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ABSTRACT
Seo. D.-J. and Smith. J.A.. 1992. Radar-based short-term rainfall prediction. J. Hydrol.. 131: 341-367.

A radar-based short-term rainfall prediction model is formulated and cvaluated. The prediction lead
time of interest is approximately 1 h. The model is composed of a physically based component and a
statistical component. The physically based part performs mass balancing of mean verticaily integrated
liquid water content (VIL) under convective warm ratnfail situations, using full-volume scan radar data.
surface meteorological observatons and upper air data. The statistical part performs prediction ol restdual
VIL. Converston of predicted VIL to rainfall is made using empirical relationships among VIL. rainwater
content at cloud bottom, and echo-top height, which is assumed to remain constant over the prediction lead
ume.

To cevaluate the model. a comparison s made aganst advection-based nowcasting using radar data
from the Nutional Weather Service Radar Data Processor, version 11 (RADAP 1) system at Oklahoma
City. Results from parameter estimation runs show that inclysion of the simple physical and staustical
dynamugs has potential in improving advection-based nowcasting under convective situations. An apparent
bias in mean rintall prediction. however, suggests room for improvement. Issues concerning possible
improvements are desenibed. and future research directions are discussed.

INTRODUCTION

A characteristic feature of flash floods is that the lead time available for
warning is quite short. For example, in the Shadyside. Ohio. USA. flash flood
of June 1990, loss of life occurred within | h of onset of rainfall. Because of
the short lead times involved. short-term rainfall prediction is an integral
component of flash flood forecasting systems (Saflle and Greene, 1978; Hull'
and Vogel, 1981: Eintalt ct al., 1990).
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Short-term prediction of rainfall has been studied by a number of authors.
Johnson and Bras (1980) developed statistical prediction procedures using
rain gage observations. In a similar vein, Georgakakos and Bras (1984a.b)
developed procedures using surface meteorological observations as well as
rain gage observations. An important feature of the procedures of Georgakakos
and Bras (1984a,b) is that physical arguments are used in deriving model
structure. Browning and Collier (1989) reviewed a broad class of procedures
known as ‘nowcasting’ or projection procedures. Projection procedures have
been widely used with radar rainfall data (Elvander. 1976; Bellon and Austin.
1978, 1984; Browning et al.. 1982; Walton and Johnson, 1986: Einfalt et al..
1990). The essence of projection procedures is that the current rainfall pattern
(or storm elements within the rainfall pattern) is projected spatially using an
advection velocity derived from the recent time history of rainfall. Little
attention has been given, however, to combining projection procedures with
simple dynamic models which utilize meteorological observations from
surface and upper air stations. and radar rainfall data.

New technologies in the United States will greatly expand the potential for
short-term rainfall prediction. A network of more than 120 weather radars.
the Next Generation Weather Radar (NEXRAD) system. is expected to be
deployed over the period 1991-1995. Also a new communications and
processing system, the Automated Weather and Interactive Processing System
(AWIPS), will combine radar and meteorological observations with modern
computer processing power. In this paper we develop procedures that can
exploit these new technologies. In particular. we investigate the potential for
improving projection-type rainfall predictions over a time scale of I'h by
incorporating simple physical and statistical dynamics components.

We assume that the vertically integrated liquid water (VIL) tield of a
rainfall system at time / can be decomposed spatially into a slowly varying
mean field and a rapidly varying residual field:

VI(i,j) = AV, + RE,(i }) (n

where 11,(i, j) is the VIL at (i, j)th radar bin at time ¢. AV, is the local mean
VIL at time +. RE,(i. j) is the residual VIL at (7, j)th radar bin at time . The
idea then is to predict AV, and RE, . ,,(i + Ai.j + Aj) using physical and
statistical models. respectively. and convert predicted VI, ,,(i + Ai.j + Aj)
to rainfall, where A/ and Aj denote the advection distances in time Ar along
vand y directions. respectively. The physical model performs mass balancing
of VIL using full-volume scan radar data. hourly surface observations and
radiosonde data. The residual model performs prediction of residual VIL. The
models are formulated in a Lagrangian framework. that is, our coordinate
system moves with the advection of the rainfall system.
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The size of a radar bin is chosen to be the size of a Hydrologic Rainfall
Analysis Project (HRAP) (Greene and Hudlow. 1982) bin, which is approxi-
mately 4 x 4km- for the study area encompassing Oklahoma City. The size
of the area over which the local mean is computed depends largely on the
density of the meteorological observation networks. In this work. we used an
averaging area of approximately 12 x 12km- (three HRAP bins on a side).

In the following sections, we describe the physically based model.
estimation of VIL, estimation of saturation vapor density, estimation of
updraft velocity, residual prediction. verification. results, and conclusions and
future research recommendations.

PHYSICALLY BASED MODEL

The physically based model performs a mass balancing of VIL under
convective warm rainfall situations. It uses: (1) radar volume scan data to
estimate the initial VIL; (2) surface measurements of temperature, pressure
and dew point temperature to estimate profiles of in-cloud temperature and
saturation water vapor density; (3) radiosonde data to obtain profiles of
environmental temperature and water vapor density. Many of the develop-
ments below closely follow those of Kessier (1969).

To obtain the mass balance equation for VIL, we start with the following
continuity equations for rainwater content, cloudwater content. saturation
water vapor density and density of air:

oM ¢(Mu) + (M) + (7[M(M: + V)]

o 0x dy Jz =90 ?)
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where M is the rainwater content. m is the cloudwater content. ) is the
saturation water vapor density, p is the density of air, V' is the fall velocity of
the rain water. and u. v and w are the velocities of air in x, y and = directions.
respectively. Rain and cloudwater content, like saturation vapor density, are
represented as mass per unit volume. Cloud water is different from rain water
in that cloud water follows the motion of air. In this work, we limit ourselves
to warm rainfall processes only, and thus no phase change is allowed. Under
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the assumptions of locally steady and horizontally uniform saturation vapor
density and incompressible air. eqns. (3) and (4) may be added to yield:

cm cm ’
- = — W= —W ':2 (6)
at oz oz

Also, under the assumption of incompressible air. eqn. (2) can be rewritten as:
oM aM _cMY)

or oz oz 0
In eqns. (6) and (7), terms involving v and-v are omitted since we are adopting
the Lagrangian coordinate system which follows the advection of the rainfall
system. In this formulation, lateral mixing is ignored. It can be justified in this
work because vertical flux should dominate mass balancing given the large
averaging area of about 12 x 12km".

Equations (6) and (7) are still difficult to work with because radar,
in general, does not distinguish cloud water from rain water. For example,
most |0cm radars begin to show an echo when drops exceed 200 um in
diameter (Simpson and Wiggert. 1969). To circumvent this difficuity, we
assume that, on condensation, water vapor is immediately converted to rain
water without first forming cloud water. Then eqns (6) and (7) may be added
to yxeld

= —-—W—_=—— — = W (8)

Another interpretation which leads to eqn. (8) is that cloudwater content is
steady state and has a uniform profile. Both assumptions certainly limit the
applicability of eqn. (8). Treating cloudwater content as a separate state
variable, however. greatly complicates the problem in that (1) cloudwater
content cannot be estimated using a conventional weather radar, and (2) one
has to include various microphysical processes between cloud water and rain
water such as coalescence. collision, breakup, evaporation, ¢tc. In this work,
we assume that liquid water content, as estimated from radar data. consists
of rain water only. Equation (8) can be integrated from cloud bottom. -, to
echo-top, z,. to vield the following mass balance equation for VIL:
- N
‘ld";l- = waM, + %‘l Md:z + MaVy + wyQp — wrQr + ‘ 9‘—‘ 0 d:
H
9)
o

o= [ M (10)

B ]
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where 1wy and wy are the updraft velocities at cloud bottom and at echo-top.
respectively, My is the rainwater content at cloud bottom. FVy is the fall
velocity of rain water at cloud bottom. and Qg and Q7 are the saturation water
vapor densities at cloud bottom and at echo-top. respectively. In obtaining
eqn. (9), we used the Leibniz rule and integration by parts. Also used are the
assumptions that rainwater content at echo-top is zero and cloud bottom
elevation remains constant over the prediction lead time. Rainfall accu-
mulation at z, from ¢, to t,. for example. is then given by:
h
Py = J gg(x + ut.y + vt, 1) dr (11a)

n
n

l
- - — . V.
5 .[(“B + Vy)Myd:e (1tb)

W
o

where ¢ (x. 1. 1) denotes the rainfall rate at altitude z, at location (x. y) at time
t. and p, is the density of rain water.

Because we are not solving a vertical momentum equation along with eqn. (8),
wy and wy must be specified externally. Kessler (1969) assumed that updraft
velocity profile remains constant over the prediction lead time and can be repre-
sented as a quadratic function of altitude. Even with such a simplifying assump-
tion. eqn. (9) is still difficult to work with as it would involve terms such as
T
J M d:
]
Equation (8) pertains to the mass balancing of VIL over an area larger than
the radius of a typical updraft column. When averaged over a relatively large
area. updraft profile should be characterized by a much smaller gradient than
that within an individual updraft column. Also. as will be seen in the next
section. z, in this work is taken not at the cloud bottom. or at the lifting
condensation level (LCL). but at a relatively high altitude of 2.5km for
validation purposes. It is then. rcasonable to assume that updraft profile
between =, and z, is approximately uniform. Equation (9) is then reduced to:
dM
dr
where 1w, is the average updraft velocity. The interpretation of eqn. (12) is
simply that the time rate of change in VIL is the sum of net outflux of rain
water through z, and net influx of water vapor between -, and . Time-
integrated versions of mass balance equations similar to eqn. (12) have been
used in diagnostic studies of radar observations of precipitation production in
thundérstorms (Reuter. 1990, see also references therein).

= (wy + Vp)My + wi(Qy — Q) (12)
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Under the assumption of Marshall-Palmer raindrop size distribution
(Marshall and Palmer. 1948), V5 in eqn. (12) can be determined easily. A
packet of rain water with content M is assumed to fall with velocity V. It is
easy to show that V' is given by the following:

Vo= —a[l(4 + b)/6](np,N,)~"* M" (13)

where a and b are the constant and the exponent. respectively, in the terminal
velocity-drop diameter relationship of Gunn and Kinzer (1949)

V(D) = —aD"

['(#) denotes the Gamma function. and N, is the parameter in the Marshall-
Palmer raindrop size distribution.

n(D) = Nye *’

In the following sections, we describe how the remaining variables in eqn. (12)
are determined.

ESTIMATION OF VIL

The radar data used in this work are from the Radar Data Processor.
version II (RADAP II) system at Oklahoma City. The radar isa WSR-57 and
has a wavelength of 10cm and a beam width of 2.2°. Radial and vertical
sampling points are illustrated in Fig. |, ecach point representing the center of
the sampling volume. The radials are centered on even azimuths. Elevation
angles corresponding to the beams in Fig. | are 0.5. 2, 4, 6, 8. 10, 12, 14, 16.
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Fig. I. Centers of sampling volumes in RADAP 1 at cach azimuth.
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Fig. 2. One-dimensional schematic of VIL esumation.

20. and 22°. Figure 2 illustrates a one-dimensional schematic of how VIL
would be computed over a 10 x 10km* column. In many cases. it was not
possible to obtain VIL. typically for the following reasons: (1) higher elevation
beams were lacking so that echo-top height could not be determined: (2) the
number of data points was too small at the outer rim of the radar umbrella.
Owing to the various types of errors involved. it is difficult to assess the
accuracy of estimated VIL. In this work, we used only radar data within a
radius of 160 km trom the radar site. Even with this reduced areal coverage,
the vertical sampling interval at the outermost rim is very large (about 3 km).
Further reduction ot areal coverage, however, would yield too small a sample
size to work with.

A natural way of specitying =, would be as the lifting condensation level
(LCL). LCL. however, can be very low and may not be well sampled by the
lowest radar beam ot 0.5 degrees of elevation angle. Also. near the radar site.
radar data from lower beams are likely to be atfected by ground clutter. For
these reasons. we set -, ut 2.5km.
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Fig. 3. Example scatter plot of 3y and AT, and the linear fit.

As we vertically integrated eqn. (8), as opposed to solving 1t directly, M
remains undetermined in eqn. (12). A, is trivially determined only when the
vertical profile of rainwater content remains uniform or triangular under the
assumption of constant echo-top height over the prediction lead time. As a
compromise. we assumed in this work that, over the prediction lead time: (1)
echo-top height remains constant; (2) the following relation holds among M,
M and the constant echo-top height:

Mg = (M + u))|H (14)

where H is the echo-top height above -, (=27 — =), and ¢, and «, are
coefficients estimated via least squares fit using the estimates of M, /{ and 1.
obtained from the most recently available {full-volume scan data. In many
cases. scatter plots between M, H and M suggest that a quadratic fit or a
square root fit might be somewhat better. In this work. however. we used a
linear fit throughout for simplicity. Figure 3 shows an example scatter plot
and the best fit.
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ESTIMATION OF SATURATION VAPOR DENSITY

Vertical profile of saturation vapor density was estimated assuming
adiabatic lifting of a parcel from the ground to LCL and moist-adiabatic
lifting of the parcel with entrainment from LCL to the echo-top. Under the
assumption of hydrostatic atmosphere, adiabatic and moist-adiabatic lapse
rates are given as follows (Hess, 1979):
from surface to LCL

oT g
"% T (15)
from LCL to echo-top
[l+ ’]+y[(T—T)+L—(r—r)]
- ?I = % Rd T P : (16)
0z |+ L, r
R, T?

where = is the geopotential height in m, T is the temperature inside the cloud
at z m K. g is the gravitational acceleration in ms ~* , Cp 18 the specxﬁc heat in
Jg 'K, L, is the latent heat of vaporization of water inJg~', R, is the gas
constant for dry air in Jg~' K, r, is the saturation mixing ratio inside of the
cloud at = in gg~', u is the entrainment rate per unit height in m ', T, is the
environmental temperature at z in K, r, is the environmental mlxmg ratio at
cingg ' and R, is the gas constant for moist air in Jg 'K (= 1.61R,). The
saturation mixing ratio r, is given by (Dutton. 1986):

ro = 0.62le/(p — ¢,) (17

where ¢, is the saturation vapor pressure at = in mbar, and p is the pressure
at - in mbar, assumed to be the same both inside and outside the cloud. The
saturation vapor pressure ¢, is given by (Dutton, 1986):

e, = 6.11exp [(L,/R,)(1/273 — 1/T)) (18)

The pressure p is determined via the hydrostatic approximation for moist air
(Dutton, 1986):

oploz = =102 gp,(l + r.) (19)

where p, is the density of dry air in gm .

To solve eqn. (16), we need to know T at LCL. and profiles of T, and r,
Given temperature, dew point temperature, and pressure at the surlace
LCL can be computed under the hydrostatic assumption (see, for example,
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Fig. 4. Map of study area. The reduced radar umbrella, centered at Oklahoma City, is the model domain.
Small solid circles denote rain gage location. Large empty circles denote radiosonde sites.

Pruppacher and Klett. 1978). In this work. surface measurements of tem-
perature, dew point temperature and pressure were obtained from a network
of surface stations shown in Fig. 4 as small solid circles. For those grids which
included a surface station. the point measurements at the station were used as
representative of the spatially averaged condition at the surface. For those
grids which did not include a surface station. an interpolation was performed
using measurements {rom the three nearest surface stations. The interpolation
involved two steps. The first was to adjust. under the hydrostatic assumption.
measurements of temperature and dew point temperature at each of the three
nearest stations to the pressure level at the grid surface, by lifting or lowering
a parcel adiabatically or moist-adiabatically from the ground level of the
station to that of the grid (see, for example, Georgakakos and Bras, 1984a.b).
The second involved the inverse distance weighting of the three adjusted
measurements (Pielke. 1984).

The environmental temperature 7, and the environmental mixing ratio r,
were obtained from a network of radiosonde observations shown in Fig. 4 as
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large empty circles. In this work, we used measurements of T. and r, at
pressure levels with increments of 50 mbar from 1000 to 50 mbar. Profiles of
T.and r at an arbitrary grid within the model domain were then reconstructed
by performing the inverse distance weighting of the three nearest radiosonde
observations at each pressure level. In this work, we used the latest sounding
at 12:00 or 00:00 GMT prior to the start of prediction. Once prediction was
started, however, the initial sounding was assumed to persist throughout the
duration of the storm. Use of a new sounding, which may become available
during the duration of the storm, may result in an abrupt change in estimated
updraft velocity (see the next section), and thus was avoided.

The saturation water vapor densities at z, and =7, Qg and Qr, respectively,
in eqn. (12) are then obtained from:

Qs = 10* repPel(RyTy) (20)
Or = 10* rgpr/(RyTy) @21

where Qg and Q; are in gm , r.g and r,; are the saturation mixing ratios at
cpand zyingg ', respectively, pg and p; are the pressures at cg and z; in mbar,
respectively, and Ty and T are the temperatures inside of the cloud in K at
=y and zy, respectively. In obtaining eqns. (20) and (21), we used the approxi-
mation of eqn. (17) and the ideal gas law for water vapor.

ESTIMATION OF UPDRAFT VELOCITY

The average updraft velocity w,, was estimated using the one-dimensional
cloud model of Simpson and Wiggert (1969) under the assumption of locally
steady updraft:
where w is the updraft velocity at = in ms ', ;' is the virtual mass coefficient.
T, is the in-cloud temperature in K. 7., is the temperature of the environ-
mental air in K. and r,, is the mixing ratio of the liquid water in the cloud in
gg ' The entrainment rate u is related to the radius of the cloud through the
experimental relationship ¢ = 0.183/R,, where R, is the radius of the cloud
(Anthes. 1977). In this work, we omitted r,, (and thus the effect of water load)
as we did not know the cloudwater content. Given the vertical protiles of 7,
T. and ry,, eqn. (22) could be solved. with the boundary condition that
updraft velocity at the surtace is zero. to give:

[« T.-T. iz gy |
Po= o) - —_— S =)
" {_ J [I T gr,w] e du} (23)

Su

where z, is the height at the surface.
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As noted earlier, we assumed that between =, and =, updraft profile is
approximately uniform. In this work, we used eqn. (23) to obtain only the
maximum updraft velocity, w,,,, by taking the upper bound to be the height
where buoyancy becomes negative. Note that, if there is no entrainment, w;,,,
thus obtained is essentially the energy of instability (Dutton, 1986). As w,, in
eqn. (12) is only a fraction of w,,,, we assumed:

Wo = kWg, (24)

where k is a constant whose value ranges from 0 to 1. Both the entrainment
rate p (or, the radius of cloud R.) and the constant & are model parameters
to be'estimated. In interpreting estimated values of i or R_, it is understood
that they are viewed as characteristic entrainment rate or radius of cloud.
representative of the average condition over the whole rainfall field. rather
than pertaining to individual clouds.

RESIDUAL PREDICTION

The physically based model describes dynamics of VIL over a relatively
large area (about 12 x 12km- in this work). In an effort to capture smaller
scale features. a residual prediction procedure was introduced. We assume
that residual VIL follows the frozen field model (Callahan et al., 1982: Gupta
and Waymire. 1988) of the following form:

dR,/dt = xR, + Z (25)

where R, is the residual VIL. x 1s the friction coefficient. and Z is assumed to
be the zero-mean white noise in space and time. Although the white noise
assumption is certainly an oversimplification. the margin of improvement by
using a4 more complicated statistical model is considered relatively small.
Equation (25) is then equivalent to the autoregressive-1 model. and thus. for
k=1,2,3 ..., we have:

E[RE, ; ali + k x Al.j + k x AJY RE,(i.j)] = *RE(,)) (26)

where ¢ 1s the lag — 1 Lagrangian autocorrelation coefficient. In egn. (26).
Ai and A/ are displacements. in units of radar bins, along x and v directions.
respectively, during a time interval of duration Ar. In this work. Ar was taken
to be 10 min. the smallest interval between two consecutive sets of full-volume
scan data for RADAP I1. Following eqn. (1), the predicted VIL is given by:

V’nkxmu = E[VI,  .ali +k x Ai.j+ Kk x ANV )] (27a)
= AVHAM\I + (.kREI(L,/.) (27b)
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Conversion of V1,4, to rainfall at z; amounts to specifying rainwater
contentat zgat (i + kK x Ai,j + k x Aj)th radar bins for all k. The conver-
sion was made following the same approach used in relating M and My, i.c.

MBI+I(XAI|I = (bl VII+/(XAI|{ + h())/h (28)

where MB, ., is the predicted rainwater content at zz at (i + k x Ai.
J + k x Aj)th bin, 4 is the echo-top height above -, at (i, j)th bin at time ¢,
assumed to be constant over the prediction lead time. and b, and b, are
coefficients estimated via least squares fit using the estimates of VIL, rainwater
content at zy and echo-top height above :,, obtained from the full-volume
scan data at time ¢. Figure 5 shows an example scatter plot and the best fit.

A discrete approximation to the rainfall accumulation at z, over the
prediction lead time of n x At (eqn. (11a,b)), may then be obtained from:

l n—| - -
PB ~ — kzu {a[r(4 + b)/6](7tpr0)_h/4 ‘WB)::/:AIH - meBIH(xAIII}At

(29)
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Fig. 5. Example scatter plot of AfB8,h and PI, and the lincar lit.
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Fig. 6. Example time series plots of maximum cross-correlation coctlicicnt of VIL (solid circles connected
with solid lines) and the corresponding cross-correlation coetlicient of residual VIL (open circles connected
with dashed lines).

Ideally, we would like to obtain conditional expectation of rainfall accu-
mulation at time ¢ + kK x At given RE,(i,j). As Py is not linear in
MB, ., . a.» Py is not the conditional expectation. Given the whole host of
assumptions and approximations, however, Py is a reasonable approximation.

Estimation of the Lagrangian autocorrelation coefficient of residual VIL at
lag At. ¢. involves estimation of advection velocity. In this work. advection
velocity is estimated by computing the cross-correlation field between two
consecutive VIL fields. and locating the maximum. The technique is described
by Leese et al. (1971), and is not detailed here. It is noted that. since advection
velocity is external to the model. we may adopt other. potentially better.
techniques for advection velocity estimation.

For RADAP II. full-volume scan data are available every 10 or 12 min. and
thus the maximum cross-correlation vector was computed every 10 or 12 min.
Figure 6 shows an example of the time series of maximum cross-correlation
coefficient (i.e. Lagrangian autocorrelation coefficient) of VIL (solid circles
connected with solid lines). The lag time corresponding to a datum of corre-
lation coefficient in Fig. 6 1s given by the time elapsed from the immediately
preceding datum. The six or five displacement vectors obtained were then
summed to represent the advection velocity in the hour. The Lagrangian
autocorrelation coefficient of residual VIL. ¢, 1s then given by the cross-
correlation coefficient between the two consecutive residual VIL fields.
Magnitude of ¢ depends also on the size of the averaging area: a larger
averaging area will generally result in a larger ¢. and vice versa. Figure 6
shows an example of the time series of maximum cross-correlation coefficient
of residual VIL (empty circles connected with dashed lines).
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VERIFICATION

Probably the best way to validate model performance would be to compare
predicted rainfall against a combination of measurements from a dense
network of rain gages and radar data. Such a dense rain gage network,
however, does not exist in the study area. The quality of readily available
hourly rain gage measurements is not suitable for detailed comparison with
radar data (time-synchronization is a particularly common problem; see Seo
and Smith 1991). For these reasons, we resorted exclusively to radar data for
validation purposes. The crucial assumption behind this was that bias in the
radar-derived rainfall or rainwater content, if it existed. remained constant
over the duration of each storm. If suitable rain gage data had existed, some
form of bias correction could have been performed (see, for example, Smith
and Krajewski, 1991). It is known (Seo and Smith, 1991) that there is little
long-term bias in the RADAP Il-derived rainfall at Oklahoma City. Given
the limited number of rain gage data, however, it was not possible to examine
changes in bias over the duration of a single storm.

Under the assumption of Marshall-Palmer raindrop size distribution,
Gunn-Kinzer raindrop size-terminal velocity relationship and no updraft, it
is easy to show that reflectivity factor, rainwater content and rainfall rate are
related as follows:

Z = 10®N,A7'T(7) (30)
M = 10°7tN,A~* ' (31)
R = 6’maN,A “*"T(4 + b) (32)

where Z is the reflectivity factor in m®m ~*, N, is the parameter in the M-P
distribution in m~*m~', 27" is the mean diameter in m, I'(¢) is the Gamma
function, M is the rainwater content in gm *, R is the rainfall rate in mmh ~',
and a and b are the constant and the exponent in the dropsize-fall velocity
relationship (dropsize in m and fall velocity in ms ') of Gunn and Kinzer
type. In this work, we used ¢ = 130 and 6 = 0.5 following Kessler (1969),
which yields:

Z = 206R'" (33
M = 344 x 107*Z¥ (34)
R = 192M"'% (35)

With eqn. (35), prediction of rainfall at -, amounts to prediction of rainwater
content at zy under no updraft. A discrete approximation to the rainfall
accumulation in mm at z over the prediction lead time of an hour (n = 6 and



356 D.-). SEO AND J.A. SMITH

TABLE 1

Starting and ending time (in GMT) of storm cases, and optimal parameter values

Case Starting hour Ending hour No. of Optimal Optimal

number hours R. (km) k

1 21 08/05/85 3 08/06/85 7 5.0 0.40

2 1 08/14/85 7 08/14/85 7 3.0 0.10

3 23 07/17/87 4 07/18/87 6 1.5 0.60

4 8 09/27/87 17 09/27/87 10 25.0 0.05

5 18 06/26/88 1 06/27/88 8 10.0 0.10

6 22 08/09/88 7 08/10/88 10 10.0 0.20

7 4 09/03/88 11 09/03/88 8 10.0 0.05

At = 10min) is then given by:
n=\ :

Py ~ 192 % (b VI xxani + bo)Ih]"' At (36)
k=0

From the archive of Oklahoma City RADAP II data, a total of seven storm
cases, each lasting several hours or longer, were selected (see Table 1). The
selection process was severely limited by many missing data particularly when
heavy rainfall was occurring. From 1985 through 1988, a total of only 12
cases, each lasting several hours, was selected. We then examined the daily
weather maps from the National Oceanic and Atmospheric Administration
(NOAA), and excluded five frontal cases.

Because of the small number of storm cases. it was not possible to perform
both parameter estimation and validation using independent data sets. The
results given in the next section are based on the parameter values that were
tuned to yield the best prediction under the criteria of minimum root mean
square error and mean error. Also, when prediction was made at the
beginning of hour i, advection components, « and v, for that hour were
obtained not from the vector sum of advection vectors in the preceding hour,
but from that in the current hour for parameter estimation purposes. For
comparison purposes, we included nowcasting based solely on the advection
of the instantaneous rainfall field at the altitude of 2.5km observed by radar
at the time of prediction. The advection vector used in nowcasting was exactly
the same as that used in the model prediction. Therefore, model prediction
differs from nowcasting only in that it includes physical and statistical dynamics.

RESULTS

The two parameters, R, and k. were estimated by locating the optimal
combination which yielded the minimum root mean square error and absolute
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Fig. 7. Mean error on the R, - A space.

mean error on the R, — k space over the duration of each storm case. As R,
and & are generally time-varying parameters. they will have to be estimated in
real time. In this work. given the limited data, we assumed that the parameter
values remained constant for the duration of each storm case. Figures 7 and
8 show examples of absolute mean error and root mean square error on the
parameter space. Most of the cases yielded a clear optimum.

Figures 9-15 show the mean rainfall and root mean square error (r.m.s.c.)
of cases 1-7. respectively, over the duration of the storm. Crosses connected
with chain-dotted lines pertain to hourly radar rainfall fields. assumed to be
the true hourly rainfall fields. Empty circles connected with dashed lines
pertain to advection-based nowcast hourly rainfall fields. Solid circles
connected with solid lines pertain to model-predicted hourly rainfall fields.
Missing statistics in the figures are due to missing scans and lack of higher
vertical scans in computing VIL. Also shown below the x axis name at each
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ROOT MEAN SQUARE ERROR

0.20
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Fig. 8. Root mean square error on the R, — A space.

hour is the number of data points used to compute the statistics. Figures 16-18
show examples of radar rainfall field at the altitude of 2.5km, used as true
rainfall field at that altitude, predicted rainfall field and nowcast rainfall field
at the same altitude, respectively. A ‘bar’ symbol indicates that model
prediction or nowcast was not possible for that bin because VIL could not be
estimated.

Except Case 4, the model prediction is seen to be better than the advection-
based nowcast under the criterion of r.m.s.c. Case 4, which occurred in late
September, may not have been of convective nature though the daily weather
map did not indicate any passing front. Also. it is noted that the characteristic
radius R, for Case 4 is conspicuously larger than the rest of the cases (see
Table 1).

Examination of mean rainfall shows that the model tends to underpredict
whereas the advection-based projection tends to overpredict. The main reason
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for the overprediction was traced back to the requirements on sample size and
availability of higher vertical scans in estimation of VIL. The requirements
tend to favor areas of short-lived bursts of very heavy rainfall but not areas
of longer lasting light rainfall, thus resulting in overprediction. Many aspects
of the model formulation can account for the apparent bias in the model
prediction. Certainly some of the more limiting assumptions, such as instan-
taneous conversion of water vapor to rain water and constant echo-top
height, contributed to the bias. One aspect of the model formulation that may
be largely responsible for the bias is lack of explicit spatial averaging. The
mass balance equations and momentum equations used in this work pertain
only to a single cumulus column, and may introduce systematic biases when
applied to a system of cumuli. A rigorous treatment of the issue (see. for
example. Cotton, 1986), however, was beyond the scope of the modeling etfort
described in this work.

CONCLUSIONS AND FUTURE RESEARCH RECOMMENDATIONS

A radar-based short-term rainfall prediction model is described. The model
is composed of a physically based component and a statistical component.
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Fig. 16. An example of a radar rainfall ficld used as a true rainfall ficld.

The physically based part performs mass balancing of vertically integrated
liquid water (VIL) to predict the mean VIL field, and the statistical part of the
model performs prediction of residual VIL. The model is quasi-steady state in
that conversion of predicted VIL to rainfall assumes constant echo-top height
over the prediction lead time.

Owing to lack of data. an independent validation was not possible.
Results from parameter estimation runs show that inclusion of the
simple physical and statistical dynamics has potential in improving advection-
based nowcasting under convective situations. To better evaluate the
potential. however. much more extensive validation using, for example.
data from the Next Generation Weather Radar System (NEXRAD) is
necessary.

Model formulation and validation described in this work hinge on the
validity of the Marshall-Palmer raindrop size distribution. Sensitivity of
model performance on the M-P parameters needs to be examined.
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Fig. 17. An example of a model-predicted rainfall ficld.

Consequences of the assumptions such as instantaneous conversion of
water vapor to rain water and constant echo-top height must be examined. [t
will help resolve issues such as vertical integration versus no vertical integra-
tion in physically based short-term rainfall prediction.

To be operationally useful. the two parameters. characteristic updraft
radius (or. entrainment rate) and fractional constant. will have to be estimated
in real time, or specified following some type of classification scheme.

Efforts should be made to utilize filtered or predicted fields from numerical
weather prediction models. (for example, the Nested Grid Model (NGM) of
the National Meteorological Center). In lieu of using radiosonde observations
assuming persistence, one may use predicted fields from NGM. Owing to the
difference in model terrain elevation and actual terrain elevation, however,
temperature profiles near the surface as constructed from NGM output may
be in severe disagreement with actual surface observations even over relatively
flat areas (P. DiMego, personal communications. 1990).
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Fig. 18. An cxample of an cdvection-based nowcast rainfall ficld.

Eventually, the model formulation should be extended to use both radar
and rain gage data, for example, in a distributed-parameter Kalman filter
framework (Graham and McLaughlin. 1989). To do so. various types of error
associated with VIL estimation must be identified and modeled.

Efforts must be made to include physical dynamics for frontal rainfall
into nowcasting. Given that advection estimation procedures such as the
maximum cross-correlation technique work better for frontal rainfall.
physically based extension of advection-based nowcasting is better suited for
frontal rainfall.
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