Reprinted from the Preprint Volume of the Seventh
Intemational Conference on Interactive Information and
Processing Systems for Metoorol, and

3.5

ogy, Hydrology,
Ocanogtfhy, January 14-18, 1991, New Orleans, La.

Published by the American Meteorological Society, Boston, Mass.

GRAPHICAL USER INTERFACE CONCEPTS FOR HYDROLOGIC FORECASTING IN THE
MODERNIZED WEATHER SERVICE

Thomas E. Adams, III

Hydrologic Research Laboratory, National Weather Service
National Oceanic and Atmospheric Administration
Silver Spring, MD

1 INTRODUCTION

11 Past and Current Modeling Procedures

Most National Weather Service (NWS) hydrologic forecasters are
accustomed to hydrologic and hydraulic modeling, with a wide
range of models available for flood event modeling, simulations
of seasonal and annual streamflow, and hydraulic simulations in
dam break analyses. The procedure of modeling has evolved over
time. Digital simulations of hydrologic processes through the
1970s required the modeler to enter observed data and
parametric values onto paper punch cards using a key-punch
device. The card deck was then read into a card reader of a
mainframe or minicomputer and executed on the computer
following the instructions detailed by the job control language
(JCL) encoded on some of the cards. Typically, simulation results
were reviewed from a lineprinter. When changes were made to
improve simulation results, new data cards and, often, JCL cards
were made to reflect the needed changes. Subsequently, the card
deck was resubmitted for a new run, typically in a batch mode
where user’s jobs waited in a queue based on the priority given to
the job by the user and system administrator. A typical job run
cycle could take hours.

The procedure more common now, is the creation of data files by
entering data into ASCII-based terminals or microcomputers
using a text editor which is, in turn, linked with pre-compiled
models and executed. Simulated values are then sent to an
output file in a format that can be read by an auxiliary graphics
package to display on a CRT (cathode-ray tube) of a graphics
terminal, microcomputer, or scientific workstation and are
printed or plotted later on some device if the user desires.
Nevertheless, lineprinter output remains the primary expression
of output for many hydrologists today. Hydrologic modeling still
consists, for the most part, of allowing the model to fully
complete execution before parametric values are adjusted to
improve simulated results and the model is rerun. Thus, the
modeler has no opportunity to halt execution of the model
during a run cycle when simulated values clearly need
improvement. Moreover, the modeler’s interaction with the
computer is less than seamless or friendly; only fairly recently
have preprocessors, programs with a degree of error checking
that make creating data files in the correct format easier, gained
general acceptance for the most widely used programs.

1.2 Interactive Modeling Procedures

To reach its modernization goals, the NWS has implemented risk
reduction plans, including project PROTEUS (Prototype RFC
Operational Test, Evaluation, and User Simulation) in the Office
of Hydrology. The purpose of project PROTEUS is to
demonstrate new and innovative uses of computers and software
in the NWS River Forecast Centers (RFCs) to improve

289

hydrologic forecasting. In contrast to character-based,
command-line computer interfaces for models, interactive
modeling should permit the user to quickly and efficiently enter
observed and parametric data, begin execution of the model,
monitor its progress, and halt program execution at appropriate
times. Entering and changing parametric data is best
accomplished using a graphical interface that simplifies entering
individual values, series of values, dates, and choosing between
discrete items. Interactively, changes are made by using such CRT
screen display entities as buttons, windows, popup and pull down
menus, scrolled lists of items, and other graphical icons with
real-world analogues (e.g., a pencil to represent a drawing tool).
Similarly, CRT screen displays of results should make use of
color and other graphical cues — that are possible on today’s
microcomputers and scientific workstations — because they
enhance the visual impact of graphically displayed data, especially
when multiple data sets are superimposed on the computer
screen. The user of the model interacts with the graphical items
on the screen with the computer’s mouse, an electromechanical
device that moves a pointer (usually an arrow) on the screen and
has buttons for selecting menu items, pushing buttons, moving
windows, and scrolling through lists. Graphical objects are
immediately accessible to the user, usually requiring no more
than a movement of the mouse and a mouse button click. The
greatest benefit of a graphical user interface (GUI) is that users
no longer need to remember cryptic commands that must be
typed using the computer’s keyboard. Furthermore, the possible
choices of what can be done within a GUI are obvious and
certain, once a few basic rules of GUI interaction are understood.
If properly planned and constructed, the interface both limits
what the user can do and provides the user with a great deal of
freedom. This seemingly contradictory statement makes sense
within a GUI design. For instance, the main menu of a program
lets the user access all the commands through pull down and
hierarchical menus, but not all the commands listed in the menus
may be immediately available because something else must be
done first: namely, before a model can be executed using an
Execute command (a menu item), a data set must be selected. In
this example, the word Execute would be dimmed or grayed and
would not highlight when the pointer moved over it.
Consequently, if the user tried to select Execute without having
previously selected a data set, nothing would happen. The visual
cue of dimming or graying lets the user know that trying to select
that particular menu item will accomplish nothing,

2. GUI CONCEPTS —
USER INTERACTION WITH GUIs

The two underlying principles of graphical user interfaces are:

(1) ease of use, and
(2) functional design to increase productivity.

That is, GUIs make computers better tools to do the work at
hand. But writing good GUI software is no easy task, since the
programmer must anticipate the user’s needs and demands in
meeting the two fundamental GUI goals. Writing GUI software
is easier under project PROTEUS than it may have been
otherwise, because of the process of first prototyping software at
the NWS Hydrologic Research Laboratory (HRL), then field
testing and evaluating the software at the RFCs, and, finally,
modifying the code at the HRL in response to suggestions from
the RFCs.

Graphical user interfaces for programs, whether they include
hydrologic models or not, are possible because they have been
programmed using the concept of events. In fact, event driven
programming begins with a single infinite loop in the program
structure. The user of an event-driven program leaves the main
event loop by selecting a Quit command, which ends all
processes, closes all open devices, and otherwise terminates the
program gracefully. All tasks initiated or subroutine calls made
subsequent to the initial start-up of a program written with a
GUI are made from within the main event loop: moving the
mouse (the screen pointer) evokes an event, as do pressing a
mouse button, releasing a mouse button, pressing a key on the
keyboard, releasing a key on the keyboard, moving the pointer
into or out of certain screen objects, etc.; many other types of
events are possible depending on the GUI implementation. All
programs, written with a GUI, process events as they "arrive" in
the main event loop where subroutines are called to handle
events of each particular type. An event is discarded after it has
been dealt with appropriately by the program.

Another fundamental element of a GUI is the "window",a
graphical object used to hold buttons, scrollable lists, popup
menus, and other control objects and to display results (Fig. 1).

Name: lE)lumn 10 7
None
/% of 0p2
sqrt
Operand 1: O none dparand 2o
Basin area @+ Bosin-area | &Y
Column 2 O- i Columa 2
Column 3 o+ i Columa 3
Column 4 { Enluma -4
Column 5 O+ [Cotume 5
Column 6 O mean .
QO sum

00 O1 02 ®3 04 05 06 O7 08 09

Decimal Places:

Fig. 1. A popup dialog window showing three scrollable lists
with a "grayed” Operand 2 area indicating the user has chosen to
enter a "k"value; the Calculate button is emphasized indicating
to the user that a carriage return will evoke the same result as a
mouse click on the button.

In other kinds of programs, windows are used as a drawing
surface for computer aided design (CAD), a typed page in word
processing, and spreadsheet for financial and engineering
analyses. Typically, windows are resizable and can be moved
about on the screen by the user, but specific implementations of
these features vary between GUI systems. With many GUIs,
windows can be iconified to unclutter the screen, that is, they can
be reduced to a small system-defined icon sometimes a
pictorial representation of an object that holds meaning for the
user. Windows, however, can have certain attributes to convey
unique information to the user of a program, such as popup
windows that appear on the screen to alert or warn the user to

290

some problem in the program, operating system, or some error
the user has committed (Fig. 2).

Save changes to 'basin data’' ?

Fig. 2. A popup dialog window warning the user that the most
recent changes to a file have not been saved; note the emphasized
Yes button, which indicates that the a carriage return will evoke
the same result as a mouse click on the button , also showing is a
Cancel button.

Some guidelines for user interaction should be followed:

(1) the user selects an action from alternatives
presented on the screen;

(2) the user first selects an object, then the action to be
performed on it. The noun-then-verb logic is very
flexible because, at the last moment, the user may
wish to choose a different action and does not have
to reselect the object. For example, this is
analogous to a word processing program having the
user first select a word, line, paragraph, etc., then
italicize, underline, delete, make boldface, change
the point size, etc., rather than first entering an
italicize mode and then selecting the word once
the user is in an italicize mode, he or she has a
difficult time changing to another, making the
interface more cumbersome;

(3) users rely on visual recognition, so graphical
analogues to real world objects should be used to
convey information, such as a caricature of a stop
sign in a popup dialog box to warn the user of an
irreversible mistake he or she is about to make;

(4) screen the user from unnecessary system level and
some higher level details that are not needed by the
user to complete a task;

(5) simple and consistent keystroke equivalents to menu
choices and other functions; in unambiguous cases,
rather than forcing the user to select a push button
with the mouse, let the user use a carriage return in
its place as an alternative this is particularly
appropriate when the user is entering a numeric
value from the keyboard and needs to enter the mext
value or wishes to continue to some other task.

The need to anticipate that users make mistakes is important. In
most cases it is possible to either undo some action or back out
from it, using a Cancel button (Fig. 2 and 3).

16727k
3 Theorist
N Eupr->Theo Prefs i3] e DirectDrive

[6raphics

[Mathematics
0} Head Me First
& Theoristh

] Cancel

O]

Enter Notebook Name:
[new hydro.datd |

Fig. 3. A popup dialog window showing a Cancel button,
scrollable list, and "grayed” Eject and Drive buttons indicating
there is no floppy disk to Eject and no other available hard disk
or optical drive to switch to for the Save operation.

Also important is the need for simple uncluttered design of
windows where buttons, scrolled lists and static text are cleanly
laid out and are aesthetically pleasing. Simple design is best, the
screen should not be cluttered with too many windows, complex
icons, and buttons. Good graphic design must communicate and

inform, not just dazzle the user. Graphics are not merely cosmetic;

when they are clear and consistent, they contribute greatlyto ease of
learning the interface and using it.

3. IMPLEMENTATION OF GUI CONCEPTS IN THE
INTERACTIVE FORECAST PROGRAM

The Interactive Forecast Program (IFP) of the National Weather
Service River Forecast System (NWSRFS) (Anderson, 1986) was
written to run on any of a range of available scientific
workstations. Consequently, the basic graphical windowing
environment for the IFP is the industry standard X Window
System (version X11R3) developed within project Athena at the
Massachusetts Institute of Technology. X is supported by the
leading computer manufacturers and many universities, forming
the X Consortium, with the intent to further develop and
promote the use of X as a system independent and
non-proprietary windowing and communication environment for
computers. Some preliminary remarks on some of the details of
X are needed because many features of X strongly influenced the
development and look and feel of the IFP.

Although the X Window System is not necessarily tied to a single
language or operating system, it is rarely found on computers not
running the Unix operating system and programming calls made
from any other language than C are more rare. Consequently, it
is safe to generalize that the X Window System is used on
Unix-based workstations and X applications are written in C.
This is true for the most part with the IFP, except that there are
FORTRAN subroutines called within the IFP code which, in
turn, call C functions that, sometimes, call more FORTRAN
subroutines. The intermingling of languages is inescapable,
because the existing NWSRFS program is written, for the most
part, in FORTRAN and rewriting this code in C was not
considered a viable option since it comprises on the order of
40,000 lines of executable FORTRAN statements. Additionally,
a significant portion of the IFP code was generated using a
commercially available graphical programming tool for creating
the C code that displays simulated values and observed data.

The X Window System is comprised of two fundamental
components, (1) the base window system, which provides the
lowest level interaction with the computer to create windows and
(2) the X network protocol, which is based on the client-server
model. A single process, the server, controls all input and output
devices, such as the CRT screen, mouse, and keyboard. The
server in X is also called a display whereas the term "screen” in X
refers to a single hardware output device. Therefore, a single X
display can support multiple screens, however, there is usually
only one display supported by each CPU. The server also creates
and manages all resources, which include windows, text, bitmaps
and pixmaps, colors, and other data structures used by an
application. The X server maintains resources privately, allowing
clients to use and share them transparently. Applications that
use the server’s facilities, termed clients, communicate with the X
server over a network connection using many of the common
asynchronous byte-stream protocols, including TCP/IP (Young,
1989). Consequently, any client can communicate with any server
provided they both adhere to the X protocol.

The base window system interfaces with the outside world
through the X network protocol. The network protocol interface
operates both within a single central processing unit (CPU) or
between multiple CPUs, consequently, X is device and vendor
independent and it operates transparently over networks using,
typically, the TCP/IP protocol. The only possible interface with
X is through the X network protocol, implying that any software,
including X Window Managers are treated as application software
by X rather than privileged system software (Jones, 1989).

291

Programmers access the network protocol through a combination
of XLib, a C language subroutine package, or a higher level X
toolkit object library. The benefit of using XLib and an X toolkit
is that the programmer is shielded from the overwhelming
complexity of the network protocol. X toolkits (or widget sgts)
are particularly useful because they provide high level graphical
objects that can be easily implemented by a programmer. Use of
a X toolkit forces the programmer into consistent interface
design and greatly speeds application development because
fundamental graphical objects, such as push-button and scrollable
windows, do not need to be recreated, and the desired attributes
of windows do not need to be custom programmed each time a
new object is needed. It is important to note that all buttons,
boxes, sliders, and other graphical elements of windows in any
window in X is itself a window a rectangular region on the
screen.

The IFP, which is written in a modular form, consists of eight
unique programs that serve independent functions. This modular
design is possible because data that must be shared between the
separate programs are available to each module as X window
properties. A window property is a mechanism provided by the
base window system to share information between applications
(Fig. 4).

Fig. 4. Windows for the FG_Map and Run_Partial modules with
a selected and highlighted forecast point, indicating the most
downstream point for this forecast run. Note that two forecast
points have been excluded from the simulation because rainfall in
those areas are contributing insignificantly to runoff; also shown
is the window manager window.

Applications must be written in a manner to explicitly access
window property data of a specific type, either as the data appear
as new window properties or at specific points within the
program when the data are needed. Each of the modules was
designed from the perspective of the user and the user’s needs,
rather than avoiding the associated programming difficulties. The
eight modules comprising the IFP are:

(a) Start IFP
- is used by the forecaster to select a forecast
group (a group of contiguous and
topologically connected basins) to model;

(b) FG_Map .
- is used to display a schematic representation
of the forecast group drainage system where

the nodes of the schematic are the forecast
points; it is also used as a basis for selecting

what basins are included in a modeling run

and to display information pertinent to the

forecast point, such as the peak flow of record,
location in degrees latitude and longitude, etc.;

(c) Set Dates
- is used by the forecaster to set the dates for
the forecast period, including the beginning
and end of the model run and the end of the
period used for observed data;

(d) Run_All
- allows the forecaster to select all the basins
within the forecast group and begin execution
of the models;

(¢) Run_Upstream
- allows the forecaster to select all basins above
and including the basin selected within
FG_Map within the forecast group and begin
execution of the models;

(f) Run_Partial
- allows the forecaster to select all basins above
and including the basin selected within
FG_Map and exclude other unwanted basins,
that do not break basin drainage continuity,
within the forecast group and begin execution
of the models;

(g) Plot_Tulsa

- displays as line plots and bar charts the results
of the model runs, observed rainfall and runoff
time series, and input unit hydrographs and
allows the user to edit these time series; this
function also provides the controls for
re-running the models based on the
modifications or continuing model execution
with the next downstream forecast point;

(h) Model Specific Modifications
- allows the forecaster to make changes to
certain parameters on a model by model basis
for the basin (forecast point) currently under
consideration.

Readers are referred to Wiele and Smith (1991) for a discussion
of NWSRFS models and their dependencies and interactions.
Page (1991) discusses details of the eight interface components of
the IFP and their use within a forecast session.

Each of the IFP programs is written to provide immediate
feedback if the user attempts an action that is inappropriate or
would produce an error. In cases that, for instance, the
forecaster may mistakenly enter an ending date for a forecast run
that was chronologically before the beginning date, the Set_Date
program simply will not accept the value and responds with a
"beep." Similarly, the forecaster is simply warned by a message
within a popup window of a value’s acceptable range if the value
being entered falls outside this range. The program responds
immediately as the user types the digits. If the user continues,
attempting to enter a value that falls further outside what is
generally considered permissible, or even approaching what is
considered physically unacceptable, the program issues a "beep”,
does not allow the entry, and indicates within the popup window
the value’s permitted range. Similar features that give the user
immediate feedback to his or her actions are found throughout
each of the IFP modules. Many of these, where appropriate, do
not allow the forecaster to make avoidable mistakes.

4. FUTURE OF GUIs ON WORKSTATIONS
AND IN THE IFP

It is clear from the success of graphical user interfaces on the
Macintosh from Apple Computer, Inc., Windows (especially
Windows 3) from Microsoft Corp. for DOS based computers, and

292

the growing interest in OS/2 and Presentation Manager from
IBM Corp. and Microsoft, that the X Window System and
interfaces derived from it have clear advantages to and bring
significant productivity increases over character based user
interfaces.! Commercially developed X Window based
applications are lagging behind the interest and demand for them
at present, but this is due, in part, to the recent stability achieved
by X and the X toolkits, and the time needed to develop an X
application. GUI applications take longer to develop than
character based applications, but the trend with character based
programming has been to make them behave graphically, with
menuing and popup windows, etc., which increases development
time. Another important issue is the consistent look and feel
between applications that have been programmed within a
particular GUI development environment. A user of a program
can much more easily leartn how to use a new program if it is
constructed similarly with menus and menu items, etc., that
achieve the same function and behave the same across all
applications. This is now being done on computers within
individual GUI systems and operating systems and also between
totally different computers, operating systems, and GUI
development systems with many commercial applications.

However similar GUIs may be in their look and feel with
windows, menus, buttons, scrollbars, etc., their performance
differs greatly between (a) GUI systems on a specific computer,
(b) specific GUI implementations on the same computer, and (c)
general performance on different computers, operating systems,
and GUI development environments where direct comparisons
are not possible. Specifically, it has been the experience of the
HRL staff, using X version X11R3 and version R2 of Xlib and
the Hewlett-Packard X toolkit (widget set), Xt, on an IBM
PC-RT that GUI performance was comparable to that found
using a pre-release X version X11R3, Xlib version R3, and
version 1 OSF (Open Software Foundation)/Motif X toolkit
(widget set) on an IBM RISC System 6000. This is surprising
since in all other respects, especially involving floating point
calculations, the IBM RISC System 6000 greatly outperformed
the IBM PC-RT by a factor of approximately 10 (ten). The
disparity could be due to a number of factors, (1) that HRL staff
had made the evaluations using pre-release software on the IBM
RISC System 6000, so that certain optimizations were not
realized, (2) that IBM’s specific implementation of the OSF/Motif
widget set reduced the performance, or (3) that there is much
more software overhead in the OSF/Motif widget set, and
performance is simply lagging. Of course, any combination of
these is possible and, in all likelihood, probable. Moreover,
without a detailed, careful evaluation, these comments are merely
anecdotal, as HRL has had no opportunity to evaluate the code
on other workstation platforms.

Nonetheless, it is generally known among X application
developers that the GUI elements of X applications suffer from a
lack of graphic responsiveness. This is not considered a major
problem in light of the benefits of using X, Xlib, and the various
X toolkits. Developers of X, Xlib, and the X toolkits are
committed to enhancing performance through coding
optimizations. Also, third-party hardware developers are making
custom X graphics accelerator boards available for workstations
and some workstation manufacturers are now designing their
computers with accelerators for X graphics.

The National Weather Service is committed to GUIs in its
modernization efforts and with the IFP, however the NWS has
not committed itself to either a specific GUI implementation or
workstation platform. Although, a Unix based workstation is

IThe use of trademarks and trade names is for descriptive
purposes only and does not constitute endorsement by the
National Weather Service, or her parent organizations, the
National Oceanic and Atmospheric Administration and the U.S.
Department of Commerce.

virtually certain, one of many GUI implementations, NextStep,
Motif, Open Look, SunView, or some other, is possible.

5. SUMMARY

The Hydrologic Research Laboratory using the development tools
available with the X Window System, its associated object library
XLib, and other X toolkits, successfully developed the Interactive
Forecast Program as a Graphical User Interface for NWSRFS,
the National Weather Service’s national flood forecasting system.
The IFP includes user interface design elements to simplify the
use of NWSRFS and increase the productivity of forecasters.

The IFP will be enhanced further based on comments made by
forecasters at the River Forecast Centers during imminent test
and evaluation periods.

6. ACKNOWLEDGEMENTS

This work is supported, in part, by the Advanced Weather
Interactive Processing System (AWIPS) program office. The
author would like to thank Drs. Danny Fread and George Smith
for their review of the manuscript and Mmes. Elaine Hauschildt
and Virginia Radcliffe for their assistance in its preparation.

7. REFERENCES

Anderson, E.A., 1986: The National Weather Service River
Forecast System and Its Application to Cold Regions,
Proc. Sixth Northern Research Basins
Symposium/Workshop, Houghton, Michigan, January 29,
1986.

Jones, O., 1989: Introduction to the X window system. Prentice
Hall, Englewood Cliffs, New Jersey.

Page, D., 1991: The interactive NWS river forecast program. Proc.
Seventh International Conference on Interactive
Information and Forecasting Systems for Meteorology,
Oceanography, and Hydrology, New Orleans, Amer.
Meteor. Soc.

Wiele, S. M.,and G. F. Smith, 1991: Improved hydrologic
forecasting with the interactive NWS river forecast
program. Proc. Seventh International Conference on
Interactive Information and Forecasting Systems for
Meteorology, Oceanography, and Hydrology,New Orleans,
Amer. Meteor. Soc.

Young, D. A., 1989: X window system programming and
applications with Xt. Prentice Hall, Englewood Cliffs,
New Jersey.

293

