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AastracT: The extended streamflow prediction (ESP) procedure of the National
Weather Service River Forceast System (NWSRFS) produces long-range forecasts
of streamflow through the use of hydrologic models and historical hydrologic data.
Animportant element of the ESP procedure is converting hydrologic-maodel output
to cstimates of a forecast random variable. In this paper, nonparametric statistical
procedures are developed for combining hydrologic models and historical hydro-
logic data into long-range streamflow forecasts. Although these procedures are
developed for use within the ESP system, they should be broadly applicable 1o
problems of long-range streamflow forecasting. Two notable featurcs of the pro-
cedures developed in this paper are: (1) Climate information is easily incorporated;
and (2) hydrologic-model errors can be accommodated. Results are presented for
a Lest implementation of ESP for a basin in the southeastern United States during
the severe drought period of 1988. The relative importance of climate information
and soil moisture information for long-range streamflow forecasting is comparcd
and contrasted.

INTRODUCTION

Long-range streamflow forecasts are valuable for a variety of water-man-
agement activities, ranging from irrigation scheduling (Ramirez and Bras
1985) to municipal water supply operation (Smith 1989; Lettenmaier and
Wood 1990). The basis for long-range streamflow forecasts is that hydrologic
and meteorological processes are often characterized by significant persis-
tence (with time scales ranging from days to months). Hydrologic persistence
is associated with subsurface storage and transport of moisture, channel
storage of runoff, and the accumulation and melt of snowpack. Persistence
in climatic processes that determine broad features of the weather has been
the subject of intensive research [see for example Namias (1980) and Ras-
musson (1984)]. Research in this area is beginning to provide evidence that
improvements in long-range streamflow forecasts are possible by incorpo-
rating information on climatic conditions (Redmond and Koch 1991).

Hirsch (1978) introduced the term “position analysis” to describe long-
range water-resources forecasting procedures that combine current infor-
mation on the hydrologic and water-resources state of a basin with historical
hydrologic data to produce long-term distributional forecasts. Hirsch (1981)
developed position-analysis techniques using streamflow observations and
a time-series model. Position-analysis techniques utilizing hydrologic models
were developed concurrently by the National Weather Service (NWS) and
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incorporated into the extended streamtlow prediction (ESP) component of
the National Weather Service river forecast system [see Day (1985)]. ESP
uses conceptual hydrologic/hydraulic models to forecast future streamflow
using the current snow, soil-moisture, and channel-storage conditions of the
basin. The hydrologic modeling framework is particularly useful in situations
where anthropogenic changes have affected hydrologic response of a basin
and historical streamflow data are no longer representative of the basin.
The hydrologic modeling framework also allows for a range of forecast
variables (accumulated inflow, minimum daily flow, etc.) to be handled
under one umbrella.

In this paper the hydrologic-modeling approach of ESP is developed in
a nonparametric statistical framework and extended to include climatic in-
formation and the effects of hydrologic and model error. Operational im-
plementation of ESP includes both parametric and nonparametric options.
In the section headed “Estimating Conditional Distribution” we highlight
the distinction between parametric and nonparametric options. An impor-
tant advantage of the nonparametric framework is that it provides a con-
sistent set of procedures for use with a range of forecast variables and
forecast durations. In the parametric framework, distributional assumptions
are linked to the forecast variable and duration.

Contents of the section are as follows. The forecasting problem is pre-
sented in the section headed *“Formulation of Forecasting Problem.”" In the
section headed *“‘Estimating Conditional Distribution” the forecast proce-
dure is developed. Application of the forecast procedure to reservoir inflow
forecasting for Lake Lanier, in Georgia, is described in the section headed
“Application.” The application focuses on test implementation of ESP dur-
ing the extreme drought year of 1988. A summary and conclusions are given
in the section headed *“Summary and Conclusions.”

FORMULATION OF FORECASTING PROBLEM

The long-range streamflow forecasting problem is defined with respect to
a forecast variable that is a function of future streamflow. The forecast
variable X(f) can be represented as follows:

X)) =f[Ye+1),....Y+ D] (1
where ¢ = current day; J = duration of the forecast period in days; f, = a
function of J real-valued arguments; and Y(1), . . . , Y(365) denote daily

streamflow values. The subscript ¢ of the function f, indicates that the forecast
function can vary with time. Example forecast variables include accumulated

flow

X() = Zl YU 4 ) e (2)

minimum flow during the period
X)) =min{Y(t + 1), ..., Y+ )} ... e 3)

and the time above a threshold y,

X(1) = }j‘ I R S I (4)



where
HY (@) >y = 1 EY() >y, (5)
1Y () >y] =0 otherwise ... ... .. .. .. .. .. . (6)

among others [see Day (1985)]. Daily streamflow is used throughout this
paper for concreteness. Other time intervals, either shorter or longer, could
be used. In the ESP framework, duration of the forecast period (J) is
selected by the user and can be any multiple of 1 day.

The information available for forecasting X (1) consists of hydrometeo-
rological observations (typically of streamflow, precipitation, and temper-
ature) prior to and including day ¢. The data set for day ¢ is denoted by H,.

Water-management decisions often require information concerning prob-
abilities of extreme events [see Smith ?1988) for an example concerning
municipal water supply for the Washington, D.C., metropolitan area]. Con-
sequently, we are interested in deriving distributional water-supply fore-
casts; that is, forecasts that explicitly define the probability of occurrence
of events. In statistical terms, the problem is to compute the conditional
distribution of the forecast variable X(r) given the data availabie at time t,
H,

F(x) = PIX() = x[H(O] oo (7)

where the argument x is nonnegative.

The tundamental assumption of position-analysis procedures is that the
data sct H, can be condensed to a vector-valued state variable B(r) such
that

FAx) = PIX() < x|H] oo (8)
F(x) = PIX() < x[BO)] oo )

The key feature of the position-analysis assumption is that the amount of
information that needs to be incorporated into development of a forecast
is greatly reduced, yet the information content of the data set remains the
same. In the forecast procedures developed by Hirsch (1981) the basin state
vector B(f) consists of lagged monthly streamflow. In the following we
develop the position-analysis framework for use with hydrologic models.

The current basin state is an N-valued random vector B(r) representing
channel, soil-moisture, and snowpack storage of water in the basin. The
relationship between basin state variables and observables is represented
by the model equation

Y() = g[R(D),TH),B(t — D] + e, ..o (10)
and the state equation
B(r) = A[R(0),T(1),B(t — D)) . oo (1

where g, and h, = real-valued functions of N + 2 arguments; R(f) = mean
areal precipitation for day r; T(¢) = surface temperature for day t; and ¢,
= model error for day ¢. The functions g, and h, represent the hydrologic
models that convert basin state variables describing current channel storage,
soil moisture, and snowpack, and observations of temperature and rainfall
into streamflow. In the section headed **Applications’ for example, we use
the Sacramento soil moisture accounting model and Lag/K channel-routing
model. In regions where snow is an important component of the forecast
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problem a snow model such as the NWS snow accumulation and melt model
(Anderson 1973) would also be used. In this case temperature becomes an
important observation. The models combine to form an implicit represen-
tation of the functions g, and A, [explicit state space representations of thesc
model? are given in Kitanidis and Bras (1980), Brazil (1988), and Day
(1990)].

EsTIMATING CONDITIONAL DISTRIBUTION

In this section we develop procedures for estimating the conditional dis-
tribution F, using the hydrologic modeling approach of ESP. The statistical
framework we develop in this section for estimating the conditional distri-
butions F, is nonparametric. This does not mean that the underlying models
are free of parameters, but rather that we do not characterize the distribution
function F, by a finite vector-valued parameter. The principal consequence
of working in a nonparametric framework is that we attempt to estimate F,
from “‘sample” distribution functions. We develop forecasts of F, for in-
creasingly complex forecast situations, including: (1) Basin information is
of no value in long-term forecasts; (2) basin information is used in long-
term forecasts; (3) basin information and climate information are used; and
(4) basin information and climate information are used and hydrologic model
error is accommodated. Throughout this section it is assumed that an n-
year historical data base of streamflow, precipitation, and surface temper-
ature is available. The historical observations are denoted | Y(s).R.(s), T,(s):
i=1,....ms=1,...,365]

The condition under which current basin information is not useful for
forecasting corresponds to the following condition:

P{X(0) = x|B(OD)] = PIX() = x] oo SRR (12)

Eq. (12) is simply a mathematical representation of the situation in which
the forecast variable does not depend on the basin state variable.

In this case a simple procedure for estimating the distribution of X (1) is
to compute a sample distribution based solely on the historical streamflow
values. The sample estimator is given by

E(x) = n-! ﬁ: HXA(D) =x] oo (13)
where
X =flyu+0,....Y@+D] ... (14)

In (13) we have used the indicator function notation again [as in (4)] with
the interpretation

HX()sx] =1, XS oo (15)
HX()sx] =00 X()>X (16)

In (13) and in subsequent development the sample estimator of the distri-
bution function is used. More sophisticated nonparametric estimators may
be appropriate in certain situations [notably, when sample size is small; sce
Serfling (1980)}. -

If basin information is useful in forecasting X'(r), that is, il the simplifi-
cation of equation (12) does not hold, then the estimator of (13) is inap-
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propriate. A sample distribution approach to computing the conditional
distribution utilizing the hydrologic modeling framework is outlined in the
following. A data set of conditional discharge is obtained from rainfall and
temperature data as follows:

Y+ 1) =g[RG+ D, T+ 1).BW| ..o (17)
Bt v 1) = BIR(+ D), T,( + 1), B oo (18)
Forj = |

V4 ) = g [R(+ )T+ ), B +j-1)) o (19)
B+ ) =h [RG+ DT+ )BG+j—1D] ..o (20)

The interpretation is that the random variable Y,(t + j) represents condi-
tional discharge on day t + j of year i, given that the initial basin state is
B(1). The procedure can be described in simulation terms: Hydrologic models
are executed for days ¢ + I, . .., ¢ + J of each historical year. The initial
state variables (describing soil moisture, channel storage, and snowpack)
are the same for each year and represent basin state variables on the forecast
day. The sequence of state vectors B,(1 + ) represent the state variables
that would have occurred in year i if the initial state variables on day r were
those of the current year, B(r).
Sample values of the forecast variables are obtained as follows:

Xy =flVie+ D, ... Y @+N] i=1,..., oo (21)

The sample estimator of the conditional distribution F, is given by

F(x) = (%) 21 HA) =] oo (22)

A uscful role for climate information is to indicate the representativeness
of individual years of the historical record. We assume that this information
can be converted to weights 0,, . . . , 8, which are nonnegative and sum to
. In an extreme case a weight 0, might equal 0, indicating that current
climatic conditions arc incompatible with the climatological development
during the forecast period of year i. In general, the ratio 8,/0, indicates the
likelihood of climatic conditions during year i occurring during the forecast
period, relative to those of year j. A sample distribution function can be
obtained for a weighted sample as follows. Denote the order statistics of
the sample of (21) by

X = XD = S X)) oo (23)
The corresponding weights are 0, . . ., 8,; that is, 0, = weight cor-
responding to the jth order statistic X (). The sample «yistrlbutlon is de-

fined by

Foy =0, X(O0>x ... ... ..., e (24)
I N . .

E(x) = 21 By X <x=X,, () ... (25)

Fax) =1, X)X oo (26)

A range of scenarios can be accommodated using weights. First it should
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be noted that the estimator of (24)—(26) reduces to the estimator of (22) if
8; equals 1/n for all i. Information from a quantitative climate index, such
as the southern oscillation index, can be objectively incorporated into de-
termination of weights through a kernel of the form

K(4 - a)
7 K(A = A4))

where A, = index value for the ith historical year; A = index value for the
current year; and K = a univariate distribution function [see also Kelman
et al. (1990) and Karlson and Yakowitz (1987a,b)]. If climatic trends are
present in the historical record it may be desirable to weight recent years
more heavily than past years, for example by

O =a(n — i+ 1) (28)

where b is negative; and

a = [i (n — i+ l)"] ................................... (29)

0, =

i=1

Thus far we have implicitly assumed that hydrologic model error is small.
This assumption will certainly not hold in many situations. It is, however,
straightforward to develop an adjusted sample distribution utilizing the his-
torical record. A historical model time series of streamflow is defined by

Vit +j) = g R+ ). T(t + j).B(r + J-D] ..o R (30)
Bt +j) = h JR(t+ )Tt + B+~ D] o (31

Note that in contrast with (17)-(20) we use the state variables Bi(r+j —
1), which represents conditions in year i. The procedure can be described
in simulation terms as follows. Hydrologic models are executed continuously
over the n-year period of record. We extract the simulated model streamf{low
values for daysr + 1, ..., t 4+ J of each historical year. The streamflow
series produced by (30) and (31) are estimates of the actual streamflow.

Sample values corresponding 1o the streamflow series obtained from (30)-
(31) are given by

Xy =flY. e+ 1),..., Yo+ D) o (32)
Dcfine a bias-corrected forecast sample by

Z() = XX VX (33)
and denote their order statistics by

L) =Zpy(t)y =< Zp(t) oo (34)

The sample distribution function for the forecast problem with weights and
hydrologic model error is given by

Faxy =05  Zo()>x oo (35)
Fx) = ); By Zp()<x=Zyao(t) oo (36)
F(xy =1 Zu(O)<x ... . ... ... . (37)
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Note that if model error is negligible, that is if X,(1) = X,(1). then (35)-
(37) reduces to (24)-(26). If there is no useful information in the basin
state variable, that is if X;(+) = X,(1), then (35) reduces to (13).

APPLICATION

In this section we apply the procedures developed in the preceding sections
to reservoir inflow forecasting for Lake Lanier, in Georgia, during the severe
drought of 1988. Lake Lanier is a principal source of municipal water supply
for the city of Atlanta. A test implementation of ESP was conducted in the
Chattahoochee River basin, which contains Lake Lanier. As part of this
test the NWS River Forecast Center (RFC) in Atlanta was able to provide
long-term forecasts of Lake Lanier inflow to the water managers responsible
for water supply for the city of Atlanta.

Implementation of ESP for Lake Lanier inflow was based on the Sac-
ramento soil moisture accounting model (Burnash et al. 1973) and the Lag/
K routing model. Snow is not a significant component of the hydrology of
the basin, so the snow-accumulation model was not used. Historical inflow
time series are not available for Lake Lanier. Calibration of hydrologic
models was carried out by RFC staff and based on data from nearby basins.
Fig. 1 shows the distribution of the June 1 soil moisture state variable for
the Lake Lanier basin using the Sacramento soil moisture accounting model
and a historical record of 26 years (1949-84). Notably, the June 1, 1988
soil moisture state variable is the lowest during the period of record. This
result is consistent with drought assessments produced during 1988 [see
Changnon (1989)]. This type of information is clearly useful in characterizing
the drought, but it does not provide quantitative information on water-
supply reliability. . ‘

Fig. 2 shows the sample distribution of X,(¢) for Lake Lanier inflow over
the 30-day period from June 1, 1988 to June 30, 1988. Because observed
streamflow values are not available for inflow to Lake Lanier, we compare
the conditional model distribution, based on X(f), with the historical model
distribution, based on X(r). Recall that the sample values of the conditional
model distribution are obtained by using the June 1, 1988 soil moisture state
variable for June 1 of each historical year. The sample values of the historical
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FIG. 1. June 1 Soil Moisture Distribution for Lake Lanier Basin
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FIG. 2. Estimated Inflow Probabilities for Lake Lanier during period May 31-June
29, 1988 (+ = Historical Inflow Distribution; * = Estimated Inflow Distribution
Derived Utilizing Soil-Moisture Information) :

model distribution are obtained using the historical June 1 soil moisture
state variables. Note that the flow with 90% reliability (that is the inflow
that has a cumulative probability of 0.1, or 0.9 probability of being exceeded)
drops by a half from a historical value of approximately 76,000 acre ft 9.4
x 107 m%) to a conditional model value of 38,000 acre ft (4.7 X 107 ).

As part of the test implementation of ESP in the Chattahoochee River
basin, the Long-Range Forecast Branch of the Climate Analysis Center
(CAC) developed a data set of analog values for testing the utility of climate
information in long-range forecasting. The information provided by CAC
was interpreted as relative likelihoodsy,, . . . ,y,, which take three possible
values: 1, 2, and 5 and are related to the historical weights defined in the
section headed “Estimating Conditional Distribution by

Yi
0, = o e (38)
2

Note that the weights 0,, . . . , 6, are positive and sum to 1. o
The interpretation for vy, = 1 is that the climatic conditions for year i are
dissimilar to the current year. For y, = 5, the interpretation is that climate
conditions for year i are similar to the current year. For v, = 2, the inter-
pretation is that climate conditions are neither similar nor dissimilar.
The analog values are available for a five-year period extending from
1982 to 1986. Table 1 shows a summary of forecast results for mean inflow.
For each year shown in Table 1, the other four years were used to develop
expected value forecasts under two scenarios: (1) Only hydrologic state
variables are used; and (2) climate information, as described before, is used.
Table 2 presents similar results for minimum daily flow. The short period
of record precludes detailed inferences. Two features gxre‘su.ggested, how-
ever: (1) Basin information on soil moisture condition is significantly more
useful than climate information; and (2) climate information is more useful
for water-balance variables like mean inflow than for base-flow variables

like minimum daily flow.
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TABLE 1. Mean Inflow Forecast to Lake Lanier, January 1-February 28

Historical mean Conditional mean® | Conditional mean®
Forecast year (1,000 acre fi) (1,000 acre ft) (1,000 acre ft)
(1) 2) (3) (4)
1982 336 277 265
1983 6 411 390
1984 336 508 497
1985 336 224 216
1986 336 241 265

*Equal weights.
"Weights conditioned on climate state.
Note: | acre ft = 1,233 m>.

TABLE 2. Minimum Daily Flow Forecast to Lake Lanier, January 1-February 28

Historical mean Conditional mean® | Conditional mean®
Forecast year (cfs) (cfs) (cts)

(1) (2 (3) (4)

1982 1,400 890 890
1983 1,400 2,080 2,040
1984 1,400 2,880 2,800
1985 1,400 540 530
1986 1,400 450 470

*Equal weights.
"Weights conditioned on climate state.
Note: 1 cfs = 0.0283 m’/s.

SuMMARY AND CONCLUSIONS

A nonparametric framework was developed for constructing distributional
forecasts of long-range streamflow variables using conceptual hydrologic
models. The procedures can account for climate information through weight-
ing of historical years and the effects of hydrologic model error. Utility of
the procedures is illustrated for inflow forecasting at Lake Lanier, in north
Georgia, during the drought of 1988. Implementation results suggest that
soil-moisture information is significantly more valuable than climate infor-
mation and that climate information is more useful for long-range forecasting
of water-balance variables (such as accumulated reservoir inflow) than for
baseflow variables (such as minimum daily flow).
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Appenpix Il. NoTaTION

The following symbols are used in this paper:

a = multiplicative parameter in trend model for annual weights;
B(s) = basin state vector for day s of forecast year;
B/(1) = conditional model estimator of basin state vector for year i of
historical record;
b = exponent in trend model for annual weights;
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&
H,

h,

il

il

probability that forecast variable X(r) is less than or equal to
X3
estimator of F,(1);

function specifying dependence of forecast variable on future
streamflow, with ¢ current day;

function specifying dependence of streamflow on current basin
state vector, precipitation, and temperature for day ¢ of year;
observations of precipitation, temperature, and streamflow prior
to forecast day r;

function specifying dependence of basin state vector for day ¢
on basin state vector for preceding time period and current
precipitation and temperature;

forecast duration in days;

number of years of historical data;

precipitation on day s,

temperature on day s;

current day, from which forecast is computed;

forecast variable for day r;

conditional model estimator of forecast variable for year i con-
ditions;

historical model estimator of forecast variable for conditions
during year f;

observed streamflow for day s of year i;

conditional model estimator of streamflow on day s for ycar §
conditions;

historical model estimator of streamflow on day s for year i
conditions;

bias adjustment for sample forecast variable of year i;

weight factor for historical year i;

hydrologic model error for day s; and

weight for historical year (.
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figures will be reproduced with a width of between 76 mm to 110 mm, the lettering must
be large enough to be legible at this width. Photographs must be submitted as glossy
prints. Explanations and descriptions must be made within the text for each figure.

7. Tables must be typed on one side of 220 mm by 280 mm paper. An explanation of
each table must appear in the text.

8. References cited in text must be typed double-spaced at the end of the technical
note in alphabetical order in an Appendix. References.

9. Each author is encouraged to use the International System of Units (SI), and units
acceptable in S1, though other units may be used at this time. The primary use of SI units
will be mandatory after January 1, 1993. When SI units arc used, no other units are
required. When other units are used, the SI units shall be given in parentheses; in a
supplementary or dual-unit tabie; or an appendix.



