomes subcritical throughout the entire
reach after about t=0.15 h. The computed water surface profiles at these five times are shown in
Fig. 3(b). The irregularities at 16.1 km in the profiles are caused by the nonprismatic effects.
The computed discharge hydrographs at five locations along the channel are shown in Fig. 3(c).
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Example 3 - Near critical mixed-flow regimes

In this example, a flood wave is routed through a 48.3 km reach of a rectangular channel
with a width of 61 m and a slope of 0.0076. This situation simulates an unsteady flow in a
channel with near critical slope. The upstream boundary condition is a specified discharge
hydrograph with an initial discharge of 71 m*/s and a peak discharge of 1415 m*s. A linear
increase of the discharge from the initial flow to the peak is used with a time of rise (T,) of 0.4 h,
and linear recession from the peak to the initial flow within 0.4 h is also used. A free-flow
condition is specified as the downstream boundary condition (a loop rating will be generated
automatically in the FLDWAYV model under a free-flow condition). This example is designed to
test the performance of the upwind, explicit scheme for the case of near critical mixed flow along
the routing reach.

Three different unsteady flow situations are observed by changing the Manning n. A
subcritical flow is obtained using a Manning n of 0.035, and a supercritical flow is obtained
using a Manning n of 0.025. When a Manning n of 0.03 is used, a complicated mixed-flow
situation occurs in which a supercritical flow region is associated with only the flood peak, and
this region moves as the flood peak travels downstream, while upstream and downstream of this
region the flows are subcritical.

Fig. 4(a) presents the computed peak discharge profiles from both the implicit and the
explicit schemes. Similar numerical results are obtained from the two schemes for the
supercritical and subcritical flow situations, as shown by the two profiles for the subcritical and
supercritical flows in Fig. 4(a). For the mixed flow situation, a reasonable predicted peak profile
from the explicit scheme falls between those of supercritical and subcritical situations, while the
implicit scheme produces an unreasonable peak profile that is lower than that of subcritical flow
in the first 19.3 km of the reach.

Fig. 4(b) shows the spatial distribution of the Froude number along the channel at two
different times (t=1.5 and 2.0 h), computed by the explicit scheme for the mixed-flow situation.
It is seen that the Froude number changes from about 0.86 (subcritical) to 1.15 (supercritical) at
the flood wave peak; the location of the supercritical portion of the flow moves as the flood peak
moves downstream.

In Fig. 4(c), changes of the Froude number with time at locations x=16.1, 24.1, 32.2, and
48.3 km are shown; the flow regimes at these cross sections can be observed to change from
subcritical to supercritical and back to subcritical again as the flood peak passes. Tests of several
other mixed-flow cases also show that the upwind, explicit, numerical scheme is capable of
modeling the near critical mixed flows or mixed flows with moving subcritical/supercritical
regimes.

IMPLICIT-EXPLICIT MULTIPLE ROUTING

Because the numerical stability requirement of the explicit scheme restricts the time step to a
Courant condition, the explicit scheme requires smaller computational time steps than the
implicit scheme which is unconditionally stable; therefore, for most applications, it requires more
computational time. In Fig. 5, the ratio of computational time of the explicit scheme to the
computational time of the implicit scheme is plotted as a function of the routed hydrograph's time
of rise (Tr). It can be seen that the explicit scheme needs much more computation time when
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modeling slowly rising flood waves, while it is equally or more time efficient, as the implicit
scheme, for very fast-rising waves of about 0.5 h time of rise or smaller. Since fast-rising waves
tend to attenuate quickly, and the time of rise of a wave increases when it travels downstream,
use of the explicit scheme for an entire routing reach may often result in very large computational
times. In addition, it has been found in tests for a wide variety of simulations, that the explicit
scheme is inferior compared with the implicit scheme regarding the numerical accuracy,
especially when modeling the flows in a channel with very nonprismatic features, large change of
slopes, cross sections having large portions of dead storage, and an abrupt change in
computational distance step (over two times for adjacent cross sections), etc. This is caused by
an increased effect of the terms P, and P, in (8), and the source term S(U) in (4), when the
channel becomes more irregular. A smaller distance step for an explicit scheme, and
consequently a smaller time step, is often needed to provide the same accuracy as the implicit
scheme for these situations.

Little difference in the computational results was observed between the explicit and the
implicit schemes for prismatic rectangular channels. It is, therefore, desirable to use the explicit
scheme in situations where the implicit scheme does not provide reliable accuracy, such as the
near critical mixed flows, while the other reaches are routed by the implicit scheme. In this way,
one can take advantage of both schemes.



In the FLDWAY model, the implicit-explicit multiple dynamic routing algorithm is
developed, and options allow the user to select a different scheme for any subreach within the
entire routing reach. The upwind, explicit algorithm, when combined with the four-point
implicit scheme, enables only those portions of an entire river system being modeled to utilize
the advantages of accuracy and stability of an explicit method for nearly critical flows, while
minimizing the effect of its greater computational requirement by using the implicit algorithm for
other reaches of the river system where nearly critical flows do not occur.

Fig. 6 is a schematic illustration of the multiple dynamic routing capability within the
FLDWAY model. The explicit scheme is used for a subreach from x, to x,, and the four-point
implicit scheme is used for a subreach from x, to x.. The time step (from t" to t**') for the
implicit scheme is at;, and the explicit scheme has a smaller time step, atg, as shown in Fig. 6.
The explicit subreach will have several computational time steps for one implicit time step
because of the Courant condition restricting the size of a stable time step. The entire reach is
thus split into two subreaches, and each subreach is computed separately. The upstream subreach
is computed first, and a computed loop rating curve is used as the downstream boundary
condition for the first routing subreach. The use of the loop rating boundary condition assumes
that a free-flow condition exists with no backwater effects, but it does account for the unsteady
(dynamic) effects neglected by single-value ratings. The connecting cross section in this multiple
routing, therefore, must be located where the channel shape has little change, and the backwater
effects from any downstream dam, bridge, or other cross-sectional constriction are insignificant.
The first routing subreach is computed for one implicit time step, and the downstream subreach
can be computed using the computed discharge from the first subreach as its upstream boundary
condition. Also, the implicit scheme may be used in an upstream subreach and the explicit
scheme used in the downstream subreach. An entire routing reach can be divided into various
implicit-explicit or explicit-implicit combinations.

The implicit-explicit multiple dynamic routing capability is a part of a general multiple
routing technique developed in the FLDWAYV model, which can combine dynamic routing
methods (implicit, explicit) or hydrologic routing methods (level pool, Muskingum-Cunge).

Figs. 7(a) and 7(b) are some results of an application of the multiple routing technique to an
actual dambreak problem -- the Buffalo Creek coal-waste dam which collapsed in February 1972,
on the Middle Fork, a tributary of Buffalo Creek in West Virginia. Observations (Davies et al.
1972) were available on the approximate development sequence of the breach, the time required
to empty the reservoir, indirect peak discharge measurements at four sites, approximate flood-
peak travel times, and flood-peak elevations. Also, nonprismatic cross sections and the Manning
roughness coefficients were taken from a report on routing dambreak floods (McQuivey et al.
1975). The computational results are excellent compared with the observed data, e.g., the
average error for the peak elevation is about 0.24 m. Some nonuniformity in the computed peak
discharge profile at about x=5.8 km is associated with a large change in the channel slope at that
location.
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In this application, level-pool (upstream of the dam at 0.0 km), explicit (0.0 to 10.9 km), and
implicit (10.9 to 25.3 km) multiple routing is used. The breach parameters used to generate the
reservoir outflow are: time of failure of 0.083 h; trapezoidal-shaped breach side slope of 2.6;
breach bottom width of 52 m; and breach height of 13.4 m. Distance steps are gradually
increased from 0.08 km near the dam to 1.29 km downstream, and time steps are 0.004 h for the
implicit and level-pool solutions and 0.001 h for the explicit solution. The 25.3 km routing reach
has two distinct subreaches with the slope changing at 5.79 km from about 0.0159 upstream to
0.0076 downstream. The resulting unsteady flow has a mixed-flow regime changing from
supercritical in the upstream reach to subcritical in the downstream reach.

CONCLUSION

A characteristics-based, upwind, explicit scheme is introduced for the numerical solution of
1D unsteady flows in natural rivers. It has been found that this explicit scheme has advantages
over a four-point implicit scheme with a mixed-flow technique for some special unsteady flow
situations having moving subcritical/supercritical interfaces and subcritical/supercritical mixed-
flow regimes at the near critical flow range.

The new characteristics-based, upwind, explicit scheme is implemented within the NWS
FLDWAY model so that it provides an alternative numerical solution scheme for the Saint-
Venant equations applied to natural rivers with nonprismatic cross sections, off-channel storage,
cross sections with a floodplain, and various internal boundary conditions. A technique of
implicit-explicit multiple routing, within an application of the NWS FLDWAYV model, is
developed to take advantage of the two different schemes. The addition of the upwind, explicit
scheme increases the capability and improves the performance for some special unsteady mixed-
flow applications of the FLDWAYV model.
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Dynamic Flood Routing with Explicit and Implicit

Numerical Solution Schemes
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Abstract: A characterisﬁcs—based, upwind, explicit numerical scheme is developed for one-
dimensional unsteady flow modeling of natural rivers and implemented into the NWS
FLDWAY model in‘ combination with the original four-point implicit scheme. The new
explicit scheme is extensively tested and compared with the implicit scheme. The study
shows that the new explicit scheme provides improved versatility and accuracy in some
situations, such as particularly large dambreak waves and other unsteady flows with near
critical mixed-flow regimes. A technique for implicit-explicit multiple routing is introduced
to incorporate the advantages of utilizing both schemes within an application of the

FLDWAY model.
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INTRODUCTION

Channel flood routing has long been of vital concern as we have sought to predict the
characteristics of flood waves. Mathematical techniques to predict channel flood wave
propagation have continually been developed, and many channel routing models have been
proposed. Among the various channel routing models, those based on the complete one-
dimensional hydrodynamic (Saint-Venant) equations have found increasing applicatiohs.

The U.S. National Weather Service (NWS) has been developing a generalized channel
flood routing model, FLDWAV, (Fread, 1985,1993) to replace the popular dynamic
DAMBRK and DWOPER models (Fread, 1977,1978,1988; Chow, et al., 1988). More
model capability has been added to the FLDWAV model, including a Kalman filter estimator
for real-time updating using on-line observations (Fread and Jin, 1993). A recent
enhancement to the FLDWAYV model is the addition of a characteristics-based, upwind,
explicit solution scheme for the Saint-Venant equations; this has been incorporated into the
FLDWAYV model via an implicit-explicit multiple dynamic routing technique.

The original numerical scheme used for dynamic routing in FLDWAY is based on the
four-point, implicit, nonlinear finite-difference solution of the Saint-Venant equations. The
implicit scheme has: 1) flexible requirements for selection of the computational time steps
and distance intervals which have been proven to be very efficient; and 2) excellent
numerical stability and reliability in numerous unsteady flow modeling applications through
many years of use.

The four-point implicit scheme was found to have numerical stability problems when the

flow changed from subcritical to supercritical flow or conversely (mixed-flow regime). A



mixed-flow technique was developed to enable the four-point implicit scheme to successfully
treat many situations of such mixed flow conditions (Fread, 1983, 1985). This technique
involved: locating the control points where critical flow occurs; dividing the entire routing
reach at each time step into a series of subcritical and supercritical subreaches; and
computing each subreach separately using appropriate external and internal boundary
conditions, along with appropriate subcritical or supercritical solution algorithms. In this
technique, the correct numerical characteristics transmission direction is maintained in the
solution procedure in which the supercritical flows are solved in a downstream marching
direction while subcritical flows are solved by a double sweeping process (upstream to
downstream followed by downstream to upstream). The latter is inherent in the efficient
(computational time and storage) matrix solution technique (Fread, 1971) used in FLDWAV.
This technique works well when control points are easy to define and locate, such as the
point where channel slope changes abruptly from subcritical to supercritical or conversely, or
when the Froude number has a large change upstream and downstream of the point, at which
an apparent hydraulic jump would occur.

In many mixed-flow situations, the flow can be near critical, or either slightly above or
below critical throughout a channel reach; in this case, it is not easy to locate the critical
control point which itself moves as the flow rate changes. This causes the four-point implicit
scheme, with the mixed-flow technique, to have numerical stability and accuracy problems
when modeling such mixed flows, with near critical state, where the Froude number remains

both temporally and spatially between about 0.9 and 1.1.



Also, it was observed that the four-point implicit scheme, with the mixed-flow
technique, has difficulties when solving the Saint-Venant equations for an instantaneous, or
near-instantaneous, very large dambreak-induced flood wave, which produces a moving
supercritical-subcritical mixed-flow interface.

In the literature, some techniques have been proposed to deal with unsteady flows having
strong shocks or mixed-flow regimes such as: the Godunov method (Savic and Holly, 1993);
the ENO explicit scheme (Yang, et al., 1993); the TVD-McCormack scheme (Nakatani and
Komura, 1993); the McCormack, Lambda and Gabutti schemes (Fennema and Chaudhry,
1986); the Beam and Warming scheme (Fennema and Chaudhry, 1987), and the Flux
Difference schemes (Jha, et al., 1995). Although these techniques provide numerical tools
for open channel flows with strong shocks resulting from an instantaneous dambreak, all of
them were proposed for only prismatic or rectangular nonprismatic channels which are not
representative of natural rivers.

The explicit scheme presented herein has the capability of not only effectively modeling
flows with strong shocks (near instantaneous dambreak waves) or subcritical/supercritical
mixed ﬂows., but also dealing with natural river properties such as nonprismatic cross
sections, off-channel storage, channel cross sections with wide floodplains, various internal
boundaries such as dams and bridges, abrupt contractions or expansions of cross sections,
etc.

The new scheme also has the capability of coping with a variety of external boundary
conditions, such as stage or discharge hydrographs, or rating curves defining single or looped

stage-discharge relations, so that it can be easily incorporated to model special mixed flows



simultaneously in an application which uses the four-point implicit scheme within the
FLDWAYV model.

Unlike most spatially symmetric schemes, an upwind scheme is based on the local
characteristic direction, and thus always ensures the correct characteristic direction. Also,
the total variation diminishing (TVD) feature of an upwind scheme makes it a favorable
choice for modeling waves with strong shocks.

In this study, a characteristics-based, upwind, explicit scheme for the conservation form
of the complete Saint-Venant equations for nonprismatic channels is constructed, extensively
tested, compared with the four-point implicit scheme, and implemented into the FLDWAV
model as an additional available numerical solution scheme.

Also, a technique for explicit-implicit multiple routing has been developed so that one
can take advantage of these two numerical schemes and apply them to different subreaches of

an entire routing reach. This enhancement to the FLDWAYV model is reported herein.

MODEL FORMULATION
Governing Equations
The Saint-Venant equations of one-dimensional unsteady flow in nonprismatic channels

are the basic equations used in the FLDWAV model, i.e.,
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in which x is the distance along the longitudinal axis of the channel; t is time; Q is
discharge; A is the active cross-sectional area; A, is the inactive (off-channel storage) cross-
sectional area; q is lateral inflow; g is the gravity constant; h is water surface elevation; B is
the wetted top width of the cross-section; L is the momentum effect of lateral flow (L=-qv,,
where v, is the velocity of the lateral inflow in the x-direction of the channel flow); S is the
friction slope due to the bed resistance; n is the Manning n; R is the hydraulic radius
approximated by (A/B); K, is the channel conveyance factor; A is a system of units
coefficient associated with the Manning equation to determine the resistance slope (A = 1 for
the metric system, and A = 2.21 for the English system); S, is the local loss slope; K, is an
expansion (negative) or contraction (positive) coefficient; W, is the wind term representing
the resistance effect of wind on the water surface; C, is a nondimensional wind coefficient;
and the wind velocity relative to the water is V,=V,, cos w + V, where ¥ is the velocity of
wind, w is the azimuth angle the wind direction makes with the x-axis, and V is the velocity
of the unsteady flow.

In order to construct a characteristics-based, upwind, explicit scheme, the basic
equations are transformed into the conservation form of mass and momentum expressed in

vector notation for convenience, i.e.,
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where h, is the elevation of the channel bed at location x, and £ is a dummy variable for the
integration. The components of the state variable, U(x,t), in the conservation form of the
basic equations, are now (A+A,) and Q, while the most useful variable is water surface

elevation, h. However, it is easy to obtain h from the numerical solutions of (A+A,),



| according to the cross-sectional data of tabular values of channel wetted active and inactive
top widths versus water surface elevation. Also, the state variable integral functions, P, and
P, 1n Eq. (7) can be easily determined during the computations by a reverse table look-up
algorithm.
Numerical scheme formulation

Since the principle of an upwind, explicit scheme is to use a one-sided, finite-difference
approximation for the space derivative, according to the time-dependent local characteristic
direction (eigen values or local characteristic velocity) similar to the derivations of Yang et
al. (1993), the flux in Eq. (5) is split into two parts with each corresponding to a local
characteristic direction. This can be done by splitting the Jacobian vector, G(U), into two

parts in terms of a split normalized Jacobian matrix, i.e.,
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where the split normalized Jacobian matrix is defined by the following:
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in which i=1 for v+c, and i=2 for v-c; v is the local cross-sectional average velocity, and ¢

is the local djmamic wave velocity; and the term (sgn) is the sign function. The flux in

Eq. (5) can thus be split, i.e.,
U rr 2
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An upwind, explicit scheme for Eq. (12) can be constructed in which the subscript ()
refers to the computational cross-section (node) number, and the subscript (n) refers to a

point on the time line, i.e.,
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where values of the state variable, U(x,t), are known at all computational nodes at time t,,
and values of U(x,t) for all interior nodes at time t**! can be directly obtained from it.
Boundary conditions

Most explicit schemes use the method of characteristics to treat external boundary
conditions. Although this method is efficient when treating channels of rectangular cross
sections, it is not as efficient when dealing with complicated nonprismatic channels or

channels with off-channel storage.



A technique has been developed to treat both external and internal boundary conditions
more effectively. An external boundary, such as a known stage or discharge hydrogragh for
the upstream and downstream boundaries, or a known relationship between stage and
discharge, such as a single or looped rating curve for the downstream boundary condition, is
specified at the most upstream cross section and at the most downstream cross section.
Internal boundaries are used for dams or bridges. All values of the state variable, U(x,t),
can be determined if another equation is provided for each boundary and solved in
connection with the specified boundary condition.

In this study, the extra equation for both external boundaries, or for the internal
boundaries, is derived by integrating the continuity equation, Eq. (1), for the first (i=1) and

the last (i=N-1) computational time and distance steps as:
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in which i=1 for the upstream boundary and i=N-1 for the downstream boundary (N is the
total number of computational cross sections); the bar stands for a temporal averaging, and

the underline stands for a spatial averaging, i.e., (A+Ag) = 0.5[(A+As)+(A+Ag)l, Q
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= 0.5(Q°+Q**"); and q is the time-averaged lateral inflow or outflow within the
computational distance step.

Also, Eq. (15) can be applied to upstream and downstream reaches of a hydraulic
structure (internal boundary such as a dam or bridge), together with an appropriate internal
boundary equation (such as a weir equation) representing the relationship between flow
through the structure and water surface elevations both upstream and downstream of the
structure.

Comparison of the upwind solutions, using Eq. (15), with implicit solutions for
numerous cases has shown that this method of treating boundary conditions works well for a
variety of external and internal boundaries.

Selection of computational at and ax

Unlike unconditionally stable implicit schemes, most explicit schemes are restricted to

the Courant-Friedrich-Lewy (CFL) condition for numerical stability. For the upwind scheme

presented herein, the CFL condition can be written as follows:
. Ax
&<C, min(—), Cgl0) .o e (16)
v+e
in which C, is the Courant number. A large value of G (0.9-1.0) can be used for simple
prismatic channels. C, has to be reduced for complicated channel geometry such as rapid

expansions and contractions, rapid changes in slope, channel cross sections with wide

floodplains, or a large portion of off-channel storage due to an increased effect of the source
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term S(UY) in Eq. (13). In the FLDWAYV model, options are provided to input either at or
C..

After many years of experience with the selection of computational distance step values
for the NWS implicit dynamic routing models in numerous applications, and more recently
supported by a theoretical derivation (Fr&d and Lewis, 1993), a criteria for ax is

recommended as follows:

where T, is the hydrograph’s time of rise (time from the significant beginning of increased
discharge to the peak of the discharge hydrograph) in hours; C, is the bulk wave speed (the
celerity associated with an essential characteristic of the unsteady flow such as the peak or
center of gravity of the hydrograph) in miles/hour; and M is a function of the flow properties
and generally varies between about 8 and 40 (a value of about 20 for M has proven to be
generally acceptable).

Extensive testing in this study has shown that smaller computational distance steps for
the upwind, explicit scheme are needed in order to match the same accuracy as that of the
implicit scheme. Therefore, a somewhat larger value of M (30-40) is recommended for the

reaches where the explicit scheme is used.

TESTING EXAMPLES

Example 1 - Idealized dambreak problem

12



In order to examine the performance of the upwind, explicit scheme presented herein, an
idealized dambreak problem which has an analytical solution is solved with the upwind,
explicit scheme; these results are compared with those of the analytical solution. A dam in a
wide, horizontal, rectangular, and frictionless channel, with still water at constant depths of
12.1 m and 0.61m, upstream and downstream of the dam, respectively, is instantaneously
removed across its entire width at the beginning of the computation (t=0.0). The analytical
solution is obtained by using Stoker’s method (Stoker, 1957).

Fig. 1 compares the computed water surface profile from the analytical and the upwind,
explicit numerical solutions for the time t=10 seconds after the removal of the dam. This
problem is characterized by a sudden formation of a bore, or sharp wave front, that travels
downstream. The upwind, explicit scheme was also tested for different initial depth ratios
(tailwater depth to the reservoir depth) ranging from 0.05, as shown in Fig. 1, to a value as
small as 0.000025. The computational results compare closely with the analytical results,
both upstream of the dam (negative wave region) and downstream in the bore region where
an insignificant computational smoothing of the bore front occurs.

Example 2 - Large dambreak waves

In this example, a 36.6-m high dam is located at kilometer 11.3 of a 32.2-km routing
reach. The channel has irregular and nonprismatic cross sections at kilometrs 0, 8.05, 11.3,
16.1, 124.1 and 32.2, and the bed slope changes from 0.0042 upstream of the dam to 0.0019
downstream of the dam. A constant Manning n of 0.04 is used. The dam fails, and the
resulting dambreak peak discharge and wave shape depend on the time of failure (Ty) of the

dam, the breach shape and dimensions, and inflow into the reservoir. The time of failure is
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defined herein as the time from beginning of the formation of the breach until the final
formation of the specified breach size is attained. It is assumed that the breach has the same
shape as the nearly trapezoidal cross section of the dam at time Ty Also, there is a small
constant upstream inflow of 142 cms into the reservoir (upstream boundary condition). The
time of failure is an important parameter for the dambreak outflow and the resulting dam
failure flood wave. In both the implicit and the explicit solution schemes, the breached dam
is treated as an internal boundary within the entire 32.2-km dynamic routing reach.

It is found that for a time of failure of about 0.05 hour or larger, both explicit and
implicit methods get approximately the same computational results. The computed
attenuation of peak discharge and peak stage elevation along the channel for T = 0.05 hour
are shown in Figs. 2(a) and 2(b). Nonprismatic effects cause irregularities in the peak stage
profiles at kilometers 16.1 and 24.1. The computed hydrographs at the dam site from the
explicit and implicit schemes are compared in Fig. 2(c). Variable computational distance
steps are used; these change from 0.5 to 0.3 km upstream of the dam and 0.03 to 0.16 km
downstream of the dam, respectively. The time step used is 0.0025 hour for the implicit
solution scheme and 0.001 hour for the explicit scheme.

For this example, the implicit scheme experienced nonconvergence problems when the
time of failure was less than 0.05 hour. This was due to a type of mixed flow in which a
supercritical/subcritical interface develops spontaneously below the dam and progresses
downstream. The formation of the supercritical regime was produced by an increase in the
dam failure peak outflow. The outflow increase was, in turn, caused by the decrease in the

time of failure (T;) which reduces the extent that the reservoir level decreases as the breach
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forms and the breach outflow begins to drain the reservoir. The resulting higher reservoir
elevation when the breach reaches its final and largest size produces a greater breach (weir-
type) outflow than for the former example with a T = 0.05 hour. The initiation of
supercritical flow associated with the increased breach outflow could also have resulted by
increasing the bottom slope of the channel downstream of the dam, reducing the Manning n
in the downstream channel, increasing the height of the original reservoir level and/or
increasing the width of the dam breach.

The four-point implicit scheme with the mixed-flow technique (Fread, 1985) is not
capable of modeling this type of mixed flow with a moving supercritical/subcritical interface;
whereas the characteristics-based, upwind, explicit scheme is capable of modeling such

flows.

Results of the explicit scheme applied to a near instantaneous dambreak (T¢ = 0.02 hour)
simulation for the same example previously described are shown in Figs. 3(a), 3(b), and
3(c). Profiles of the computed Froude number along the downstream channel at times
t=0.02, 0.05, 0.10, 0.15 and 0.20 hour are shown in Fig 3(a). The movihg supercritical/
subcritical interface is shown in each profile for the times 0.02, 0.05 and 0.10. The flow
becomes subcritical throughout the entire reach after about t=0.15 hour. The computed
water surface profiles at these five times are shown in Fig. 3(b). The irregularities at
kilometer 16.1 in the profiles are caused by the nonprismatic effects. The computed
discharge hydrographs at five locations along the channel are shown in Fig. 3(c).

Example 3 - Near critical mixed-flow regimes
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In this example, a flood wave is routed through a 48.3-km reach of a rectangular channel
with a width of 61 m and a slope of 0.0076. This situation simulates an unsteady flow in a
channel with near critical slope. The upstream boundary condition is a specified discharge
hydrograph with an initial discharge of 71 m%s and a peak discharge of 1415 f¢/s. A linear
increase of the discharge from the initial flow to the peak is used with a time of rise (T,) of
0.4 hour, and linear recession from the peak to the initial flow within 0.4 hour is also used.
A free-flow condition is specified as the downstream boundary condition (a loop rating will
be generated automatically in the FLDWAYV model under a free-flow condition). This
example is designed to test the performance of the upwind, explicit scheme for the case of
near critical mixed flow along the routing reach.

Three different unsteady flow situations are observed by changing the Manning n. A
subcritical flow is obtained using a Manning n of 0.035, and a supercritical flow is obtained
using a Manning n of 0.025. When a Manning n of 0.03 is used, a complicated mixed-flow
situation occurs in which a supercritical flow region is associated with only the flood peak,
and this region moves as the flood peak travels downstream, while upstream and downstream
of this region the flows are subcritical.

Fig. 4(a) presents the computed peak discharge profiles from both the implicit and the
explicit schemes. Similar numerical results are obtained from the two schemes for the
supercritical and subcritical flow situations, as shown by the two profiles for the subcritical
and supercritical flows in Fig. 4(a). For the mixed flow situation, a reasonable predicted

peak profile from the explicit scheme falls between those of supercritical and subcritical
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situations, while the implicit scheme produces an unreasonable peak profile that is lower than
that of subcritical flow in the first 19.3 kilometers of the reach.

Fig. 4(b) shows the spatial distribution of the Froude number along the channel at two
different times (t=1.5 and 2.0 hours), computed by the explicit scheme for the mixed-flow
situation. It is seen that the Froude number changes from about 0.86 (subcritical) to 1.15
(supercritical) at the flood wave peak; the location of the supercritical portion of the flow
moves as the flood peak moves downstream.

In Fig. 4(c), changes of the Froude number with time at locations x=16.1, 24.1, 32.2,
and 48.3 kilometers are shown; the flow regimes at these cross sections can be observed to
change from subcritical to supercritical and back to subcritical again as the flood peak passes.
Tests of several other mixed-flow cases also show that the upwind, explicit, numerical
scheme is capable of modeling the near critical mixed flows or mixed flows with moving

subcritical/supercritical regimes.

IMPLICIT-EXPLICIT MULTIPLE ROUTING

Because the numerical stability requirement of the explicit scheme restricts the time step
to a Courant condition, the explicit scheme requires smaller computational time steps than the
implicit scheme which is unconditionally stable; therefore, for most applications, it requires
more computational time. In Fig. 5, the ratio of computational time of the explicit scheme to
the computational time of the implicit scheme is plotted as a function of the routed

hydrograph’s time of rise (Tr). It can be seen that the explicit scheme needs much more
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computation time when modeling slowly rising flood waves, while it is equally or more time
efficient, as the implicit scheme, for very fast-rising waves of about 0.5 hour time of rise or
smaller. Since fast-rising waves tend to attenuate quickly, and the time of rise of a wave
increases when it travels downstream, use of the explicit scheme for an entire routing reach
may often result in very large computational times. In addition, it has been found in tests for
a wide variety of simulations, that the explicit scheme is inferior compared with the implicit
scheme regarding the numerical accuracy, especially when modeling the flows in a channel
with very nonprismatic features, large change of slopes, cross sections having large portions
of dead’storage, and an abrupt change in computational distance step (over two times for
adjacent cross sections), etc. This is caused by an increased effect of the terms P, and P, in
Eq. (8), and the source term S(U) in Eq. (4), when the channel becomes more irregular. A
smaller distance step for an explicit scheme, and consequently a smaller time step, is often
needed to provide the same accuracy as the implicit scheme for these situations.

Little difference in the computational results was observed between the explicit and the
implicit schemes for prismatic rectangular channels. It is, therefore, desirable to use the
explicit scheme in situations where the implicit scheme does not provide reliable accuracy,
such as the near critical mixed flows, while the other reaches are routed by the implicit
scheme. In this way, one can take advantage of both schemes.

In the FLDWAYV model, the implicit-explicit multiple dynamic routing algorithm is
developed, and options allow the user to select a different scheme for any subreach within
the entire routing reach. The upwind, explicit algorithm, when combined with the four-point

implicit scheme, enables only those portions of an entire river system being modeled to
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utilize the advantages of accuracy and stability of an explicit method for nearly critical flows,
while minimizing the effect of its greater computational requirement by using the implicit
algorithm for other reaches of the river system where nearly critical flows do not occur.

Fig. 6 is a schematic illustration of the multiple dynamic routing capability within the
FLDWAYV model. The explicit scheme is used for a subreach from x, to x,, and the four-
point implicit scheme is used for a subreach from x, to x,. The time step (from t* to t+1) for
the implicit scheme is at;, and the explicit scheme has a smaller time step, af , as shown in
Fig. 6. The explicit subreach will have several computational time steps for one implicit
time step because of the Courant condition restricting the size of a stable time step. The
entire reach is thus split into two subreaches, and each subreach is computed separately. The
upstream subreach is computed first, and a computed loop rating curve is used as the
downstream boundary condition for the first routing subreach. The use of the loop rating
boundary condition assumes that a free-flow condition exists with no backwater effects, but it
does account for the unsteady (dynamic) effects neglected by single-value ratings. The
connecting cross section in this multiple routing, therefore, must be located where the
channel shape has little change, and the backwater effects from any downstream dam, bridge,
or other cross-sectional constriction are insignificant. The first routing subreach is computed
for one implicit time step, and the downstream subreach can be computed using the
computed discharge from the first subreach as its upstream boundary condition. Also, the
implicit scheme may be used in an upstream subreach and the explicit scheme used in the
downstream subreach. An entire routing reach can be divided into various implicit-explicit

or explicit-implicit combinations.
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This implicit-explicit multiple dynamic routing capability is a part of a general multiple
routing technique developed in the FLDWAYV model, which can combine dynamic routing
methods (implicit, explicit) or hydrologic routing methods (level pool, Muskingum-Cunge).

Figs. 7(a) and 7(b) are some results of an application of the multiple routing technique to
an actual dambreak problem -- the Buffalo Creek coal-waste dam which collapsed in
February 1972, on the Middle Fork, a tributary of Buffalo Creek in West Virginia.
Observations (Davies, et al., 1972) were available on the approximate development sequence
of the breach, the time required to empty the reservoir, indirect peak discharge
measurements at four sites, approximate flood-peak travel times, and flood-peak elevations.
Also, nonprismatic cross sections and the Manning roughness coefficients were taken from a
report on routing dambreak floods (McQuivey, et al., 1975). The computational results are
excellent compared with the observed data, e.g., the average error for the peak elevation is
about 0.24 m. Some nonuniformity in the computed peak discharge profile at about x=5.8
kilometer is associated with a large change in the channel slope at that location.

In this application, level-pool (upstream of the dam at 0.0 km), explicit (0.0 to 10.9
kilometers), and implicit (10.9 to 25.3 kilometers) multiple routing is used. The breach
parameters used to generate the reservoir outflow are: time of failure of 0.083 hour;
trapezoidal-shaped breach side slope of 2.6; breach bottom width of 52 m; and breach height
of 13.4 m. Distance steps are gradually increased from 0.08 km near the dam to 1.29 km
downstream, and time steps are 0.004 hour for the implicit and level-pool solutions and
0.001 hour for the explicit solution. The 25.3-km routing reach has two distinct subreaches

with the slope changing at kilometer 5.79 from about 0.0159 upstream to 0.0076
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downstream. The resulting unsteady flow has a mixed-flow regime changing from

supercritical in the upstream reach to subcritical in the downstream reach.

CONCLUSION

A characteristics-based, upwind, explicit scheme is introduced for the numerical solution
of one-dimensional unsteady flows in natural rivers. It has been found that this explicit
scheme has advantages over a four-point implicit scheme with a mixed-flow technique for
some special unsteady flow situations having moving subcritical/supercritical interfaces and
subcritical/supercritical mixed-flow regimes at the near critical flow range.

The new characteristics-based, upwind, explicit scheme is implemented within the NWS
FLDWAYV model so that it provides an alternative numerical solution scheme for the Saint-
Venant equations applied to natural rivers with nonprismatic cross sections, off-channel
storage, cross sections with a floodplain, and various internal boundary conditions. A
technique of implicit-explicit multiple routing, within an application of the NWS FLDWAV
model, is developed to take advantage of the two different schemes. The addition of the
upwind, explicit scheme increases the capability and improves the performance for some

special unsteady mixed-flow applications of the FLDWAYV model.
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APPENDIX II. NOTATION

The Following symbols are used in this paper:

A = active cross sectional area of the channel;
A, = inactive (off-channel) cross sectional area;
B = wetted top width of the cross section;
c = local dynamic wave velocity;
C, = bulk wave speed;
C. = Courant number;
C, = nondimensional wind coefficient;
g = gravity constant;
K. = channel conveyance factor;
K, = expansion or contraction coefficient;
h = water surface elevation (stage);
h, = elevation of the channel bed;
= momentum effect of lateral flow;
M = a constant;
n = Manning’s resistance coefficient;
P, = state variable integral function term in Eq.(7);
P, = state variable integral function term in Eq.(7);

= lateral inflow or outflow;
= discharge;.

= hydraulic radius;
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AX

at

local loss slope;

friction slope due to the bed resistance;

time;

hydrograph’s time of rise;

time of failure of a dam;

local cross-sectional average velocity;

speed of wind relative to velocity of channel flow;
speed of wind;

azimuth angle of wind to the x axis;

distance along the longitudinal axis of the channel;
computational distance step;

computational time interval;

system of units coefficient in the Manning equation.

26



15
- 1 Analytical (Stoker)
- ! 2 Numerical
2L wd
&g |
et 9L 2 —— t=0s
£
3 !
o 6| t=10s
¥V
§ | \
B sl
_' Dam site — |
I f
0 i 1 N L 2 1 A a 1 N i i 1 N
=200 -150 -100 -50 0 S50 100 150 200
Distance (m)
Figure 1 Stoker Dam-break Problem (t=10 s)
15000
[ 1 licit
= 2 ﬁglicit
& 1o000]
5
() -
;3 5000
3
Q
Q A TP | PR T ST e
0 5 10 15 20 25 30
Distance (km)

Figure 2(a) Peak Discharge (Time of failure = 0.05 hour,

27



~

100

1 Explicit
sl 2 Implicit

60 |

Peak stage (m)

[ Channel bed
40 -
2L
0 1 i 1 I 1
0 s 10 15 20 25 30

Distance (ki)

Figure 2(b) Peak Stage (Time of failure = 0.05 hour)

15000
: =]1.3kn i
x (Dam cite) Ehcplt:cr:t
= —— Implicit
- loooo |
&
5
g 5000 H
0 N T et
0.0 0.2 0.4 0.6 0.8 1.0

Time (hour)
Figure 2(c) Hydrographs (Time of failure = 0.05 hour)

28



1.6

o Sup/Sub Interface 1t=002 hr

2 005
3 o010
4 015

% 3 5 02

A 4

g s

0.2 . 1 . 1 . ] . 1 A
10 12 14 16 18 20
Distance (km)

Figure 3(a) Froude Number Profiles (y= 0.02 hr.)

251
! t=0.02 hr

[V PO )

Depth. (m)

0Ll A 1 . 1 R ] A ] .
10 12 14 16 18 20

Distance (km)
Figure 3(b) Water Depth Profiles (Tr= 0.02 hr.)

29



15000

LA W~
BB KRHER

0.0 05 10 1.5 2.0
Time (hour)
Figure 3(c) Discharge Hydrograph (F= 0.02 hr.)

1500

@
on
& &merc?‘cal (1.2)
g 1000
S !
S 1 Exp.
'§ 2Imp.
& ! Suberitical (1,2)
500 L w0 boa a0 b0 0 b 0 b
0 10 20 30 40 50

Distance (km)

Figure 4(a) Peak Discharge Profiles

30



Froude Number (F,)

Froude Number (F)

1.20

It=15 (hour)
2t=20

LN S A AL AN B A

1.10
1.00
I Sub.
0.90
0.80 i 1 1 " 1 " 1 " 1 i
0 10 20 30 40 50
Distance (km)

Figure 4(b) Froude Number Distributions

1.20
i 1
- , 1 x=16.1km
i 2x=24.1
110
1.00 |
0.90 [
0.80';.-.l.n-.lnx..l....l;..n
0.0 1.0 20 3.0 40 5.0

Time (hour)

Figure 4(c) Froude Number Variation with Time

31



T/ (Timp)

Jedd b L

0 1 raaaal oo s aazsl i1
0.1 1 10 100
Time qf Rise (hour)
Figure 5 Ratio of Required Computation Time For
Implicit and Explicit Schemes

Explicit —5———— Implicit

111.+1

Dig
i Dt
Xp X ctn

Xq

Figure 6 Implicit-Explicit Multiple Routing

32



Peak Discharge, Oy, (m %s)

500

2500 ¢
Computed

O Observed gy
B Observed Qa1 400

2000 |
1500 |

1000 F

Peak Stage,h,, (m)

500 F
F = Imp.
o b oo L T 200
0 5 10 15 20 25
Distance (km)

Figure 7(a) Profiles of Peak Flows for Buffalo Creak Dam

2500
[ 1 x = 0.01 lon (Explicit)
2000 F 1 2x=58  (Explicit)
a 3 x =138 (Exp/Imp interface)
3 [ 4 x=153 (Implicit)
- 1500}
E [
® :
2 1000
o L
S -
S 500}
0 L "
0.0 0.5 1.0 15 20

Time (hour)
Figure 7(b) Discharge Hydrographs for Buffalo Creak Dam

33



DyYNAMIC FLOOD ROUTING WITH EXPLICIT AND IMPLICIT NUMERICAL
SOLUTION SCHEMES

By Ming Jin' and D. L. Fread,>* Member, ASCE

ABSTRACT: A characteristics-based, upwind, explicit numerical scheme is developed for one-dimensional (1D)
unsteady flow modeling of natural rivers and implemented into the U.S. National Weather Service (NWS)
FLDWAV model in combination with the original four-point implicit scheme. The new explicit scheme is
extensively tested and compared with the implicit scheme. The study shows that the new explicit scheme provides
improved versatility and accuracy in some situations, such as particularly large dam-break waves and other
unsteady flows with near critical mixed-flow regimes. A technique for implicit-explicit multiple routing is intro-
duced to incorporate the advantages of using both schemes within an application of the FLDWAV model.

INTRODUCTION

Channel flood routing has long been of vital concern as we
have sought to predict the characteristics of flood waves.
Mathematical techniques to predict channel flood wave prop-
agation have continually been developed, and many chan-
nel-routing models have been proposed. Among the various
channel-routing models, those based on the complete one-
dimensional (1D) hydrodynamic (Saint-Venant) equations
have found increasing applications.

The U.S. National Weather Service (NWS) has been devel-

-oping a generalized channel flood-routing model, FLDWAV

(Fread 1985, 1993) to replace the popular dynamic DAMBRK
and DWOPER models (Fread 1977, 1978, 1988; Chow et al.
1988). More model capability has been added to the FLDWAV
model, including a Kalman filter estimator for real-time up-
dating using on-line observations (Fread and Jin 1993). A re-
cent enhancement to the FLDWAYV model is the addition of a
characteristics-based, upwind, explicit solution scheme for the
Saint-Venant equations; this has been incorporated into the
FLDWAV model via an implicit-explicit multiple dynamic-
routing technique.

The original numerical scheme used for dynamic routing in
FLDWAV is based on the four-point, implicit, nonlinear finite-
difference solution of the Saint-Venant equations. The implicit
scheme has flexible requirements for selection of the compu-
tational time steps and distance intervals, which have been
proven to be very efficient, and excellent numerical stability
and reliability in numerous unsteady flow modeling applica-
tions through many years of use.

The four-point implicit scheme was found to have numerical
stability problems when the flow changed from subcritical to
supercritical flow or conversely (mixed-flow regime). A
mixed-flow technique was developed to enable the four-point
implicit scheme to successfully treat many situations of such
mixed-flow conditions (Fread 1983, 1985). This technique in-
volved locating the control points where critical flow occurs,
dividing the entire routing reach at each time step into a series
of subcritical and supercritical subreaches, and computing each
subreach separately using appropriate external and internal
boundary conditions along with appropriate subcritical or su-
percritical solution algorithms. In this technique, the correct
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numerical characteristics transmission direction is maintained
in the solution procedure in which the supercritical flows are
solved in a downstream marching direction while subcritical
flows are solved by a double sweeping process (upstream to
downstream followed by downstream to upstream). The latter
is inherent in the efficient (computational time and storage)
matrix solution technique (Fread 1971) used in FLDWAYV. This
technique works well when control points are easy to define
and locate, such as the point where channel slope changes
abruptly from subcritical to supercritical or conversely, or
when the Froude number has a large change upstream and
downstream of the point, at which an apparent hydraulic jump
would occur.

In many mixed-flow situations, the flow can be near critical,
or either slightly above or below critical throughout a channel
reach; in this case, it is not easy to locate the critical control
point that moves as the flow rate changes. This causes the four-
point implicit scheme, with the mixed-flow technique, to have
numerical stability and accuracy problems when modeling
such mixed flows, with near critical state, where the Froude
number remains both temporally and spatially between about
0.9 and 1.1.

Also, it was observed that the four-point implicit scheme,
with the mixed-flow technique, has difficulties when solving
the Saint-Venant equations for an instantaneous, or near-in-
stantaneous, very large dam-break—induced flood wave, which
produces a moving supercritical-subcritical mixed-flow inter-
face.

In the literature, some techniques have been proposed to
deal with unsteady flows having strong shocks or mixed-flow
regimes such as: the Godunov method (Savic and Holly 1993);
the ENO explicit scheme (Yang et al. 1993); the TVD-
McCormack scheme (Nakatani and Komura 1993); the
McCormack, Lambda, and Gabutti schemes (Fennema and
Chaudhry 1986); the Beam and Warming scheme (Fennema
and Chaudhry 1987); and the flux difference schemes (Jha et
al. 1995). Although these techniques provide numerical tools
for open-channel flows with strong shocks resulting from an
instantaneous dam break, all of them were proposed for only
prismatic or rectangular nonprismatic channels, which are not
representative of natural rivers.

The explicit scheme presented herein has the capability of
not only effectively modeling flows with strong shocks (near
instantaneous dam-break waves) or subcritical/supercritical
mixed flows, but also dealing with natural river properties such
as nonprismatic cross sections, off-channel storage, channel
cross sections with wide floodplains, various internal bound-
aries such as dams and bridges, abrupt contractions or expan-
sions of cross sections, and so on.

The new scheme also has the capability of coping with a
variety of external boundary conditions, such as stage or dis-
charge hydrographs, or rating curves defining single or looped




stage-discharge relations, so that it can be easily incorporated
to model special mixed flows simultaneously in an application
which uses the four-point implicit scheme within the
FLDWAV model.

Unlike most spatially symmetric schemes, an upwind
scheme is based on the local characteristic direction and thus
always ensures the correct characteristic direction. Also, the
total variation diminishing feature of an upwind scheme makes
it a favorable choice for modeling waves with strong shocks.

In this study, a characteristics-based, upwind, explicit
scheme for the conservation form of the complete Saint-Ven-
ant equations for nonprismatic channels is constructed, exten-
sively tested, compared with the four-point implicit scheme,
and implemented into the FLDWAV model as an additional
available numerical solution scheme.

Also, a technique for explicit-implicit multiple routing has
been developed so that one can take advantage of these two
numerical schemes and apply them to different subreaches of
an entire routing reach. This enhancement to the FLDWAV
model is reported herein.

MODEL FORMULATION
Governing Equations

The Saint-Venant equations of 1D unsteady flow in non-
prismatic channels are the basic equations used in the
FLDWAYV model, i.e.
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where x = distance along the longitudinal axis of the channel;
t = time; Q = discharge; A = active cross-sectional area; A, =
inactive (off-channel storage) cross-sectional area; g = lateral
inflow; g = gravity constant; h = water-surface elevation; B =
wetted top width of the cross section; L = momentum effect
of lateral flow (L = —qu,, where v, = velocity of the lateral
inflow in the x-direction of the channel flow); S, = friction
slope due to the bed resistance; n = Manning n; R = hydraulic
radius approximated by (A/B); K. = channel conveyance fac-
tor; X = system of units coefficient associated with the Man-
ning equation to determine the resistance slope (A = 1 for the
metric system, and A = 2.21 for the English system); S, = local
loss slope; K, = expansion (negative) or contraction (positive)
coefficient; W, = wind term representing the resistance effect
of wind on the water surface; C, = nondimensional wind co-
efficient; and the wind velocity relative to the water is V, =
V, cos w + V, where Vi, = velocity of wind, w = azimuth
angle the wind direction makes with the x-axis, and V = ve-
locity of the unsteady flow.

To construct a characteristics-based, upwind, explicit
scheme, the basic equations are transformed into the conser-
vation form of mass and momentum expressed in vector no-
tation for convenience, i.e.
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where h, = elevation of the channel bed at location x; and £
= dummy variable for the integration. The components of the
state variable, U(x, #), in the conservation form of the basic
equations, are now (A + A,) and @, and the most useful var-
iable is water-surface elevation h. However, it is easy to obtain
h from the numerical solutions of (A + A,), according to the
cross-sectional data of tabular values of channel wetted active
and inactive top widths versus water-surface elevation. Also,
the state variable integral functions, P, and P, in (7) can be
easily determined during the computations by a reverse table
look-up algorithm.

Numerical Scheme Formulation

Since the principle of an upwind, expiicit scheme is to use
a one-sided, finite-difference approximation for the space de-
rivative, according to the time-dependent local characteristic
direction (eigenvalues or local characteristic velocity) similar
to the derivations of Yang et al. (1993), the flux in (5) is split
into two parts with each corresponding to a local characteristic
direction. This can be done by splitting the Jacobian vector,
G(U), into two parts in terms of a split normalized Jacobian
matrix, i.e.

GU) = [(6)* + (G)IGU) )

where the split normalized Jacobian matrix is defined by the
following:
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where i = 1 for v + ¢, and i = 2 for v — ¢; v = local cross-
sectional average velocity, and ¢ = local dynamic wave veloc-
ity; and the term (sgn) is the sign function. The flux in (5) can
thus be split, i.e.

W6+ ED L swy=o0 (12)
at ax

An upwind, explicit scheme for (12) can be constructed in
which the subscript () refers to the computational cross-sec-
tional (node) number, and the subscript (n) refers to a point
on the time line, i.e.
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where values of the state variable, U(x, t), are known at all
computational nodes at time t”; and values of U(x, 1) for all
interior nodes at time t"*' can be directly obtained from it.

Boundary Conditions

Most explicit schemes use the method of characteristics to
treat external boundary conditions. Although this method is
efficient when treating channels of rectangular cross sections,
it is not as efficient when dealing with complicated nonpris-
matic channels or channels with off-channel storage.

A technique has been developed to treat both external and
internal boundary conditions more effectively. An external
boundary, such as a known stage or discharge hydrograph for
the upstream and downstream boundaries, or a known rela-
tionship between stage and discharge, such as a single or
looped rating curve for the downstream boundary condition,
is specified at the most upstream cross section and at the most
downstream cross section. Internal boundaries are used for
dams or bridges. All values of the state variable, U(x, ¢), can
be determined if another equation is provided for each bound-
ary and solved in connection with the specified boundary con-
dition.

In this study, the extra equation for both external bound-
aries, or for the internal boundaries, is derived by integrating
(1) for the first ({ = 1) and last ( = N — 1) computational time
and distance stcps as

T e, aa + Ay
at

— (A + Ayl — 2GAxAt =0
(15)

] dxdt=0 (14)

or

AHQiny — Q) + Ax[(A + A"

where i = 1 for the upstream boundary, and i = N — 1 for the
downstream boundary (N = total number of computational
cross sections); the bar stands for a temporal averaging, and
the underline stands for a spatial averaging, i.e., (A + Ay =
0.5[(A + Ag) + (A + Ap)ir], 0 = 0.5(Q" + 0""');and ¢ =
time-averaged lateral inflow or outflow within the computa-
tional distance step.

Also, (15) can be applied to upstream and downstream
reaches of a hydraulic structure (internal boundary such as
dam or bridge), together with an appropriate internal boundary
equation (such as weir equation) representing the relationship
between flow through the structure and water-surface eleva-
tions both upstream and downstream of the structure.

A comparison of the upwind solutions, using (15), with im-
plicit solutions for numerous cases has shown that this method
of treating boundary conditions works well for a variety of
external and internal boundaries.

Selection of Computational Atand Ax

Unlike unconditionally stable implicit schemes, most ex-
plicit schemes are restricted to the Courant-Friedrich-Lewy
(CFL) condition for numerical stability. For the upwind
scheme presented herein, the CFL condition can be written as
follows:

At = C, min ( Ax ) (€, = 1.0 (16)

v+oc

)
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where C, = Courant number. A large value of C, (0.9~1.0)
can be used for simple prismatic channels. Value C, has to be
reduced for complicated channel geometry such as rapid ex-
pansions and contractions, rapid changes in slope, channel
cross sections with wide floodplains, or a large portion of off-
channel storage due to an increased effect of the source term
S(U}) in (13). In the FLDWAV model, options are provided
to input either Az or C,.

After many years of experience with the selection of com-
putational distance step values for the NWS implicit dynamic
routing models in numerous applications, and more recently
supported by a theoretical derivation (Fread and Lewis 1993),
a criteria for Ax is recommended as follows:

T,
Ax=C, (17)

where 7, = hydrograph’s time of rise (time from the significant
beginning of increased discharge to the peak of the discharge
hydrograph) in hours; C, = bulk wave speed (the celerity as-
sociated with an essential characteristic of the unsteady flow
such as the peak or center of gravity of the hydrograph) in mi/
h; and M = function of the flow properties and generally varies
between about 8 and 40 (a value of about 20 for M has proven
to be generally acceptable).

Extensive testing in this study has shown that smaller com-
putational distance steps for the upwind, explicit scheme are
needed to match the same accuracy as that of the implicit
scheme. Therefore, a somewhat larger value of M (30-40) is
recommended for the reaches where the explicit scheme is
used.

TESTING EXAMPLES
Example 1—Idealized Dam-Break Problem

To examine the performance of the upwind, explicit scheme
presented herein, an idealized dam-break problem that has an
analytical solution is solved with the upwind, explicit scheme;
these results are compared with those of the analytical solu-
tion. A dam in a wide, horizontal, rectangular, and frictionless
channel, with still water at constant depths of 12.1 and 0.61
m, upstream and downstream ot the dam, respectively is in-
stantaneously removed across its entire width at the beginning
of the computation (r = 0.0). The analytical solution is ob-
tained by using Stoker’s method (Stoker 1957).

Fig. 1 compares the computed water-surface profile from
the analytical and upwind, explicit numerical solutions for the
time 7 = 10 s after the removal of the dam. This problem is

15
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FIG. 1. Stoker Dam-Break Problem (t= 10 s)




characterized by a sudden formation of a bore, or sharp wave-
front, that travels downstream. The upwind, explicit scheme
was also tested for different initial depth ratios (tailwater depth
to the reservoir depth) ranging from 0.05, as shown in Fig. 1,
to a value as small as 0.000025. The computational results
compare closely with the analytical results, both upstream of
the dam (negative wave region) and downstream in the bore
region where an insignificant computational smoothing of the
bore front occurs.

Example 2—Large Dam-Break Waves

In this example, a 36.6 m high dam is located at 11.3 km
of a 32.2 km routing reach. The channel has irregular and
nonprismatic cross sections at 0, 8.05, 11.3, 16.1, 24.1, and
32.2 km, and the bed slope changes from 0.0042 upstream of
the dam to 0.0019 downstream of the dam. A constant Man-
ning n of 0.04 is used. The dam fails, and the resulting dam-
break peak discharge and wave shape depend on the time of
failure (7;) of the dam, the breach shape and dimensions, and
inflow into the reservoir. The time of failure is defined herein
as the time from the beginning of the formation of the breach
until the final formation of the specified breach size is attained.
It is assumed that the breach has the same shape as the nearly
trapezoidal cross section of the dam at time T,. Also, there is
a small constant upstream inflow of 142 m*/s into the reservoir
(upstream boundary condition). The time of failure is an im-
portant parameter for the dam-break outflow and the resulting
dam failure flood wave. In both the implicit and explicit so-
lution schemes, the breached dam is treated as an internal
boundary within the entire 32.2 km dynamic routing reach.

It is found that for a time of failure of about 0.05 h or larger,
both explicit and implicit methods get approximately the same
computational results. The computed attenuation of peak dis-
charge and peak stage elevation along the channel for T, =
0.05 h are shown in Figs. 2(a) and 2(b). Nonprismatic effects
cause irregularities in the peak stage profiles at 16.1 and 24.1
km. The computed hydrographs at the dam site from the ex-
plicit and implicit schemes are compared in Fig. 2(c). Variable
computational distance steps are used; these change from 0.5
to 0.3 km upstream of the dam and from 0.03 to 0.16 km
downstream of the dam, respectively. The time step used is
0.0025 h for the explicit solution scheme and 0.001 h for the
implicit scheme.

For this example the implicit scheme experienced noncon-
vergence problems when the time of failure was less than 0.05
h. This was due to a type of mixed flow in which a super-
critical/subcritical interface develops spontaneously below the
dam and progresses downstream. The formation of the super-
critical regime was produced by an increase in the dam failure
peak outflow. The outflow increase was, in turn, caused by the
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FIG. 2(c). Hydrographs (Time of Failure = 0.05 h)

decrease in the time of failure (7}), which reduces the extent
that the reservoir level decreases as the breach forms and the
breach outflow begins to drain the reservoir. The resulting
higher reservoir elevation when the breach reaches its final and
largest size produces a greater breach (weir-type) outflow than
for the former example with a T, = 0.05 h. The initiation of
supercritical flow associated with the increased breach outflow
could also have resuited by increasing the bottom slope of the
channel downstream of the dam, reducing the Manning n in
the downstream channel, increasing the height of the original
reservoir level, and/or increasing the width of the dam breach.

The four-point implicit scheme with the mixed-flow tech-
nique (Fread 1985) is not capable of modeling this type of
mixed flow with a moving supercritical/subcritical interface,
whereas the characteristics-based, upwind, explicit scheme is
capable of modeling such flows.

Results of the explicit scheme applied to a near instanta-
neous dam-break (7, = 0.02 h) simulation for the same ex-
ample previously described are shown in Figs. 3(a)—3(c). Pro-
files of the computed Froude number along the downstream
channel at times ¢ = 0.02, 0.05, 0.10, 0.15, and 0.20 h are
shown in Fig. 3(a). The moving supercritical/subcritical inter-
face is shown in each profile for the times 0.02, 0.05, and
0.10. The flow becomes subcritical throughout the entire reach
after about ¢ = 0.15 h. The computed water-surface profiles at
these five times are shown in Fig. 3(b). The irregularities at
16.1 km in the profiles are caused by the nonprismatic effects.
The computed discharge hydrographs at five locations along
the channel are shown in Fig. 3(c).
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Example 3—Near Critical Mixed-Flow Regimes

In this example, a flood wave is routed through a 48.3 km
reach of a rectangular channel with a width of 61 m and a
slope of 0.0076. This situation simulates an unsteady flow in
a channel with near critical slope. The upstream boundary con-
dition is a specified discharge hydrograph with an initial dis-
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charge of 71 m*/s and a peak discharge of 1,415 m%/s. A linear
increase of the discharge from the initial flow to the peak is
used with a time of rise (7,) of 0.4 h, and linear recession from
the peak to the initial flow within 0.4 h is also used. A free-
flow condition is specified as the downstream boundary con-
dition (a loop rating will be generated automatically in the
FLDWAV model under a free-flow condition). This example
is designed to test the performance of the upwind, explicit
scheme for the case of near critical mixed flow along the rout-
ing reach.

Three different unsteady flow situations are observed by
changing the Manning n. A subcritical flow is obtained using
a Manning n of 0.035, and a supercritical flow is obtained
using a Manning n of 0.025. When a Manning n of 0.03 is
used, a complicated mixed-flow situation occurs in which a
supercritical flow region is associated with only the flood peak,
and this region moves as the flood peak travels downstream
while upstream and downstream of this region the flows are
subcritical.

Fig. 4(a) presents the computed peak discharge profiles from
both the implicit and the explicit schemes. Similar numerical
results are obtained from the two schemes for the supercritical
and subcritical flow situations, as shown by the two profiles
for the subcritical and supercritical flows in Fig. 4(a). For the
mixed-flow situation, a reasonable predicted peak profile from
the explicit scheme falls between those of supercritical and
subcritical situations, and the implicit scheme produces an un-
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FIG. 4(c). Froude Number Variation with Time

reasonable peak profile that is lower than that of subcritical
flow in the first 19.3 km of the reach.

Fig. 4(b) shows the spatial distribution of the Froude num-
ber along the channel at two different times (+ = 1.5 and 2.0
h), computed by the explicit scheme for the mixed-flow situ-
ation. It is seen that the Froude number changes from about
0.86 (subcritical) to 1.15 (supercritical) at the flood-wave
peak; the location of the supercritical portion of the flow
moves as the flood peak moves downstream.

In Fig. 4(c), changes of the Froude number with time at
locations x = 16.1, 24.1, 32.2, and 48.3 km are shown; the
flow regimes at these cross sections can be observed to change
from subcritical to supercritical and back to subcritical again
as the flood peak passes. Tests of several other mixed-flow
cases also show that the upwind, explicit, numerical scheme
is capable of modeling the near critical mixed flows or mixed
flows with moving subcritical/supercritical regimes.

IMPLICIT-EXPLICIT MULTIPLE ROUTING

Because the numerical stability requirement of the explicit
scheme restricts the time step to a Courant condition, the ex-
plicit scheme requires smaller computational time steps than
the implicit scheme, which is unconditionally stable; therefore,
for most applications it requires more computational time. In
Fig. 5, the ratio of computational time of the explicit scheme
to the computational time of the implicit scheme is plotted as
a function of the routed hydrograph’s time of rise (7). It can
be seen that the explicit scheme needs much more computation
time when modeling slowly rising flood waves, while it is
equally or more time efficient, as the implicit scheme, for very
fast-rising waves of about 0.5 h time of rise or smaller. Since
fast-rising waves tend to attenuate quickly and the time of rise
of a wave increases when it travels downstream, use of the
explicit scheme for an entire routing reach may often resuit in
very large computational times. In addition, it has been found
in tests for a wide variety of simulations, that the explicit
scheme is inferior compared with the implicit scheme regard-
ing the numerical accuracy, especially when modeling the
flows in a channel with very nonprismatic features, large
change of slopes, cross sections having large portions of dead
storage, an abrupt change in computational distance step (over
two times for adjacent cross sections), and so on. This is
caused by an increased effect of the terms P, and P, in (8)
and the source term S(U) in (4) when the channel becomes
more irregular. A smaller distance step for an explicit scheme,
and consequently a smaller time step, is often needed to pro-
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FIG. 5. Ratio of Required Computation Time for Implicit and
Explicit Schemes

vide the same accuracy as the implicit scheme for these situ-
ations.

Little difference in the computational results was observed
between the explicit and the implicit schemes for prismatic
rectangular channels. It is, therefore, desirable to use the ex-
plicit scheme in situations where the implicit scheme does not
provide reliable accuracy, such as the near critical mixed
flows, while the other reaches are routed by the i.plicit
scheme. In this way, one can take advantage of both schemes.

In the FLDWAV model, the implicit-explicit multiple dy-
namic routing algorithm is developed, and options allow the
user to select a different scheme for any subreach within the
entire routing reach. The upwind, explicit algorithm, when
combined with the four-point implicit scheme, enables only
those portions of an entire river system being modeled to use
the advantages of accuracy and stability of an explicit method
for nearly critical flows, while minimizing the effect of its
greater computational requirement by using the implicit al-
gorithm for other reaches of the river system where nearly
critical flows do not occur.

Fig. 6 is a schematic illustration of the multiple dynamic-
routing capability within the FLDWAV model. The explicit
scheme is used for a subreach from x, to x,, and the four-point
implicit scheme is used for a subreach from x, to x.. The time
step (from 7" to **") for the implicit scheme is Af;, and the
explicit scheme has a smaller time step, Atg, as shown in Fig.
6. The explicit subreach will have several computational time
steps for one implicit time step because of the Courant con-
dition restricting the size of a stable time step. The entire reach
is thus split into two subreaches, and each subreach is com-
puted separately. The upstream subreach is computed first, and
a computed loop-rating curve is used as the downstream
boundary condition for the first routing subreach. The use of
the loop-rating boundary condition assumes that a free-flow
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FIG. 6. Impilicit-Explicit Multiple Routing

JOURNAL OF HYDRAULIC ENGINEERING / MARCH 1997 /171




2500 500
. Computed )
=z 2000 £ O Observed hyy,,, - _
% B Observed Qrmax 400 E
O: 1500 E- J -ﬂE
& b 'S
-g 1000 C 1 300 %
.8 9 ] 'ﬁ
2 b 3
E Exp.~<t—~p—= Tmp.
[/ J S SR i . 200
0 5 10 15 20 25
Distance (km)
(a)
FIG. 7(a). Profiles of Peak Flows for Buffalo Creek Dam
2500 [ 1 x =0.01 km (Explicit)
bt 2 x=58  (Explicit)
2000 3 x=13.8  (Exp/Imp interface)

= F 4 x=153  (Implicit)

"E 1500 E’

% 1000 F )

2 "

2 L 3

= /%

0 A
0.0 0.5 1.0 15 20
Time (hour)
o)

FIG. 7(b). Discharge Hydrographs for Buffalo Creek Dam

condition exists with no backwater effects, but it does account
for the unsteady (dynamic) effects neglected by single-value
ratings. The connecting cross section in this multiple routing,
therefore, must be located where the channel shape has little
change, and the backwater effects from any downstream dam,
bridge, or other cross-sectional constriction are insignificant.
The first routing subreach is computed for one implicit time
step, and the downstream subreach can be computed using the
computed discharge from the first subreach as its upstream
boundary condition. Also, the implicit scheme may be used in
an upstream subreach and the explicit scheme used in the
downstream subreach. An entire routing reach can be divided
into various implicit-explicit or explicit-implicit combinations.

The implicit-explicit multiple dynamic routing capability is

a part of a general multiple-routing technique developed in the
FLDWAV model, which can combine dynamic-routing meth-
ods (implicit, explicit) or hydrologic-routing methods (level
pool, Muskingum-Cunge).

Figs. 7(a) and 7(b) are some results of an application of the
multiple-routing technique to an actual dam-break problem—
the Buffalo Creek coal-waste dam that collapsed in February
1972, on the Middle Fork, a tributary of Buffalo Creek in West
Virginia. Observations (Davies et al. 1972) were available on
the approximate development sequence of the breach, the time
required to empty the reservoir, indirect peak discharge mea-
surements at four sites, approximate flood-peak travel times,
and flood-peak elevations. Also, nonprismatic cross sections
and the Manning roughness coefficients were taken from a
report on routing dam-break floods (McQuivey and Keefer
1975). The computational results are excellent compared with
the observed data, e.g., the average error for the peak elevation
is about 0.24 m. Some nonuniformity in the computed peak
discharge profile at about x = 5.8 km is associated with a large
change in the channel slope at that location.

In this application, level-pool (upstream of the dam at 0.0
km), explicit (0.0-10.9 km), and implicit (10.9 to 25.3 km)
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multiple routing is used. The breach parameters used to gen-
erate the reservoir outflow are time of failure of 0.083 h; trap-
ezoidal-shaped breach side slope of 2.6; breach bottom width
of 52 m; and breach height of 13.4 m. Distance steps are
gradually increased from 0.08 km near the dam to 1.29 km
downstream, and time steps are 0.004 h for the implicit and
level-pool solutions, and 0.001 h for the explicit solution. The
25.3 km routing reach has two distinct subreaches with the
slope changing at 5.79 km from about 0.0159 upstream to
0.0076 downstream. The resulting unsteady flow has a mixed-
flow regime changing from supercritical in the upstream reach
to subcritical in the downstream reach.

CONCLUSION

A characteristics-based, upwind, explicit scheme is intro-
duced for the numerical solution of 1D unsteady flows in nat-
ural rivers. It has been found that this explicit scheme has
advantages over a four-point implicit scheme with a mixed-
flow technique for some special unsteady flow situations hav-
ing moving subcritical/supercritical interfaces and subcritical/
supercritical mixed-flow regimes at the near critical flow
range.

The new characteristics-based, upwind, explicit scheme is
implemented within the NWS FLDWAV model so that it pro-
vides an alternative numerical solution scheme for the Saint-
Venant equations applied to natural rivers with nonprismatic
cross sections, off-channel storage, cross sections with a flood-
plain, and various internal boundary conditions. A technique
of implicit-explicit multiple routing, within an application of
the NWS FLDWAV model, is developed to take advantage of
the two different schemes. The addition of the upwind, explicit
scheme increases the capability and improves the performance
for some special unsteady mixed-flow applications of the
FLDWAYV model.

APPENDIX|. REFERENCES

Chow, V. T., Maidment, D. R., and Mays, L. W. (1988). Applied hydrol-
ogy. McGraw-Hill Book Co., Inc., New York, N.Y.

Davies, W. E., Bailey, J. F,, and Kelly, D. B. (1972). *‘West Virginia's
Buffalo Creek flood: a study of the hydrology and engineering geol-
ogy.”’ Res. Rep., Geological Survey Circular 667, U.S. Geological Sur-
vey.

Fennema, R. J.,, and Chaudhry, M. H. (1986). *‘Explicit numerical
schemes for unsteady free-surface flows with shocks.”” Water Resour
Res., 32(13), 1923-1930.

Fennema, R. I., and Chaudhry, M. F. (1987). *‘Simulation of one-dimen-
sional dam-break flows.”” J. Hydr. Res., 25(1), 41-51.

Fread, D. L. (1971). “‘Discussion of ‘Implicit flood routing in natural
channels,” by M. Amein and C. S. Fang.” J. Hydr. Engrg., ASCE,
97(7), 11561159,

Fread, D. L. (1977). *‘The development and testing of a dam-break flood
forecasting model.”” Proc., Dam-Break Flood Modeling Workshop,
U.S. Water Resources Council, Washington, D.C., 1-32.

Fread, D. L. (1978). ‘*“NWS operational dynamic wave model, verification
of mathematical and physical models in hydraulic engineering.”’ Proc.,
26th Annu. Hydr. Div. Spec. Conf., College Park, Md., 455-464.

Fread, D. L. (1983). ‘‘Computational extensions to implicit routing mod-
els.”” Proc. of the Conf. on Frontiers in Hydr Engrg., ASCE, New
York, N.Y., 343-348.

Fread, D. L. (1985). ‘‘Channel routing.”’ Hydrological forecasting, M. G.
Anderson and T. P. Burt, eds., John Wiley & Sons, Inc., New York,
N.Y,, 437-503.

Fread, D. L. (1988). ““The NWS DAMBRK model: theoretical back-
ground and user documentation.’’ HRL-258, Hydrologic Research Lab-
oratory, National Weather Service, Silver Spring, Md.

Fread, D. L. (1993). *‘Flood routing.”’ Handbook of hydrology, D. R.
Maidment, ed., McGraw-Hill Book Co., Inc., New York, N.Y,, 10.1—
10.36.

Fread, D. L., and Jin, M. (1993). ‘‘Real-time dynamic flood routing with
NWS FLDWAV model using Kalman filter updating.”’ Engineering
hydrology, Y. K. Chin, ed., ASCE, New York, N.Y., 946-951.

Fread, D. L., and Lewis, J. M. (1993). *‘Selection of Ax and At at com-




putational steps for four-point implicit nonlinear dynamic routing mod-
els.”’” Hydraulic engineering ‘93, H. W. Shen, S. T. Su, and F. Wen,
eds., ASCE, New York, N.Y., 1569-1573.

Jha, A. K., Akiyama, J., and Ura, M. (1995). ‘‘First- and second-order
flux difference splitting schemes for dam-break problem.” J. Hydr.
Engrg., ASCE, 121(12), 877-884.

McQuivey, R. S., and Keefer, T. N. (1975). **Application of simple dam
break routing model.”’ Proc. of 16th Congr. of IAHR, IAHR, Vol. 2,
315-324.

Nakatani, T., and Komura, S. (1993). ‘‘A numerical simulation of flow
with hydraulic jump using TVD-McCormack scheme.”” Proc., XXv
Congr. of IAHR, 1IAHR, Vol. 1, 9-13.

Savic, L. J., and Holly, F. M. Jr. (1993). *‘Dambreak flood waves com-
puted by modified Godunov method.”” J. Hydr. Res., 31(2), 187-204.

Stoker, J. J. (1957). Water waves. Interscience Pub. Inc., New York, N.Y.

Yang, J. Y., Hsu, C. A, and Chang, S. H. (1993). **‘Computations of free
surface flows.”” J. Hydr. Res., 31(1), 20-33.

APPENDIX Il. NOTATION

The following symbols are used in this paper:

active cross-sectional area of channel;
inactive (off-channel) cross-sectional area;
wetted top width of cross section;

bulk wave speed;

Courant number;

nondimensional wind coefficient;
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local dynamic wave velocity;

gravity constant;

water-surface elevation (stage);

elevation of channel bed;

channel conveyance factor;

expansion or contraction coefficient;
momentum effect of lateral flow;

constant;

Manning’s resistance coefficient;

state variable integral function term in Eq. (7);
state variable integral function term in Eq. (7);
discharge;

later inflow or outflow;

hydraulic radius;

local loss slope;

friction slope due to bed resistance;

time of failure of dam;

hydrograph’s time of rise;

time;

speed of wind relative to velocity of channel flow;
speed of wind;

local cross-sectional average velocity;

azimuth angle of wind to x-axis;

distance along longitudinal axis of channel;
computational time interval;

computational distance step; and

system of units coefficient in Manning equation.



