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SPATIAL DISTRIBUTION OF POINT SOIL MOISTURE ESTIMATES
USING LANDSAT TM DATA AND FUZZY-C CLASSIFICATION!
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ABSTRACT: Many hydrologic models have input data require-
ments that are difficult to satisfy for all but a few well-instrument-
ed, experimental watersheds. In this study, point soil moisture in a
mountain watershed with various types of vegetative cover was
modeled using a generalized regression model. Information on sur-
ficial characteristics of the watershed was obtained by applying
fuzzy set theory to a database consisting of only satellite and a digi-
tal elevation model (DEM). The fuzzy-c algorithm separated the
watershed into distinguishable classes and provided regression
coefficients for each ground pixel. The regression model used the
coefficients to estimate distributed soil moisture over the entire
watershed. A soil moisture accounting model was used to resolve
temporal differences between measurements at prototypical mea-
surement sites and validation sites. The results were reasonably
accurate for all classes in the watershed. The spatial distribution of
soil moisture estimates corresponded accurately with soil moisture
measurements at validation sites on the watershed. It was conclud-
ed that use of the regression model to distribute soil moisture from
a specified number of points can be combined with satellite and
DEM information to provide a reasonable estimation of the spatial
distribution of soil moisture for a watershed.

(KEY TERMS: remote sensing; infiltration and soil moisture; forest
hydrology; evapotranspiration.)

INTRODUCTION

Some knowledge of the moisture content of soils is
necessary for planning and management in a variety
of disciplines. In agriculture, irrigation demands,
application schedules and amounts, potential crop
yields, and detection of crop water stress all depend to
some extent on the soil moisture in the upper layer.
Rangeland and forest management decision are like-
wise benefitted by a knowledge of soil moisture con-
tent and the spatial distribution thereof. Hydrologic
forecasts are highly dependent on a knowledge of
antecedent soil moisture when predicting runoff and

infiltration resulting from a rainfall event. Recharge
of groundwater aquifers is influenced by soil moisture
conditions, which affect or govern quantities which
are (1) returned to the atmosphere through evapora-
tion and evapotranspiration, (2) absorbed and
converted to plant mass, or (3) percolated to the
underlying ground water.

In order to adequately predict temporal and spatial
distributions of soil moisture, enormous quantities of
data are required, and the cost of acquiring these data
by conventional means (such as field surveys) is often
prohibitive. In addition, management requirements
for operational use of such data may be such that the
time lag between collection, delivery, and processing
of data before using them in a model can make the
data obsolete. In this study, data that are available on
a large-scale basis will be used in conjunction with
existing methodology to provide a spatial and tempo-
ral distribution of soil moisture in a mountain water-
shed with an arid climate.

The use of remotely sensed data to represent the
spatial distribution of hydrologic processes has been
discussed at length, but the utility of the technique
for hydrologic models has not yet been well demon-
strated (Price, 1980; Rango and O’Neill, 1982;
Jackson, 1985; Johnson et al., 1985; Owe et al., 1988).
This study describes a procedure for estimating soil
moisture in both space and time dimensions by utiliz-
ing available remotely sensed data in conjunction
with point measurements. Extrapolation from point
estimates to watershed scale is made possible by the
fuzzy-c classification algorithm, which defines class
centers, as well as the competing influence of each
data vector on the various classes.
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The objective of the research was to develop and
verify a simple procedure for accurately representing
the spatial distribution of soil moisture in a mountain
watershed with a reduced and cost-effective amount
of data collection. The relationship between the spa-
tial distribution of soil moisture and the spatial distri-
bution of vegetative cover types was examined. To
accomplish this objective, the temporal distribution of
soil moisture was determined through measurement
and modeling at various points within the watershed.
The sites selected for installation of access tubes rep-
resented all of the major ground cover classes. A
Landsat-DEM database for the watershed was classi-
fied, and the information from that classification was
used in a generalized regression model to distribute
the point soil moisture estimates over the entire
watershed.

METHODS AND PROCEDURES
Study Site

For this study, the Tony Grove Creek watershed in
northern Utah was selected as a test site (shown in

Figure 1). Landsat TM data collected on July 1, 1986,
were used to provide information on the surficial
characteristics of the watershed. USGS topographic
maps were digitized to provide information on perti-
nent topographic variables such as elevation, slope,
and aspect. In addition, a weather station was
installed at the base of the watershed to measure
important meteorological data, particularly those
needed to predict soil moisture change.

Access tubes were installed throughout the water-
shed, and soil moisture was measured at various soil
depths during the years 1989 and 1990. Soil moisture
measurements were collected at 31 sites at depths
ranging from 45 to 75 cm. One site was instrumented
with eight access tubes while the other sites had one
access tube each. No soil maps of the area have been
published, but unpublished research indicated associ-
ations of mollisols and alfisols. From field data, the
soil types in the area were mostly loam and clay loam
with bedrock close to the surface in many places. A
number of access tubes were located randomly as a
check on the accuracy of the spatial extrapolation of
soil moisture. These sites will be referred to as valida-
tion sites. Soil moisture measurements were gathered
at all of the sites as previously described.
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Figure 1. Location Map Showing Watershed and Individual Measurement Sites.
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Self-Organizing Predictive Soil Moisture Models

As stated in the introduction, the objective of the
research was to develop and test a simple procedure
for obtaining good spatially and temporally distribut-
ed estimates of mountain watershed subsurface soil
moisture. Ideally, the procedure would use readily
available satellite multispectral data and digital ele-
vation models (DEM) to provide an alternative to the
extensive field survey requirements demanded by
conventional approaches. To accomplish this goal, a
generalized multivariate regression model was
assumed in the form

SDSM =3, (1)

*

1 c( SMC uih)
where SDSMy, represents the soil moisture predicted
at time T at an arbitrary point X in the k-th unit of a
gridded watershed. The grid scale was assumed to be
dependent upon the resolution available from a
merged base of satellite and DEM data, with each
unit homogeneous with respect to soil moisture. The
variables, denoted by SMC;, represent known soil
moisture values at time T available ati=1,2,...¢
prototypical measurement points on the watershed.
Soil moisture at these few points may be obtained in
several ways: from direct, on-site measurement;
through the use of well known “point” physical pro-
cess models; or, from combinations of the two (for
example, using Kalman updating). The method used
in this study is discussed in further detail below.
Finally, the generalized regression coefficients uy
weight the contribution of the i-th measurement site
to the total soil moisture estimate at the k-th predic-
tion site,

The major questions regarding Equation (1) are:
how many prototypical measurement points are
required (obviously, the fewer the better); where
should the measurement points be located on the
watershed; how are the weighting coefficients u;,
determined? It can be shown that these questions
lead to the requirement of solving a weighted sum-of-
squared-error optimization functional, which, in turn,
supplies necessary conditions for learning the values
of the parameters listed above directly from the
merged satellite DEM data base (Gunderson et al.,
1992). This functional corresponds exactly to that
minimized to obtain the fuzzy-c varieties (FCV) unsu-
pervised classification algorithms (Bezdek et al., 1981;
Gunderson and Jacobsen, 1983).
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Fuzzy C-Varieties Algorithm

The first step in FCV data analysis is to specify a
number of classes, ¢, which will represent the data x,
and to indicate a first guess at the centers v, vy, . . .
v, for those classes. The number of classes, c, corre-
sponds to the number of measurement sites in
Equation (1). The algorithm then uses the initial
guess at the centers of the classes to iteratively solve
the two nonlinear equations

U™ : z @
(S VAT
and
2
(u,) x,
Vi= 2k=1,n ulk lek 3)
Zk:l,n(uik)

where i and k are the number of classes and data vec-
tors, respectively. The data vectors xy represent the
merged satellite and DEM measurements at the kth
watershed unit. The term u;, provides the weight or
extent to which the data vectors xy influence compu-
tations for the ith class. Alternatively, they weigh the
contributions of the soil moisture measurements as
given in Equation (1). These weights are constrained
to satisfy the conditions

u;p, € [0,1] @

and

=1 5)

=1, o ik
foralli=1,2,...candk=1,2,...n, and are often
referred to as defining the “fuzzy” membership of the
data vectors in ¢ “fuzzy” sets (Bezdek et al., 1981).

The centers for the classes defined by the algorithm
are given by Equation (3) and can be thought of as
defining the prototypical data vectors for each class.
For example, in a certain two-class case, u;; for a
data vector x}, occurring at the center of class 1 would
have a value of 1.0 and uy; a value of 0.0, while a
data vector x; falling midway between the center of
classes 1 and 2, would have values of u 1 and ug; equal
to 0.5. In this manner, the algorithm defines not only
the centers of the classes present in the data, but the
competing influence of individual data vectors on the
various classes. The algorithm also allows each data
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vector to influence the recalculation of the class cen-
ters. The data x can therefore be described in more
meaningful terms than simply belonging to one class
or another.

The prototypical measurement sites needed for
Equation (1) are easily obtained from the output of
the FCV algorithm by simply selecting watershed
sites whose membership coefficients are near unity
with respect to a desired class.

Modeling Procedures

Several approaches were examined for obtaining

the known soil moisture values for Equation (1) at the
prototypical measurement sites identified by use of
the FCV algorithm. One obvious approach would be to
make on-site measurements. This approach was not
used because of the effort and expense involved in
gathering on-site soil moisture data. For example, the
time to complete measurements at all sites was some-
times as long as four days. At the beginning of the
season, the soil moisture stayed near field capacity
because transpiration and evaporation were minimal.
At the end of the season, the change in soil moisture
status was again minimal because most of the water-
shed had reached the permanent wilting point.
During these periods, comparing an on-site measure-
ment taken four days after the measurement used in
Equation (1) to estimate SDSM;, worked well because
the temporal change in soil moisture is generally
small for these seasons. The months of June and July,
however, saw rapid vegetative growth and tangible
amounts of daily evapotranspiration. This made eval-
uation of the effectiveness of the technique using only
measured values impractical when two to four days
elapsed between the start and finish of data gather-
ing. Therefore, it was necessary to model the temporal
change of soil moisture at each site.
. The soil moisture accounting (SMA) model was
developed to overcome this problem, as previously
described. The SMA model is based on the Jensen-
Haise equation for estimation of evapotranspiration
(Jensen and Haise, 1963)

ETp, = (0.64*C + 1.98) R,/580 (6)

where C is the average air temperature in degrees C
and Ry is the solar radiation in Langleys. The root
density and the available soil moisture are the key
elements determining the actual amount of soil mois-
ture lost through transpiration (Wight and Hanks,
1981; Wight et al., 1986; Wight, 1987). Potential evap-
oration is calculated based on the meteorological fac-
tors for a given day, and actual evaporation is a
function of available soil moisture in the upper layers
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of soil and also any intercepted precipitation stored in
the forest canopy. The model functions with a user-
specified number of soil layers; three to four layers
were used to model soil moisture change for the study
site. The number of layers used was determined by
the depth and make-up of the soil profile and ranged
in thickness from 6 to 25 ¢cm. Recognizing the
importance of topographic position on some meteoro-
logical inputs, the model adjusts temperature for both
elevation and aspect.

By applying the SMA model at each point on the
watershed, evaluation of the spatial distribution tech-
nique was accomplished for various dates during the
season. At each validation site, soil moisture mea-
surements for a given day were compared with soil
moisture estimates from Equation (1) using SMC; val-
ues for that same date.

The SMA model was also utilized to estimate the
temporal change in soil moisture levels at the proto-
typical measurement sites. When measurements at a
prototypical site were available for a given date, those
measurements were used in Equation (1). When no
measurement was available for that date, the SMA
model estimate was used to account for the temporal
change in soil moisture between the date of the mea-
surements used in Equation (1) and the date of the
measurements at the validation sites. The model was
also used to obtain temporally equivalent estimates
for each class for use in Equation (1).

Several methods of improving SMA model esti-
mates were investigated. Kalman filtering was exam-
ined as a tool to improve the model approximations by
utilizing information on the error covariance matrices
of the measurements and the model process to correct
model estimates of the state variable; in this case, the
soil moisture at a given layer (Leu, 1985; Gunderson
et al., 1987). This method was not utilized because of
the difficulty of determining the noise covariance
matrix.

Another approach to improving model predictions
involved the use of the measured data to simply up-
date the model results. SMA would estimate the soil
moisture at a given point and then check to see if a
measurement occurred on that date. In that event,
the model would simply reset the soil moisture for
that date to the measured value and then continue to
run.

The method finally chosen was a modification of
the updating method. The SMA model predicts soil
moisture for the next day, checks to see if a measure-
ment exists for that day, and then compares the pre-
dicted value with the measurement. If the difference
between the predicted and measured values falls
within a user-specified threshold limit, the model
continues to run using the model prediction. When
the difference between the measurement and the
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prediction exceeds that threshold, the model resets
the value of the state variables to the measurements
and then continues on. In this manner, the user
retains some control over the process and can also
ascertain how well the simulated soil moisture esti-
mates compare with measurements by examining the
number of measured points used to update or reset
soil moisture values during a run.

Data Requirements

The study site was extracted from the Landsat
Thematic Mapper scene, and the resulting database
containing seven measurements of electromagnetic
band response for every 30 x 30 meter pixel was
merged with a corresponding digital elevation
database containing information on elevation, slope,
and aspect.

Soil moisture data were gathered at the points
described earlier in this section. A neutron probe was
utilized to measure soil moisture data which were col-
lected on approximately a bi-weekly basis during the
summer of 1989 and from April to October of 1990.
Field and laboratory measurements were made to
determine pertinent physical soil characteristics such
as bulk density, field capacity, and the soil moisture
level at which permanent wilting occurred in vegeta-
tion.

DISCUSSION AND RESULTS

The merged Landsat Thematic Mapper-DEM data
was first analyzed using the FCV algorithm to deter-
mine the number of classes, c; i.e., the number of pro-
totypical measurement sites needed for use in
Equation (1). Satellite data from July 1, 1986, was
found to result in a classification which closely agreed
with apparent classes identified during field examina-
tions conducted during the 1990 measurement period.
A comparison of the classification results and the field
survey is shown in Table 1. Based on these results, a
best number of ¢=5 classes (measurement sites) was
determined. It was observed that only the elevation
variable from the DEM data appeared to have signifi-
cant influence on class structure, the remaining DEM
variables being highly correlated with vegetative sur-
ficial ground features. As might be expected, the
effect of the elevation variable was essentially to dis-
criminate between observable elevation-dependent
vegetative classes. It is important to stress that the
known dependency of soil moisture distribution on
topographic position was taken into account in the
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predictive modeling approach, albeit implicitly
through the learning of model parameters from the
merged Landsat-DEM data base.

TABLE 1. Contingency Table Comparing Class Indicated by
Classification Algorithm and Field Survey Results
(three out of 30 sites were misclassified).

Field FCV Classification Result
Class 1 2 3 4 5
1 3
2 5 1 1 1
3 4
4 3
5 12
Class 1 Spruce/Fir Forest
Class2 Sage/Grass Rangeland
Class3 Mature Aspen Forest
Class4 Mixed Conifer/Aspen Forest
Class 5 Scrub Aspen Forest (heavy understory)

After settling on the number of classes, the next
step was to identify the corresponding measurement
sites for each class. These are referred to as prototypi-
cal measurement sites. As mentioned earlier, this was
easily accomplished by examining the so-called mem-
bership coefficients uyy for sites corresponding to data
vectors xy, with membership values in class i having
unity, or near unity, values. Membership values for all
of the instrumented sites, prototypical measurement
and validation sites, are shown in Table 2. Note that
the membership values are, in some cases, higher for
the validation sites than for the prototypical measure-
ment sites. This can be explained by the differing
methods of locating the prototypical measurement
sites as opposed to the validation site. As stated, the
measurement sites were located by extracting high
membership value sites for each class and then locat-
ing those sites in the field. The validation sites, how-
ever, were installed in the field with the only criteria
being random location. An attempt was made to
obtain representative samples of each class type.
Class types were determined at that time only on a
basis of field observation. Later, the locations of the
validation sites were examined to determine the actu-
al class (from the classification of the satellite-DEM
data base) and the membership values.

As previously mentioned, the accuracy of classifica-
tion has been shown in the contingency table
(Table 1). If every location had been classified correct-
ly, all the values would have fallen on the diagonal of
the contingency table. The three sites that were mis-
classified all had a common element. Each of these
sites was a relatively small meadow or open area in a
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larger area of either aspen or spruce forest. Since the
resolution of the Landsat Thematic Mapper is 30
meters, these sites were on the order of magnitude of
one pixel. This is less than the margin of accuracy for
either georeferencing or precise field location.

TABLE 2. Membership Values from FCV Classification for All
Instrumented Sites in the Tony Grove Creek Watershed.

Site
No. ul u2 u3 u4 ub
1 0.02 0.82 0.04 0.10 0.03
2 0.02 0.71 0.06 0.16 0.07
3 0.95 0.01 0.02 0.01 0.01
4 0.00 0.00 0.01 0.01 0.98
5 0.01 0.03 0.07 0.10 0.79
7 0.14 0.03 0.61 0.12 0.09
8 0.02 0.02 0.66 0.13 0.16
9 0.01 0.01 0.05 0.05 0.89
11c 0.00 0.01 0.02 0.02 0.95
12¢ 0.01 0.00 0.96 0.02 0.01
13 0.03 0.70 0.06 0.17 0.04
14 0.01 0.01 0.03 0.03 0.91
15 0.90 0.01 0.05 0.02 0.02
16a 0.93 0.01 0.03 0.02 0.01
17 0.15 0.12 0.38 0.27 0.09
19 001 0.01 0.11 0.06 0.80
20 0.02 0.02 0.23 0.12 0.61
21 0.01 0.02 0.07 0.06 0.83
22 0.02 0.02 0.08 0.07 0.82
24 0.01 0.01 0.07 0.07 0.84
25d 0.01 0.03 0.10 0.78 0.08
26 0.01 0.03 0.06 0.83 0.07
27b 0.01 0.93 0.02 0.04 0.01
28 0.00 0.97 0.01 0.02 0.01
29 0.03 0.05 0.47 0.25 0.20
KEY:

a - prototypical site for Class 1 (ul) = spruce/fir forest.
b - prototypical site for Class 2 (u2) =~ sage/grass rangeland.
¢ - prototypical site for Class 3 (u3) ~old growth aspen.

d - prototypical site for Class 4 (u4) = mixed conifer and aspen
forest.

e - prototypical site for Class 5 (u5) = scrub aspen and understory.

Note: Some of the membership values do not sum to 1.0. This can
be attributed to round-off error.

In order to adequately assess the accuracy of spa-
tial distribution using fuzzy-c classification, an
extrapolated value of point soil moisture was calculat-
ed using membership values for each measurement
taken in 1990. The results are shown in Figure 2.
Data shown in Figure 2 represent all measurements
plotted against corresponding extrapolated soil mois-
ture values estimated from Equation (1). The r2 value
of 0.86 from regression analysis represents all of the
values except the measurements at the prototypical
sites (11, 12, 16, 25, and 27).
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As a means of examining the causes of the scatter
seen in Figure 2, the data were plotted by individual
site. This showed that the data tend to fall in a series
of lines parallel to the diagonal. If data points fell
exactly on the diagonal, the measured values would
show complete agreement with the estimates. From
Figures 3 and 4, it is apparent that a consistent bias
exists for each site which is revealed by the offset of
individual sites from the diagonal. In Figure 3, the
data shown are for aspen sites, while Figure 4 shows
results for spruce sites.

Several possible explanations were investigated to
determine the cause of the bias shown in Figures 3
and 4. The data were first separated by elevation zone
and plotted, but no consistent bias was discernible. By
means of a sensitivity analysis, the SMA model was
found to be most sensitive to changes in the input
parameters of the field capacity and wilting point of
the soil, and to variations in a vegetation coefficient
and root density. The first two are physical character-
istics of the soil. The vegetation coefficient is the ratio
of evapotranspiration from a lysimeter to the poten-
tial evapotranspiration from Equation (6) with water
nonlimiting. The vegetation coefficient and the root
density were developed for each vegetation type and
are utilized in the calculation of the evapotranspira-
tion. It was expected that classification of the satellite
data would contain some information relative to the
two latter parameters. The field surveys confirmed
that the classes determined through the classification
were closely related to the different types of vegeta-
tive cover existent in the watershed. Little informa-
tion, however, was directly inferred from the satellite
data relative to the spatial variation in physical soil
characteristics. Therefore, the spatial distribution of
soil characteristics could be responsible for the bias
occurring in Figures 3 and 4.

In order to investigate the possibility of bias result-
ing from the spatial distribution of soil characteris-
tics, a site was selected at random (Site 16). Different
simulations were run for values of physical soil
parameters from Rawls et al. (1982). The simulations
were run using the model parameters already deter-
mined for the site along with soil parameters for soil
types loamy sand, sandy loam, loam, and silty loam.

. Results are shown in Figure 5. Actual measurements

for Site 16 are also depicted in the figure. Using the
measurements as a basis for comparison, the simulat-
ed results were plotted against the measured data.
The effect is very evident in Figure 6. The same con-
sistent bias away from measured values appears that
was visible in Figures 3 and 4. Physically, the expla-
nation for this bias is that the extrapolation of spatial
estimates of soil moisture using membership values is
strongly linked to the soil type at the sites used as
prototypical sites. For example, using five sites with a
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Figure 2. Results of Spatial Extrapolation Shown Against Measured Soil Moisture.
(All data was collected in 1990 and regression analysis gave an r2 of 0.86.)

soil type of sand to extrapolate over a watershed will
estimate accurately at other sites with a soil type of
sand, but sites with soil types of loam or clay will be
much wetter in reality, suggesting the use of a soil-
type dependent correction factor for improvement of
the estimate.

SUMMARY AND CONCLUSIONS

The FCV classification algorithm was applied to
satellite data to determine vegetation classes within
the Tony Grove Creek watershed. The FCV algorithm
further assigns membership values for a user-
specified number of classes within the watershed for
every ground element within the area of interest.
Inspection of those membership values reveals the
extent to which any given ground element belongs to
a class. By selecting ground locations with high
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memberships in a given class, the number of instru-
mented sites needed to give an indication of the soil
moisture over the entire watershed was reduced.

The potential of the FCV algorithm in the field of
pattern recognition has been well documented
(Bezdek et al., 1981; Gunderson et al., 1987). This
research further validates the use of “fuzzy” classi-
fiers in real world applications. In this case, the mem-
bership values developed from TM satellite data were
sufficient to give an indication of the type and compo-
sition of vegetative cover in a mountain watershed.

The information supplied by the membership coef-
ficients was quantified by combining soil moisture
levels at the prototypical sites and then extrapolating
those values over the entire watershed through the
use of the membership values. This proved to be suffi-
cient to satisfactorily model soil moisture throughout
the entire watershed. The methodology has proven
effective in a similar study involving snowpack distri-
bution (Leu, 1985; Gunderson et al., 1987), and, with
the more complex process of soil moisture change
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Figure 3. Comparison of Spatially Extrapolated Estimates of Soil Moisture
with Measurements for Selected Aspen Sites.

during the growing season, has proven admirably
effective in this research.

- The estimation approach, which combined soil
moisture levels at prototypical sites with membership
values for the entire watershed to obtain a spatial dis-
tribution of soil moisture, was quite successful.
Correlation of the extrapolated soil moisture with
measured values at validation sites scattered
throughout the watershed indicated an r2 value of
0.86 for all vegetation types. The effect of different
vegetative cover types on the correlation was ana-
lyzed separately, as well as the effect of elevation dif-
ferences.

The variability apparent in the extrapolation
results was apparently attributable to the different
soil types. The “dumbbell” effect or clustering at the
top and bottom of the figures showing the extrapola-
tion results is actually a function of the three distinct
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periods within the growing season. The first is charac-
terized by zero or slow change in soil moisture at the
beginning of the season when all soils are at or near
field capacity. The second is a relatively short period
of dynamic change in soil moisture status brought
about by the onset of transpiration by the vegetation,
which is followed by a long period signaling the end of
growth because soil moisture status has reached or is
near the wilting point level.

The response of individual sites suggests a rela-
tionship between vegetative cover type and soil type,
and the difference in soil type throughout the water-
shed is thought to have a significant contribution to
the scatter in the extrapolated soil moisture values.
From Figures 3 and 4, it is obvious that the extrapo-
lated soil moisture for each site is consistently offset
from the measured for the entire range of soil mois-
ture. That this offset can be ascribed to differing soil
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Figure 4. Comparison of Spatially Extrapolated Estimates of Soil Moisture
with Measurements for Selected Spruce/Fir Sites.

types can be seen in Figures 5 and 6, and could also
be deduced by a qualitative examination of the effect
‘of different soil types on the results. The addition of a
soils map (not available for this study area) as a layer
input to the geographical information system (GIS),
would improve the accuracy of this technique.
Another possibility would be to apply a correction fac-
tor to all extrapolated estimates based on soil type.
Overall, the technique using point soil moisture infor-
mation with satellite data and a fuzzy-c algorithm for
classification provides satisfactory estimates and
insights into the difficult problem of estimating spa-
tial distributions of subsurface soil moisture.
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Figure 6. Comparison of Simulated Soil Moisture at Site 16 in the Study Area with Estimates
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