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Abstract: In Seo and Smith (this issue). a set of estimators was built in a Bayesian framework to estimate
rainfall depth at an ungaged location using raingage measurements and radar rainfall data. The estimators
are equivalent to lognormal co-kriging (simple co-kriging in the Gaussian domain) with uncertain mean and
variance of gage rainfall. In this paper. the estimators are evaluated via cross-validation using hourly radar
rainfall data and simulated hourly raingage data. Generation of raingage data is based on sample statistics
of actual raingage measurements and radar rainfall data. The estimators are compared with lognormal
co-kriging and nonparametric estimators. The Bayesian estimators are shown to provide some improvement .
over lognormal co-kriging under the criteria of mean error, root mean square error, and standardized mean
square error. It is shown that. if the prior could be assessed more accurately, the margin of improvement in )
predicting estimation variance could be larger. In updating the uncertain mean and variance of gage rainfall,
inclusion of radar rainfall data is seen to provide little improvement over using rain gage data only.
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1 Introduction

This is Part II of the two-part series. In Seo and Smith (this issue), a set of estimators was
built in a Bayesian framework to estimate rainfall depth at an ungaged location using
raingage measurements and radar rainfall data. The estimators are equivalent to lognor-
mal co-kriging (or, simple co-kriging in the Gaussian domain) with uncertain mean and
variance of gate rainfall. In this paper, we evaluate the estimators by performing a simu-
lation experiment. ;

This work was motivated by earlier findings of Krajewski (1987), Azimi-Zonooz et
al. (1989) and Seo et al. (1990) on rainfall estimation by co-kriging of raingage measure-
ments and radar rainfall data. Among their findings. two are of particular interest as they
point to the limitations of routinely applying co-kriging in rainfall estimation: 1) perfor-
mance of ordinary and disjunctive co-kriging falls well below their potential due to large
sampling errors in second-order statistics involving gage rainfall, as they are estimated
solely form raingage measurements, which are typically few in number, 2) co-kriging
variances thus obtained are very often grossly erroneous since co-kriging (or, kriging in
general) assumes perfectly known second-order statistics. and 3) disjunctive co-kriging,
particularly when homogeneity assumptions are well met, performs significantly better
than ordinary co-kriging, but at the expense of about a ten-fold increase in computational
requirement. ‘

In building the estimators in Part I, we attempted to remedy the above limitations in
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that: 1) the estimators can make use of not only the currently available raingage measure-
ments but also a priori information about the second-order statistics involving gage rain-
fall, available from the past observations of rainfall, 2) the estimators explicitly -account
for uncertainty in the mean and variance of gage rainfall, and thus more realistic estima-
tion variances may be expected, and 3) disjunctive co-kriging in the Gaussian domain is
equivalent to simple co-kriging, .and thus, if the assumption that gage rainfall and radar
rainfall are jointly second-order homcgeneous and multivariate normal is reasonably met,
performance oi lognormal co-kriging should be comparable to that of disjunctive
co-kriging with great savings in computational requirements.

In Azimi-Zonooz et al. (1989) and Seo et al. (1990), raingage measurements and
radar rainfall data were generated from high-quality radar rainfall data and a space-time
rainfall model. In this work, the estimation environment was made much more realistic in
that actual radar rainfall data were used and raingage data were generated based on sam-
ple statistics of actual raingage measu:cnents and radar rainfall data.

Evaluation of the estimators was made via cross-validation. For comparison pur-
poses, two types of lognormal co-kriging and two nonparametric estimators were aiso
included. Part II is organized through discussions of the following topics: description of
radar and raingage data sets, simulation of raingage data, estimation of correlation func-
tions, assessing prior, results, and conclusions. Frequent reference is made to material in
Part I (Seo and Smith, this issue).

2 Description of data sets

One of the main objectives of this work was to evaluate estimators under realistic condi
tions, avoiding use of simulated data as far as possible. In this section, we describe the
radar rainfall data and the raingage measurements used in this work. The estimators buil
in Part I assume that log gage rainfall and log radar rainfall are jointly second-orde
homogeneous and multivariate normal. Despite its gently varying terrain, the study are
of Oklahoma exhibits orographic effects in annual precipitation . In this work, the homo
geneity assumption was considered acceptable since our temporal scale of interest wa

only an hour. In this work, we only examined the univariate normality of hourly rade
rainfall and hourly gage rainfall (see Discussion Section in Part I for further comments).

2.1 Radar data

Hourly radar rainfall data were obtained from the RAdar DAta Processor, version

(RADAP 1II) data at Oklahoma City covering years 1983, 1985, 1986, and 1987. Tt
radar was a WSR-57 type with a 2.2 degree beam width and a 10 cm wavelength. T1
reflectivity data were given in 15 levels. The data went through several quality contr
steps, including attenuation correction. generation of hybrid base-level scan to- redu
ground-clutter, removal of isolated point targets, and a check on outliers (McDonald a
Saffle 1989). :

The data were first converted to radar rainfall according to the conversion table base,
on the Marshall-Palmer Z-R relationship. In the conversion step. only the base-level sc:
data (elevation angle of 0.5 degrees) were used. Radar rainfall data in polar coordinat
(180 radials covering a,range from 10 to 126 nautical miles) were then converted to sp
tially averaged radar rainfall data in Cartesian coordinates by averaging over square bir
The size of a bin was set equal to the size of a Hydrologic Rainfall Analysis Projc
(HRAP) (Greene and Hudlow 1982) bin, about 4x4 km at Oklahoma City. _

In many cases, scanning intervals were not regular. As a quality control measu
hourly radar rainfall fields were constructed only when there were 5 or more regula
spaced base-level scans in an hour. Visual examination of the hourly radar rainfall fie
thus obtained showed a consistent presence of ground-clutter near the radar site. A
quality control measure, we did not use the radar rainfall data within 60 km radius fr
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the radar site. No other quality control measures were taken. ,

Figure 1 shows a scatter-plot of sample skewness and kurtosis (centered fourth-
moment) coefficients of log radar rainfall. Each point represents an hourly radar rainfall
field which contained at least a thousand non-zero radar bins. There are 1433 dara peints
in Figure 1. Normally distributed data’ would vield skewness coefficient of 0 and kurtosis
coefficient of 3. Figure 1 indicates that the probability density function of log hourly
radar rainfall tends to be symmetric, but more peaked than its normal counterpart. Figure
2 shows u histogram of the radar rainfall data and the fitted lognormal probability density
function, for which coinciding (in space and time) raingage data were also available with
measurement resolution of one-hundredth of an inch. The fit passed the chi-square test at
5% significance level, but failed the Kolmogorov-Smirnov test at 5% significance level.
Measurement resolution is very important in testing lognormality. For RADAP II, the
minimum detectable rainfall depth is about 0.02 in/hr. In this work, however, we
assumed the minimum detectable rainfall depth of 0.01 in/hr, common to both radar rin-
fall data and raingage measurements. Therefore, the smallest nion-zero hourly rainfall was
0.01 in/hr.

2.2 Raingage data

Raingage measurements used in this work are hourly gage rainfall data from the National

Climatic Data Center (NCDC) at 45 locations under the Oklahoma City radar umbrella

" (see Figure 3). There were 39 raingage locations in Oklahoma, 2 in Kansas, and 4 in
Texas. The observations were taken by observers at principle (primary) stations, secon-
dary stations, cooperative observer stations operated by the National Weather Service
(NWS), and the Federal Aviation Agency (FAA) (NCDC 1986).

As a quality check, we first compared the raingage data with coinciding radar rainfall
data. The comparison indicated that many raingage data were off by an hour or more.
Since the raingage data were reported in local time, whereas the radar data were given in
GMT, we suspected that the shifting may be due to lack of correction for daylight savings
time. For each gage location, time series of raingage data and coinciding radar rainfall
.data were then compared and cross-correlogram was computed. It was found that the
shifting- was rather arbitrary: number of hours shifted varied from one gage location to
another, and from one period to another. To make matters worse, there were many miss-
ing periods in raingage data. In an effort to use at least portions of the raingage data, we

- then compared raingage data and coinciding radar rainfall data event by event. The term
“event"” here is used rather loosely. Because of many missing data, it was not possible to
always identify unambiguously the beginning and ending of a storm. For each event,
comprising typically of several hours or more, raingage data were synchronized with
coinciding radar rainfall data under the criterion of minimum mean square error. In this
way, a total of 1405 pairs of radar-gage rainfall data were collected, of which only 690
pairs had the gage resolution of one-hundredth of an inch. Figure 4 shows the scatter-
plot, in log-log scale, of radar-gage pair with resolution of one-hundredth of an inch.

Only the univariate lognormality was examined for the raingage measurements.
Many raingage data had resolution of one-tenth of an inch (e.g., from Fisher-Porter type
gages). This posed a problem in testing lognormality since the exact truncation point
could not be known. To examine lognormality, we used only the raingage data with reso-

* lution of one-hundredth of an inch. Figure 5 shows the histogram and the fitted lognor-

mal probability density function. The fit passed the chi-square test at 5% significance
level, but failed the Kolmogorov-Smimov test at 5% significance level. In addition, we
used the 41-year record of hourly gage rainfall at Oklahoma City, which had a resolution
of one-hundredth of an inch. The fit (not shown) is much poorer and failed both tests at
5% significance level.



34

6
1 900—1
i
6004
v s
8 g
= 3 2 |
3 S
X @
% 3004
04— — ‘ c e —— —_—
—3 ‘ 0 3 0O D2 04 06 08 10 12 14 16
SKEWNESS HOURLY RADAR RAINFALL (in)
Figure 1 : Figure 2

Figure 1. Sample skewness and kurtosis coefficients of log radar rainfall

Figure 2. Histogram of the radar rainfall data for which raingage data were also available with measure-
ment resolution of one-hundredth of an inch. Also shown is the fitted lognormal probability density func-
tion
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Figure 3. Raingage network under the Oklahoma City radar umbrellak

Figure 4. Radar rainfall versus observed gage rainfall with measurement resolution of one-hundredth of an
inch i

3 Simulation of raingage measurements

Our original intention was to use observed data only. The number of high-resolution
raingage measurements, however, was too small to serve our purpose, and we had tc
resort to simulation to generate a large number of raingage data. In generating raingage
data, we assumed the following linear relationship between log gage rainfall and coincid-
ing log radar rainfall: :
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Figure 5. Histogram of the gage rainfall data with measurement resolution of one-hundredth of an inch.
Also shown is the fitted lognormal probability density function .

Y, =c/ +d+e M

where Y, is the log gage rainfall, ¥, is the log radar rainfall, ¢ and 4 are constants, and ¢
is the random error with £ [e]=m.=0. Probably the simplest way to generate gage rainfall

would have been to assume that the random error, ¢, is a white-noise process. Figure 4,
however, suggests that ¢ is negatively correlated with Y,. Incorporating the correlation

between € and Y,, we assumed that Y, and € are bivariate normal. Then, it can be easily
shown that Y, and Y, are bivariate normal, and conditional probability density function
of Y, given ¥, is normal with the following mean and variance:

ElY,1Y,] = ¥, +d+r,.(0)(0y/c, XY, -m,) o )
Varl¥,17,] = o}{1-r2(0)} | | 3)

where 7,.(0) is the lag-zero cross-correlation coefficient between Y, and g, o, is the stan-
dard deviation of ¢ , G, is the standard deviation of Y., and m, is the mean of Y.. The
parameters c, d, and 052 were estimated via trial-and-error. From Eq. (1), we have:

mg, = cm,+d “)
of =clct20)oi0? 6
Covg, (0) = (c+a)c? ' (6)

where my, is the mean of Yg, O, 1s the standard deviation of Yg, and Covg,(O) is the lag-
ZEro cross-covariance between log gage rainfall and log radar rainfall, and o=r,.(0)o./0,.
The trial-and-error then consisted of the following steps: assume 652, solve for ¢ and o

using Egs. (5) and (6), solve for d using Eq. (4), compute 052 using Eq. (1), and repeat the
steps until the sample 0'52 is the same as the assumed 052.

Table 1 shows sample statistics of Y, and Y, and parameters estimated from the

above procedure using the raingage data set of resolution of one-hundredth of an inch and
coinciding radar rainfall data. Closeness between m, and m, indicates little bias in radar
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“Table 1. Sample statistics of log gage rainfall and log radar rainfall

mg m, o} o rer(0) c a d al r,e(0)
1 2275 2.68 1.23 1.18 0.61 097 -0.34 -0.16 0.91 -0.39
2 -2.90 -2.86 1.19 1.25 0.62 )
3 -2.62 -2.68 0.96 1.18 0.82 1.00 -0.26 0.05 0.39- -0.45

—

Statistics of observed log gage mainfall and coinciding log radar rainfall. Also shown are the
estimated parameters values. Number of gage-radar rainfall pairs is 690.

2. Statistics of simulated log gage rainfall and coinciding log radar rainfall. Number of gage- radar rain-
fall pairs is 3410.

3. Same as 1. but the gage rainfall data are scaled so that llog gage rainfall - log radar minfnll lis
reduced by 33 percent for each pair.
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Figure 6. An example of experimental semi-variogram of log radar rainfall and the best fitting model

Figure 7. Histogram of the correlation scale of log radar rainfall

BOO%

600

400

2004 m
OT T \ \! I—\___‘

0 |ozoso4ososo7oaoso|00
100 x NUGGET EFFECT/SILL (%)

FREQUENCY

Figure 8. Histogram of the nugget effect, expressed as percentage of the sill. in fitted semi-variogram ¢
log radar rainfail



7

s

rainfall data. Closeness between csg2 and 0,2 suggests little reduction in variance of log
radar rainfall in spite of smoothing due to post-processing and spatial averaging.

4 Estimation of covariance and cross-covariance functions

To obtain the covariance function of leg radar rainfali, the experimental semi-variogram
was first computed along eight different directions over each hourly radar rainfall field.
Spherical, Gaussian, and exponential covariance models were then fitted t5 the experi-
mental semi-variogram. Among the three, the model that yielded the smallest sum of
squared residuals was chosen and used as the perfectly known covariance function of log
radar rainfall. Figure 6 shows an example experimental semi-variogram (only 4, out of §,
directional semi-variograms are shown) and the best fitting semi-variogram model. Fig-
ure 7 shows the histogram of corrclation scale of log hourly radar rainfall obtained from a
total of 1433 hourly radar rainfall fields. Correlation scale is defined as the integral scale
of the best fitting correlation function. In many cases, the semi-variogram of log radar
raimall data exhibited the nugget effect (see Figure 8), and thus the covariance function
of log radar rainfall was structured as follows:
2
o, if d=0 ,
D= (62-C oy tany  otherwise @

where Cov(Y,,.Y, ;) 1s the covariance between log radar rainfall at i and log radar rainfall
at j, 0,2 is the variance of radar rainfall, d is the distance between Y,; and Y,;, C,, is the
nugget effect, r,.(Idl) is the correlation function of log radar rainfall, assumed to be
translation- and rotation-invariant,

The estimators built in Part I assume that the correlation function of log gage rainfall -
and the cross-correlation function between log gage rainfall and log radar rainfall are per-
fectly known. In this work, we assumed that both the correlation function and the Cross-
correlation function are the same as the correlation function of log radar rainfall. If e and
Y, were independent, the assumption would be unnecessary given the linearity in Eq. (1)

(Creutin et al. 1987). when € and Y, are not independent, the assumption is equivalent to
assuming that the cross-correlation function between € and Y, and the correlation func-

tion of € are the same as the correlation function of log radar rainfall. The covariance
function of log gage rainfall was then specified as follows:

ot if d=0

Cov(Y,.Y,)) = {@_l(sgz_agsgz)rrr(ld') otherwise N

where sg2 is the sample variance of log gage rainfall, O is the scaling constant defined as
@=sg2/c582, assumed to be a gamma 2 random variable when G; is the true variance of log
gage rainfall (see Part I), agsgz is the sample nugget effect with @, assumed to be equal to
CO,/O',Z, 0<a, <1, and 4 is the distance between Y, and Y,; . The cross-covariance func-
tion was similarly specified as follows: '

0™ r,, (0)s, 0, if d=0

Cov(¥y ¥, )=1{ o | . 9
( gl rj) {@ I/Z{rgr(o)sgcr—ac(agsgzcor)]/Z}rrr(ldl) otherwise )
where rg,'(O)'is the lag-zero cross-correlation coefficient between log gage rainfall and
log radar rainfall, ., is the constant specifying the degree of coregionalization between

the white-noise components of log radar rainfall and log gage rainfall, O<o. <1, assumed
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to be equal to r,-(0), and d is the distance between Y,; and Y.

~ Correlation function and cross-correlation function thus defined always constitute a
valid linear model for coregionalization (Journel and Huijbregts 1578) m that the covari-
Qg Q '
88 <gr

ance matrix is always positive definite.
0, O ,

5 Assessing prior '
There were four parameters to be specified in the prior, ie., g, v'. b, and H' (see Eq.
(16) in Part I). In this work, the parameters were determined via method of moments
using prior knowledge about E[B], Var[B], E [o,] ana Var(o,]. Due to lack of past
raingage data, we had to resort exclusively to radar rainfall data in specifying the four
moments. When estimation was desired at hour i, E[] was set equal to m,(i—1), where
m, (i) denotes the mean of log radar rainfall at hour i. The assumption is that, over a long
run, the mean of log radar rainfall is unbiased relative to mean of log gage rainfail.
Var[P] was set equal to Var[m,(i)-m_(i—1)] estimated from the RADAP II data of 1983,
Obviously, there are other ways to obtain a potentially more informative prior for B. One
such example would be to use a physically-based rainfall model (e.g., Georgakakos and
Lee 1987), which predicts mean ground-level rainfall at hour i using all the available
observations up to and including hour i-1. E[0,] was set equal to 6,(i-1), where c,()
. denotes the standard deviation of log radar rainfall at hour i. The assumption is that, over
a long run, the variance of radar rainfall is unbiased relative to variance of gage rainfall.
Var(a,] was set equal to Var{c,(i)—6,(i-1)] estimated from the RADAP II data of 1983.
There was a total of 32 pairs of consecutive hourly radar rainfall fields in the RADAP II
data of 1983, and estimates of Var[f3] and Var([c,] were 0.082 and 0.025, respectively.
Given the estimates of E[B], Var{[Bl, Elo,], and Var[o,], parameters q’, v/, b’, and
H’ were obtain;d as follows. Since the distribution of ® is gamma 2 with mean 1/¢” and
variance 2/(v'q 2), distribution of O, is inverted gamma 2 (Raiffa and Schlaifer 1961)

with the following mean, variance; and coefficient of variation:

w2 TO'2=112

E[Gg] =q 1/2.S'g(v 12) 1/2___(;_(;?_)_ (10)

Var(o,] = ¢’s2v'I(v'-2)-E?[G,) | (an
2 op-1n) | |

CVio,)= |

12
=2 T2(v'2) 1

where I'() denotes the Gamma function, and sg2 is the sample variance of log gage rain-
fall. Given the estimates of E[0,] and Var([c,], v’ was obtained by solving Eq. (12), and

q’ was obtained from Eq. (11). It may seem odd that sg2 has to be known before ¢’ can be

. . — . L Ml - 2
obtained. It is because we adopted G; =0 15; (Eq. (3) in Part I) rather than G = ol Sy
acts only as a scaling‘constam. and estimate and estimation variance are independent of

the actual value of 5;. Once ¢” and v’ were obtained, H" and b” were specified by making

- use of the fact that the marginal distribution of B is Student ¢ with E[B]=b" and
Var(Bl =H gV I(v'-2).

In the simplified Bayesian estimation, where only raingage data were used in parame-
ter updating, we could have used the mean and variance of log radar rainfall at the current
hour, rather than at the preceding hour, since, unlike in the exact Bayesian estimation, the
likelihood function did not use currently available radar rainfall data. In this work,
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however, we used mean and variance of log radar rainfall at the preceding hour so that a
comparison between the two estimators could be made.

6 Simulation experiment

Due to sparsity of the raingage network, cross-validation was unaveidable in evaluating
the estimators. Given an hourly radar rainfall field, the following steps were involved in a
single simulation run:

1) Compute the second-order statistics of log radar raintall, including experimental
" semi-variogram.

b) Fit ths experimental sime-?ariogram with spherical. Gaussian, and exponential
models, and take the best fitting model as the perfectly known covariance function
of log radar rainfall. ‘

¢)  Generate raingage measurements at gage locations.
d) Eliminate a raingage measurement.

e) Compute sufficient statistics for the three different likelihood functions given in Part
[ of the paper. :

f)  Update the uncertain parameters f3 and © in three different ways as described in Part
[ of the paper.

g)  Compute estimates and estimation variances.
h)  Go to Step d until the raingage measurements are exhausted.
In Step c. the number of raingage measurements ranged from 6 to 30. In Step e, for each

matrix between log radar rainfall and log gage rainfall (see Discussion Section in Part [
for further comments). In Step g, the 5 nearest raingage measurements and the 5 nearest
radar rainfall data for each raingage measurement were used to compute estimates and
estimation variances, ,

For comparison purposes, we included two lognormal co-kriging estimators and two
nonparametric estimators. In the first lognormal co-kriging, mean and variance of log
gage rainfall were set equal to the mean and variance of log radar rainfall at the preceding
hour, respectively. This was equivalent to assuming that prior knowledge was the dom-
inant source of information about B and O. In the other, mean and variance of log gage
rainfall were estimated solely from the raingage measurements available at the current
hour. This was equivalent to assuming that the sample on hand was the dominant source
of information. ’

0.1 Nonparamerric estimation procedures .

Two estimation procedures, that are nonparametric in spirit. were also compared with the
Bayesian procedures. The nonparametric procedures are currently used with the Next
Generation Weather Radar System (NEXRAD) off-site precipitation processing pro-
cedures. One procedure relies heavily on raingage data, although radar data are used to
delineate the areas receiving positive rainfall. The procedure is termed the gage-only
analysis. The second procedure uses both radar data and gage data. It is termed the non-
parametric gage-radar procedure. ‘

The premise of the gage-only analysis is that radar data can be used to delineate rainy
areas but that quantitative rainfall estimates can not be used due to gross errors in magni-
tudes. This procedure is intended for use in situations where specific types of radar data
contamination, such as anomalous propagation or bright-band, are detected. The gage-
only rainfall estimate at an arbitrary location can be represented as follows:



zz () —222 ’"(g") 1(Z,(g0)>0) ' (13)

where Z, i) is the gage rainfall at location i, n, is the number of surrounding raingage
data used, m (i) is the mean annual rainfall at location i. Z,{go) is tie radar rainfall at the
arbitrary location, and 1(Z,(go)>0) is equal to 1 if Z,(go)>0, and 0 otherwise. It should
be noted that the gage-only analysis accommodaies long-term heterogeneity of rainfall
associated with orographic enhancement. This feature is not used in the simulation runs,
The multisensor rainfall estimate for a given bin can be represented as a linear combi-

nation of the radar rainfall estimate ard the gage-only estimate for the given bin, The
estimate can be represented as follows:

Zy, = aZy,+1-a)Z,(g0) ‘ (14)
where « |
a =exp(-yD/p) : (15)

In Eq. (15), vis a constant to be determined, D is the distance to the nearest gage, and p
is the correlation scale of the radar raintall field. The gage-radar estimator depends on
gage data only through the gage-only estimator. Weights depend on two principal factors,
distance to a raingage and spatial correlation of the radar rainfall field. The first is a sur-
rogate for variance of the gage-only estimator. The second is a surrogate for convective
activity. In general, the radar estimate will receive large weight when raingages are dis-
tant and convective activity is high. Note that the multisensor analysis also accommo-
dates heterogeneity of rainfall associated with orographic enhancement. Both the gage-
only analysis and nonparametric gage-radar procedure are used without transformation of
values. This avoids difficulties associated with transformation of 0 values.

In the next section, we present the results. To designate the estimators, the following

abbreviations are used:

L1 -lognormal co-kriging, prior information dominating

B1 - Bayesian estimation using both radar and raingage data in updating the uncertain
parameters

B2 - Bayesian estimation using only raingage in updating the uncertain parameters

L2 -lognormal co-kriging II, sample information dominating

RO - radar-only estimation

GO - nonparametric gage-only estimation

RG - nonparametric gage-radar estimation.

In B1, there were two ways of 'updating the uncertain parameters, exact and approximate

(see Part I). Comparison between the two shows llttle or no dlfference, and thus we
retained only the approximate version.

7 Results

The total number of simulation runs made (or, hourly radar rainfall fields used) was 325
resulting in 3410 data points. Table 1 shows the sample statistics of log radar rainfall and
log gage rainfall. Because of the nature of the simulation, there were unrealistically high
values of gage rainfall. The upper bound. for hourly gage rainfall depth was set as 3.03
inches, the: maximum hourly radar rainfall depth observed in the radar rainfall data used
in the simulation experiment.

Figures 9 and 10 show scatter-plots of mean error (ME) and root mean square error
(RMSE) of estimates at each hour from L1, B1, B2, L2, RO, GO, and RG, respectively.
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Figure 9. Mean error (ME) of estimates at each hour from L1.B1, B2, L2, RO. GO. and RG

Figure 10. Root mean Square error (RMSE) of estimates at each hour from L1, BI, B2, L2, RO. GO. and
RG '
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Figure 11. Standardized mean square error (SMSE) of estimates and estimation variances at ‘each hour
from L1, B1,B2,and L2 ) :

Figure 12. Same as Figure 11, but only a subset of 1987 RADAP Il data was used
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ME and RMSE measure unbiasedness and error variance, respectively. As expected, per-
formance of GO was poorer. Outlier-like ME’s and RMSE’s from L2 are due, in part, to
lack of robustness in exponential back-transformation used in lognormal co-kriging
(Journel and Huijbregts 1978). Both ME's and RMSE’s from RG are virtually identical
to those from RO. B1 and B2 are seen to provide some improvement over L2, but not
over L1. It indicates that prior was the dominant source of information over data at hand-
in updating mean and variance of gage rainfall. Little difference in performance between
B1 and B2 indicates that, as far as parameter updating was concerned, radar data did not
add much to the information available from raingage data alone. »

Neither B1 nor B2 performed significantly better than RO. It is remined that radar
rainfall data had little bias against raingage data. It is well known that co-kriging is very
effective in removing the adverse effect of mean field bias in radar rainfall data (Kra-
jewski 1987; Azimi-Zonooz et al. 1989; Seo et al. 1990). Comparison against RO, then,
was a very strict test on L1, B1, B2, and L2 since their performance depended largely on
residual prediction alone. We also note that cross-validation was disadvantageous to resi-
dual prediction since, due to sparsity of the gage network, surrounding gage data very
often lay outside of correlation scale of gage rainfall.

Now we examine the accuracy of estimation variances from L1, B1. B2, and L2. An

‘advantage of using co-kriging type estimators over radar-only estimation is that estima-
‘tion variances are provided. As noted in the Introduction Section, one of the main objec-

tives of developing the Bayesian estimation procedures was to obtain more accurate esti-
mation variances. Figure 11 shows a scatter-plot of standardized mean square error
(SMSE, for definition, see, for example, Chua and Bras 1982) of estimates and estima-
tion variances at each hour from L1, B1, B2, and L2. SMSE measures accuracy of esti-
mation variance. A perfect estimator would yield SMSE’s of 1. In interpreting scatter-
plots of SMSE, we do not overly concemn ourselves with exact unity of SMSE’s. Given
the host of simplifying assumptions used, some degree of consistent bias in estimation
variance is not unexpected. Also, estimation variance being a second-order property,
SMSE is more prone to sampling error than ME or RMSE given the same sample size,
and thus a wider scatter is expected. For these reasons, we pay particular attention to



43

relative dispersiveness of SMSE’s. B1 and B2 are seen to provide some improvement
over L2, but their SMSE’s remain very dispersive. B2 is seen to provide only a very
small improvement over B1. ‘

The dispersiveness of SMSE’s from B1 and B2 could have been reduced if prior had
been assessed following some type of stratification or classification scheme with respect
to seasonality, storm type, storm development, etc. Figure 12 shows a ccatter-plot of
SMSE at each hour using a subset of RADAP II data of 1987. A post analysis revealed
that estimates of Var[m,(i)-m,(i-1)] and Var{c,(i)-6,(i-1)] from that subset were close

to the actua! values used in assessing pricr. Improvement by B1 and B2 over L2 is more
noticeable, at least in the mini-max sense. Bl and B2 are also seen to provide a small
improvement over L1.

In Figures 11 and 12, dispersiveness of SMSE’s was due, in large part, to large
natural variabilities in rainfall process itself and error process in radar observation of
rainfall. To examine performance under reduced variabilities, we uniformly reduced the
differsnce between gage rainfall and radar rainfall, with radar rainfall fixed, by 33 per-
cent in the 690 pairs of raingage data and radar rainfall data. Table 1 shows the resulting
sample statistics and estimated parameter values. Using the new parameter values in gen-
erating raingage data, we performed cross-validation using the same subset of RADAP II
data of 1987. Figure 13 shows the resulting scatter-plot of SMSE. Improvement by Bl
and B2 over L2 is more pronounced, and clearly reveals the adverse effect of uncertainty
in mean and variance of gage rainfall. Also, improvement by B1 and B2 over L1 is more
noticeable as information from data at hand began taking effect owing to reduced varia-
bilities. B1, however, shows little or no improvement over B2, indicating that additional
information from radar data was still insignificant in updating mean and variance of gage
rainfall.

8 Conclusions

In Part I of the paper (Seo and Smith, this issue), Bayesian estimation procedures were
developed to estimate rainfall depth at an ungaged location using raingage measurements
and radar rainfall data. The estimation procedures are equivalent to lognormal co-kriging
(simple co-kriging in the Gaussian domain) with uncertain mean and variance of gage
rainfall. In Part II, the estimation procedures were evaluated via cross-validation using
hourly radar rainfall data from RADAP II at Oklahoma City and simulated hourly
raingage data. Simulation of rain gage data was based on hourly raingage measurements.

' The Bayesian estimation procedures were found to provide some improvement over
lognormal co-kriging, under the criteria of mean €rror, root mean square error, and stand-
ardized mean square error. It is shown that, if prior could be assessed more accurately,
the margin of improvement in predicting estimation variance could be larger. Perfor-
mance of the Bayesian estimation procedures is found to be limited in predicting estima-
tion variance by large natural variabilities in rainfall process itself and error process in
radar observation of rainfall. If the variabilities are smaller, the Bayesian estimation pro-
cedures are shown to provide much more accurate estimation variances than lognormal
co-kriging. In updating the mean and variance of gage rainfall, inclusion of radar rainfall
data is found to provide only a marginal improvement over using raingage data alone.

Given that the margin of improvement over radar-only estimation is small when radar
data are bias-free, estimation procedures based on bias removal (e.g., Smith and Kra-
Jewski 1990) are seen as an alternative approach. Also, given that the prior information
outweighs the information from currently available data, estimation procedures based on
climatological statistics (for gage-only estimation, see, e.g., Bastin et al. 1984) are seen
as an alternative approach. Finally, efforts must be made to account for orographic effect.
Physically-based models of orographic rainfall (e.g., Barrera and Schaake 1990), which
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may be coupled with the estimation procedures developed in this work, deserve much
attention.
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