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Abstract.

The role of fractional coverage in climatological variability of mean areal

rainfall is investigated. Under second-order homogeneity assumptions, climatological
variability of mean areal rainfall, as measured by its coefficient of variation, is shown to be
a function of mean fractional coverage, conditional coefficient of variation of point
rainfall, and two correlation scales associated with inner variability and intermittency of
point rainfall. To verify the analytical results, empirical analyses are performed using
hourly rainfall data from nine Weather Surveillance Radar—1988 Doppler (WSR-88D)
radars in the southern plains, United States. The results indicate that given the local
rainfall climatology there exists a catchment scale at which the climatological variability of
mean areal rainfall is at its maximum. Existence of such a scale has been hypothesized and
demonstrated via an analytical treatment of an idealized situation by Eagleson and Wang
[1985], but only in climatological variability of fractional coverage (i.e., variability due only
to intermittency). Sensitivity analyses for the correlation-scale parameters indicate that
intermittency plays as important a role as inner variability in shaping the catchment scale-
climatological variability relationship of mean areal rainfall. Decomposition of total
variability indicates that over the range of catchment scales that fall within a single WSR-
88D radar umbrella (effective radius of 230 km) the integrated contribution from
intermittency is almost as large as that from inner variability.

1. Introduction

In large-scale hydrological models and general circulation
models the spatial scale of catchments or grid boxes that make
up the model domain is relatively large compared to the scale
of storm elements. Consequently, rainfall typically occurs only
over a fraction of a catchment or a grid box at any time. To
assess variabilities or uncertainties associated with model input
and output such as mean areal rainfall and areal surface runoff,
it is therefore necessary to take into account not only the
spatial variability of rainfall within rain area (named “inner
variability” in the work by Barancourt et al. [1992]) but also the
spatial intermittency (i.e., fractional coverage) of rainfall [see
Entekhabi and Eagleson, 1989].

In this paper, we investigate the role of fractional coverage
in climatological variability of mean areal rainfall. Coefficient
of variation (CV) is used as the measure of variability. To
assess the climatological variability of mean areal rainfall, we
first seek expressions for its climatological mean and variance
in which both inner variability and intermittency are accounted
for. This step constitutes a generalization of the conventional
variance-reduction relationship between point and areal rain-
fall, which implicitly assumes full rainfall coverage at all times
[see, e.g., Rodriguez-Iturbe and Mejia. 1974}. Then, to verify the
expressions derived, empirical analyses are performed using
hourly rainfall data from nine WSR-88D (Weather Surveil-
lance Radar—1988 Doppler) radars in the southern plains,
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United States. In the work by Seo and Smith [1996], related
analyses are carried out to assess climatological variability of
surface run off under fractional coverage and soil heterogene-
ity considerations.

The organization of this paper is as follows. In section 2 we
derive expressions for climatological mean and variance of
mean areal rainfall. In section 3 we describe the radar rainfall
data used in this work. In section 4 we describe the empirical
analyses and verification of the expressions derived. In section
S, conclusions are presented.

2. Moments of Mean Areal Rainfall

Let us define R(u, t) as the rain rate at location u at time ¢.
Then, mean areal rainfall over the catchment of area |4 at
time ¢, M(A, t), is given by

M(A,f)“HAH"f R(u, t) du (1)

A

To consider only the fractional coverage situations, we assume
that R (i, ) > 0 somewhere in 4. Throughout this paper, this
conditioning is not explicitly denoted in expectation and prob-
ability expressions for the sake of brevity. Unless mentioned
otherwise, expectations and probabilities are to be understood
as conditional on occurrence of rainfall somewhere in A.

Expectation or climatological mean of M( A, t) is then given
by

E[M(A, )] =my(A, 1) (2a)
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E[M(A4, 0] = 4] f E[R(u, |R(u, 1) > 0]

A

*Pr[R(u, t) > 0] du (2b)

where the expectations are taken with respect to time. To
express Pr[R(u, t) > 0] in terms of fractional coverage, we
define an indicator random variable, I{R(u, t); 0], as follows:

i[R(u, t); x}=1 R(u,t) >x
(3)

i[R(u,t);x]=0 otherwise

where x is some threshold value and i[R(u, t); x] denotes the
experimental value of I[R(u, t); x]. From the definition of (3)
we have

Pr{R(u, t) > 0] = E{I[R(u, t); 0]} (4

Fractional coverage of rainfall over catchment A at time ¢,
Z(A, t), can be represented by

Z(A, 1) = IIAII*lj I[R(u, t); 0] du (5)

A

Assuming that 7[R (u, t); 0] is homogeneous in 4 (i.e., occur-
rence of rainfall is equally likely everywhere within 4), we may
write

E[Z(A, )] =my(A, 1) (6a)

E[Z(A, 1)] = E{I[R(u, 1); 0]} (6b)

where m_(A, t) is the climatological mean of fractional cov-
erage. Assuming that R(u, t) is homogeneous within A4, we
may write

E[R(u, O)|R(u, t) > 0] = my(t) (7

where my(¢) is the climatological conditional mean of point
rainfall. Hence, for the climatological mean of M (A, t) we
have

mM(Av t) = mR(t)mZ(Av t)

(8)

The expression for the climatological variance of mean areal
rainfall may be obtained as follows. Let us first consider

MXA, t) = ILA[[“zj J R(u, OR(v, ) du dv  (9)
A A

Expectation of M*( A, t) is given by
EMY(A, 0] = |I4]7*

j f E[R(u, t)R(v, )]R(u, t) > 0, R(v, t) > 0]

A YA

-Pr[R(u, ) >0, R(v, t) > 0] du dv (10)

Assuming that both R(u, t) and I(R(u, t); 0) are second-
order homogeneous within 4, we may parameterize the terms
in the integrand in (10) as follows:

E[R(u, t)R(v, t)|R(u, 1) > 0, R(v, 1) > 0]

vf; Lep()] + mi(2) (11)

= or(O)prllu -
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Pr[R(u, t) >0, R(v, t) > 0]

= E{I[R(u, t); 0Y[R(v, t); 0]} (12a)
Pr[R(u, t) >0, R(v, t) > 0] = m4(A, 1)
{1 = my(A4, D}pllu — vl; Lg()] + mz(A4, 1) (12b)

In (11) and (12b), o&(f) is the conditional variance of point
rainfall at time ¢, pg [lu — v|; Lgg (£)] is the conditional
correlation function of point rainfall, where |u — | is the
Euclidian distance between the two points u and v, and L gz (¢)
is the conditional correlation-scale parameter at time ¢,
pr [lu = v|; Lgi(£)] is the climatological indicator correlation
function where L (¢) is the indicator correlation-scale param-
eter at time 7.

Equations (11) and (12b) follow directly from the definitions
of conditional and indicator covariances, respectively, under
the second-order homogeneity conditions. In arriving at (12b)
we also have used the identities, Var{I[R(u, t); 0]} =
E{I[R(u, t); 0]} {1 — E[I(R(u, t); 0)]} = my(4, t)
{1 = m (A, t)}. Similar parameterizations have been used in
previous studies of spatial variability of radar rainfall [Seo and
Smith, 1991; Seo, 1995]. Hence, for the climatological variance
of mean areal rainfall, 05,( A4, t), we have

oA, t) = ok(Om (A, {1 — my(A, HHA|™?

f j prllu = ol Lr(O)]pdlu = of; L)) du dov

AV A

+ ar(t)mi(A, )42

f j prllu — vl; Lsa(0)] du dv

+ my(Omy(A, {1 = mz(4, D}A]7

f J pillu — ol; Loy(®)} du dv

Note that if m,(A4, t) = 1 (ie., full rainfall coverage), (13)
reduces to the conventional variance-reduction relationship
between point and areal rainfall [see, e.g., Rodriguez-Iturbe and
Mejia, 1974]. Note also that because of the cross terms between
(11) and (12b), o%,( A, t) depends also on my(¢). Owing to
this dependence on letting R(u, t) = 1 for allu, ueA_, where
A, denotes the rain area within 4, we have the following
identity from (13) between 0%(A, t) and m (4, t):

(13)

oul(A, t) = o3(A, t) (14a)
oA, 1) = my(A, {1 — my (A, HHAl?
j J pi(lu — vf; Lo(t)) du dv (14b)
A A

From (8) and (13) we have for the climatological CV of
mean areal rainfall over A at time ¢, CV (4, t):

CVu(4, 1) = {CVé(t)[l/mZ(A, 1) = 1]j4]
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f J prllu — vl; Ls()py(|u — o|; Lg(t)) du dv
A A

+ CV%(t)I{AHZj J prllu — vl Lsp(1)) du dv

A YA

+[Umy(A, 1) = 1]j4] 2

12
J J' pillu — vfi Lg(t)) du dUI
a4

where CVg(?) is the conditional CV of point rainfall at time ¢.
Sensitivities of CV (A, 1) on CV (1), Lgg(f), and L g(t) will
be shown later in the paper. Similarly, from (14) we have for
the climatological CV of fractional coverage, CV,(A4, f):

(15)

CV(A, 1) =[{1/mz (A, 1) - ”HAH‘ZJ J pil |u

— v|; Lg(t)] dudv]"”? (16)

Sensitivity of CV,(A, t) on Lg(¢) will also be shown later in
the paper. Noting that the last term in the right-hand side of
(15) is the same as CV5( A, t) in (16), we see that the second
and the third terms in the right-hand side of (15) represent
contributions from inner variability and intermittency, respec-
tively (the first being the cross term). This enables quantitative
decomposition of CV3,(A, t), as will be shown later in the

paper.

3. Description of Data

The data used in this work are hourly rainfall fields from a
network of nine WSR-88D radars in the southern plains,
United States, a subset of the national Next Generation
Weather Radar (NEXRAD) network. The radars are located
at or near Denver, Colorado (FTG), Goodland, Kansas
(GLD), Amarillo, Texas (AMA), Dodge City, Kansas (DDC),
Frederick, Oklahoma (FDR), Wichita, Kansas (ICT), Twin
Lakes, Oklahoma (TLX), Tulsa, Oklahoma (INX), and Little
Rock, Arkansas (LZK). The data cover the period of late
August 1993 through early May 1994. Figure 1 shows the radar
umbrellas (effective range of 230 km) on the area map.

The particular type of data used in this work is known as the
“hourly digital precipitation array,” a derived product from an
algorithm called the precipitation processing subsystem [Hud-
low, 1988; Klazura and Imy, 1993]. At each radar site the array
constitutes a 131 X 131 mesh, overlaid onto the Hydrologic
Rainfall Analysis Project grid system (D. R. Greene and M.
Hudlow, unpublished manuscript, 1982). The mesh size, which
is a function of latitude, is approximately 4 X 4 km? over the
study area.

As with any other radar rainfall data, the data used in this
work possess certain error characteristics of their own. For
detailed studies on the quality of NEXRAD precipitation
products, the reader is kindly referred to Smith and Krajewski
[1994], Seo et al. [1995], and Smith et al. [1996]. We only note
here that the data went through a series of quality control steps
including extensive visual inspections and are considered of
good quality for the type of analyses performed in this work.
The minimum hourly rainfall was 0.1 mm for the data.

2089

@
=3
2
=
<
S
-105 -100 -95 -90
latitude
Figure 1. Area map with radar umbrellas.

4. Empirical Analyses and Verification

Because rainfall processes are in general nonstationary, the
expressions for the climatological mean and variance of mean
areal rainfall (equations (8) and (13)) are written as functions
of time (or, more practically, time elapsed since the initiation
of rain). To estimate the statistics and the parameters in (8)
and (13) as time-varying variables, however, a very large
amount of data would be required, as well as their stratification
with respect to seasonality, type of storm, and stage of storm
development, etc. To circumvent these difficulties, stationarity
was assumed in this work. The statistics and the parameters
were then estimated by pooling samples from radar rainfall
fields taken every 5 hours. Although it substantially reduced
the amount of data available for the analyses, the sampling
interval of 5 hours was necessary to ensure temporal indepen-
dence between successive fields (for details, see Seo and Smith
[1996]), thereby minimizing overrepresentation by widespread
rainfall fields. During the period covered by the data there
were approximately 40 storms (meso-f scale or larger) ob-
served within the composite area covered the nine radars. The
number of hourly rainfall fields used in the analyses varied
from 94 to 310, depending on the site.

4.1.

The conditional correlation-scale parameter L g (¢) was es-
timated from long-term conditional correlograms of point
rainfall. Figure 2 shows an example of the directional correlo-
grams at FDR. At some sites, anisotropy was clearly evident.
At other sites, nonhomogeneity or periodicity was suspected.
Table 1 summarizes Lgg(f) at all sites, as estimated from
fitting a two-parameter (nugget effect and range) isotropic
exponential model of the following form:

prllu — vl Lsg(0)] =[1 = w(®)] exp [ — Ju — »|/Ls()]
(17)

Estimation of Correlation-Scale Parameters

| — v >0

prllu = of; Lr()] =1 lu—o =0

where u(r) is the nugget effect. In the table, for those sites
where nonhomogeneity and/or strong anisotropy is present,
the estimated correlation scale is likely to be an overestimate.

The indicator correlation-scale parameter L () was esti-
mated from long-term bivariate joint probabilities or, equiva-
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Figure 2. Conditional correlograms of point rainfall at FDR
along eight directions (0°, 26.6°, 45°, 63.4°, 90°, 116.6°, 135°,
and 153.4°).

lently, noncentered indicator covariances. Figures 3 and 4
show examples of the experimental directional joint probabil-
ities at FTG and LZK, respectively. Table 1 summarizes L (1)
at all sites as estimated by fitting a model analogous to (17).
The estimates of L () are a reflection of the life history of
storms in the southern plains: In the west, where storms are
born, L (¢) tends be smaller (cellular-structured rainfall
fields), and as they move eastward maturing and dissipating,
L(t) tends to be larger (more widespread rainfall fields).
Table 1 also summarizes m(t) and CV(t) at all sites.

4.2. Observed Mean Fractional Coverage

Figure 5 shows observed m (A4, t) as a function of 4 at all
sites. Because the spatial resolution of the radar used in this
work is 4 X 4 km?, we have, by definition (see equation (1)),
M (A, t) = 1 at that spatial scale. For larger values of A4,
M,(A, t) is a monotonically decreasing function because on
the average the larger the catchment, the smaller the fractional
coverage of rainfall. For yet larger values of A we may expect
M,(A, t) to asymptotically reach a limit because within a very
large area there may always exist at least a single storm at any
given time. Figure 5 shows the shift in climatology of fractional
coverage of rainfall in the southern plains: m (A, t) increases
as one moves from the northwest to the southeast. It indicates
that on the average the spatial extent of rainfall systems is
smaller in the northwest and larger in the southeast (see also
Lg(t) in Table 1).
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Figure 3. Experimental noncentered indicator covariance
functions at FTG along eight directions (0°, 26.6°, 45°, 63.4°,
90°, 116.6°, 135°, and 153.4°).

4.3. Observed and Predicted Variabilities of
Fractional Coverage

CV of fractional coverage represents climatological variabil-
ity of mean areal rainfall due strictly to intermittency. Figures
6 and 7 show the observed m (A, t) (solid line), o5(A4, t)
(marked by “v”), and CV (A, ) (marked by “c”) as functions
of A at FTG and INX, respectively. Also shown in Figures 6
and 7 are the predicted (marked by “+7) o%(A, t) and
CV,(A, t) as obtained from (14b) and (16), respectively.
Figures 6 and 7 are equivalent to Figure 5 of Eagleson and
Wang [1985] with Ag, or storm size, in the reference held
constant. Figure 8 shows the series of grid boxes used to rep-
resent square catchment areas within the coverage of a single
radar umbrella. Innermost boxes are centered away from the
radar site because, at closer ranges the sampling strategy for
rain estimation is different from that at the outer range, pro-
ducing disparate error characteristics [Smith and Krajewski,
1994, Seo et al., 1995; Smith et al., 1996].

In Figures 6 and 7 the observed relationships between a2(A, f)
and VA are in good agreement with what is expected from
(14b): With 0%( A, t) being a quadratic function of m (A, t)
with roots at 0 and 1, while 4|72 [, [ pullu — ol; Lsi(1)]
dud v is a monotonic, slowly decreasing function of 4 from 1 to
0 on (0, =], 0%( A, t) has the maximum near m (A4, t) ~ %and
approaches zero as 4 — 0 or A — . The predicted rela-
tionships between 0%(A, t) and VA are in reasonably good
agreement with the observed ones; underrepresentation of

Table 1. Radar Rainfall Statistics at Nine WSR-88D Sites
Site

FTG GLD AMA DDC FDR ICT TLX INX LZK
L“(t), km 33.7 52.5 73.0 57.0 68.6 62.6 81.4 82.5 80.1
Lgg(t), km 33.7* 27.3" 41.9% 31.5 28.8 39.6* 29.3 30.3 46.7¢
Lg(1)/Lsp(t) 1.0 1.9 1.7 1.8 24 1.6 28 2.7 1.7
mg(t), mm 1.10 1.37 2.06 1.71 1.86 2.56 1.78 2.39 245
CVg(1t) 2.23 2.49 2.01 1.97 2.00 1.99 1.73 1.76 1.64

“Nonhomogeneity suspected.
"Periodicity present.
‘Strong anisotropy present.
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Figure 4. Same as Figure 3, but at LZK.

very small or very large fractional coverage situations in the
limited data sets is likely to be responsible for the tendency to
underpredict 0% (A, t) seen in Figures 6 and 7. The predicted
relationships between CV (4, t) and VA are also in reason-
ably good agreement with the observed ones. Examination of
the scale-variability relationships of mean areal rainfall at all
sites indicates that observed CV (A4, t) peaks near VA =~
120-200 km. The catchment scale associated with the maxi-
mum CV will be denoted as 4,. Unfortunately, the maximum
window size within a single radar umbrella is not large enough
to ascertain the relationship at larger values of A. It is, how-
ever, possible to conjecture from the following argument that
CV,(A, t) is a slowly and monotonically decreasing function
of A, as A — . For large A we may write CV,(A4, ) ~
1A T4 Ja pillu = ols Lo(1)] dudv/m (A, 1) (see equa-
tion (16)). If A is sufficiently large, multiple storms may coexist
undergoing life cycles independently of one another, in which
case a constant m,(A, t) may be assumed. Hence, for a very large
A we have CV, (A4, £) = |72 [, [, pllu — o Lo ()] du do,
which is a monotonically decreasing function of 4.

Figure 9 shows sensitivity of CV,(A, t) on L (), assuming
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Figure 5. Observed m (A, t) at all sites.
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Figure 6. Observed 0%(A, t) (marked by “v” in the bottom
pair of curves), predicted o5( A, t) (marked by plus sign in the
bottom pair of curves), observed CV (A, t) (marked by “c” in
the top pair of curves), and predicted CV,(A4, t) (marked by
plus sign in the top pair of curves) at FTG.

a fixed relationship between m (A4, t) and A. In producing
Figure 9 we have used for piflu — v|; Lg(¢)] in (16) the
Gaussian model with no nugget effect [Journel and Huijbregts,
1978, p. 165] in place of the exponential model with nugget
effect (see equation (17)). Although it is a less accurate rep-
resentation of the observed correlation structure, particularly
near the origin, the assumption obviates numerical integration
of the quadruple integral (see appendix). The unconnected
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Figure 7. Same as Figure 6, but at INX.
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markers represent the reference relationship based on ob-
served parameter values and statistics at ICT. The increment in
L (t) is 10 km. Note that an increase in Lg(t) (i.e., increase
in storm sizes) not only increases 4 , but also the magnitude of
peak variability due to intermittency, CV (A4, ).

4.4. Observed and Predicted Variabilities of Mean
Areal Rainfall

CV of mean areal rainfall represents climatological variabil-
ity of mean areal rainfall due to both intermittency and inner
variability. Figures 10 and 11 show CVy,(A, t) as a function of
A at FDR and LZK, respectively. For comparison purposes,
CV,(A, t) is also shown. In Figures 10 and 11 there are two
pairs of curves, the upper and lower pairs representing
CVu(A, 1) and CV,(A, t), respectively. In each pair the
observed and the predicted values are marked by open circles
and plus signs, respectively. An ideal situation in obtaining
predicted values of CV,(A, t) from (15) would be to have a
sufficiently large amount of data so that the observed values of
CVg(t) are indeed catchment scale-invariant. Unfortunately,
such was not the case in this work and, hence, to correct for the
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Figure 9. Sensitivity of CV,(A4, t) on L(#) (unconnected
markers are based on the observed parameter values).
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the top pair of curves), predicted CVy,(A, t) (marked by plus
signs in the top pair of curves), observed CV (A4, t) (marked
by open circles in the bottom pair of curves) and CV, (A4, )
(marked by plus signs in the bottom pair of curves) at FDR.

scale-dependency effect of CV(¢), we used sample statistics
of CVg(t) estimated as a function of 4.

At five out of nine sites, clear unimodal peaks exist in ob-
served CV (A, ) (see Figures 10 and 11). At other sites,
peaks are not necessarily unimodal or no clear peaks exist. In
the cases where clear unimodal peaks exist, 4, (i.e., the catch-
ment scale at which the peak CV occurs) in observed CV (A4, 1)
tends to be smaller than that in observed CV (A4, t) (VA, =
30-80 km for mean areal rainfall versus \/Zp =~ 110 km or
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Figure 11. Same as Figure 10, but at LZK.
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larger for fractional coverage). It suggests that adding inner
variability to intermittency reduces A, because inner variability
is generally characterized by a smaller correlation scale (i.e.,
Lgr(t) < Lg(t), see Table 1).

In general, the observed scale-variability relationships of
mean areal rainfall are in reasonably good agreement with
those predicted by (15). For those sites where nonhomogeneity
or periodicity is suspected (see Table 1), predictions tend to
deviate. There are a number of factors contributing to the
discrepancies between the observed and the predicted relation-
ships: (1) conditional and/or indicator second-order statistics
of point rainfall may not be homogeneous, (2) data size is not
large enough to produce “climatological” variabilities, (3) cor-
relation structures are not accurately modeled at all lag dis-
tances, and (4) the scale parameters may be time-dependent
(especially on seasonality).

Figures 12 and 13 show decomposition of CV3;(4, ¢) into
contributions from intermittency and inner variability (see
equation (15)) at GLD and TLX, respectively. As expected,
climatological variability of mean areal rainfall is dominated by
inner variability over smaller 4 and by intermittency over
larger 4. Inner variability and intermittency are at balance
near VA ~ 40-60 km. The coverage of a single radar is seen
to capture, at least in the southern plains, most of the range of
catchment scales over which transition from inner variability
dominance to intermittency dominance takes place. Table 1
shows the ratio of L (f) to Lgg(?) at all sites, in which TLX
has a significantly higher ratio (i.e., strong intermittency) than
GLD (i.e., weak intermittency). This is also reflected in Figures
12 and 13 where the area designated as “intermittency” (this is
the percent contribution of intermittency integrated over all
catchment scales that fall within the radar umbrella) is sub-
stantially larger for TLX.

Figures 14, 15, and 16 show sensitivities of CV (A4, ) on
CVg(?), Lg(t) and Lgg(t), respectively. As in producing
Figure 9, Gaussian models were assumed for both pg[lu — v|;
Lgr()] and piflu — v|; Lg(t)] to avoid numerical integra-
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Figure 12. Decomposition of CV3,(A, t) at GLD.
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Figure 13. Same as Figure 12, but at TLX.

tions. The unconnected markers represent reference relation-
ships based on observed parameter values and statistics at
LZK. The increments are 10 km for L 45 (¢) and L g (¢) and 0.5
for CVg(t). They illustrate that each parameter has a varying
and unique effect on the scale-variability relationship of mean
areal rainfall.

5. Conclusions

Under the assumption that both conditional (on occurrence
of rain) and indicator second-order statistics of point rainfall
are homogeneous, climatological variability of mean areal
rainfall, as measured by its coefficient of variation, is shown to
be a function of mean fractional coverage, conditional coeffi-
cient of variation of point rainfall, conditional correlation func-
tion of point rainfall, and indicator correlation function of
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Figure 14. Sensitivity of CV (A4, t) on CVg(¢) (unconnect-
ed markers are based on the observed parameter values).
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Figure 15. Same as Figure 14, but on L (¢).

point rainfall. The expressions for CV of mean areal rainfall
and fractional coverage are verified via empirical analyses us-
ing hourly rainfall data from nine WSR-88D radars in the
southern plains. The analyses indicate that given the local
rainfall climatology there exists a unique catchment scale at
which the climatological variability of mean areal rainfall is at
its maximum. Existence of such a scale in climatological vari-
ability of fractional coverage [Eagleson and Wang, 1985], how-
ever, is seen to be less prominent, at least over the range of
catchment scales examined in this work. Sensitivity analyses on
the correlation-scale parameters indicates that intermittency
plays as important a role as inner variability in shaping the
catchment-scale—climatological variability relationship of
mean areal rainfall. Decomposition of total variability indi-
cates that over the range of catchment scales that fall within a
single WSR-88D radar umbrella (effective radius of 230 km),
the integrated contribution from intermittency is almost as
large as that from inner variability.

The scale-variability relationships of mean areal rainfall
shown in the work indicate that even with appropriate subgrid-
scale parameterizations, decreasing the grid scale in large-scale
hydrological or GCM models (say, from 200 to 100 km) is
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Figure 16. Same as Figure 14, but on L g5(¢).

SEO AND SMITH: MEAN AREAL RAINFALL THROUGH FRACTIONAL COVERAGE

likely to increase the uncertainty in model output because of
the increased variability in mean areal rainfall. In other words,
in choosing the grid size, there is a trade-off to consider be-
tween more uncertain model output with higher spatial reso-
lution and less uncertain model output with lower spatial res-
olution. This aspect is particularly relevant, for example, to the
Global Energy and Water Experiment (GEWEX) Continen-
tal-scale International Project (GCIP) modeling strategy, for
which parameterization of energy and water cycle processes is
to be developed at 100-km scale [World Meteorological Orga-
nization and the International Council of Scientific Unions,
1992]. The scale-variability relationships obtained in this work
should also be useful in assessing uncertainties associated with
mean areal rainfall input to operational rainfall-runoff models
such as the National Weather Service River Forecast System
[Anderson, 1973]. The analytical results obtained in this work
should be useful in converting rainfall at one spatial scale to
another under fractional coverage conditions. Likewise, anal-
ogous results in time domain should be useful in converting
point rainfall at one temporal scale to another under intermit-
tency conditions.

Finally, the empirical analyses performed in this work dem-
onstrate that WSR-88D rainfall data are extremely useful in
climatological studies. To obtain climatologically more repre-
sentative results and to examine the scale-variability relation-
ships over larger catchment areas, systematic archiving, quality
control, and mosaicking of WSR-88D rainfall data are essential.

Appendix

Here we evaluate the quadruple integral of the following form:

I=f j p{lo—ul; L) du dv
A A

where A is assumed to be a rectangular area, |v — ul is the
Euclidean distance between the two points, « and v, and L is the
correlation-scale parameter. Using the Cauchy-Gauss method
[Journel and Huijbregts, 1978, p. 98], (A1) can be written as

(A1)

11 12
I= J f pllul; LY, = lu (L, = Jual) duy dusy  (A2)
~11 ~12

11 12
[=4 f f p(lul; LY(L, — u) (1, — ;) du, du, (A3)
0 0

where 1, and u, are the x and y coordinates of « and /, and
[, are the sides of 4 along the x and y axes, respectively. The
p(jul; L) value is assumed to be isotropic and Gaussian with
no nugget effect [Journel and Huijbregts, 1978, p. 165]; i.e.,

plluls L) = exp {—(ui + u3)/L? (A4)
Then, from (A3), we have
I =1LLL*m erf (I,/L) erf (I,/L)
— L3 erf (I/L){1 — exp (—[3/L™)}
— LL 3w erf(l/LY{1 — exp (=1L}
+ LY —exp ( — IYLHH1 — exp (I3/L7)} (A5)

where erf () denotes the error function.
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