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ABSTRACT

In this paper procedures are developed for estimating the mcan field bias of radar rainfall estimates. Mean
field bias is modeled as a random process that varies not only from storm to storm but also over the course of
a storm. State esumates of mean tield bias are based on hourly raingage data and hourly accumulations of radar
rainfall estimates. The procedures are developed for the precipitation processing systems used with products of
the Next Generation Weather Radar (NEXRAD) system. To implement the state estimation procedures, pa-
rameters of the bias model must be specified. Likelihood-based procedures are developed for estimating these
parameters. A simulation experiment is carried out to assess performance of the parameter estimation procedure.
Convergence of parameter estimators is rapid for the cases studied. with data from approximately 25 storms
providing parameter estimates of acceptable accuracy. The state estimation procedures are applied to radar and
raingage data from the 27 May 1987 storm, which was centered near the NSSL radar in Norman, Oklahoma.
The results highlight dependence of the state estimation problem on the parameter estimation problem.

1. Introduction

Ahnert et al. (1983) note that “'in spite of efforts to
maintain a high level of quantitative accuracy in esti-
mating precipitation from radar data. there are sure to
be errors in these estimates. While some of these errors
will be localized or perhaps range dependent. others
will often produce a uniform multiplicative bias in the
radar esimated precipitation.” In this paper procedures

are developed for estimating the multiplicative bias of

radar cstimates of rainfall, which we term the mean
field bias. Mean field bias is modeled as a random pro-
cess that varies from storm to storm and. during a
storm. on an hourly time scale. The estimation pro-
cedures are designed for the precipitation processing
systems used for the Next Generation Weather Radar
(NEXRAD) system. Discussions of general design fea-
tures of the precipitation processing systems are given
in Hudlow ct al. (1985), Ahnert et al. (1983), Shedd
et al. (1989), Smith et al. (1989), and Hudlow et al.
(1989). In this paper attention is focused on procedures
for automated correction of mean ficld bias using
hourly accumulation data from a network of raingages.

Mean ficld bias represents one component of the
crror in radar rainfall cstimates and is defined in section
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2 in the context of a broader model of error structure
of radar rainfall estimates. Implicit in the model is the
assumption that radar reflectivity data have been sub-
Jected to basic quality control procedures to mitigate
the effects of ground clutter, anomalous propagation.
and isoiated nonmeteorological targets (as described.
for example, in Hudlow et al. 1983). For stratiform
rain, it is also particularly important to account for
brightband effects (see, for example. Smith 1986).
From the model of section 2. the mean field bias can
be interpreted as randomizing the multiplicative pa-
rameter in the Z-R relationship. It has been recognized
for many years that drop-size distributions can vary
significantly from storm to storm (see Joss and Wald-
vogel 1989: Austin 1987; Battan 1973) and during
storms (see Cataneo and Stout 1968: Waldvogel 1974:
Carbonne and Nelson 1978). One component of the
crror introduced into rainfall estimates by temporal
vanation of drop-size distribution can be represented
as a time-varying mean field bias. Variation in drop-
size distribution is not, however, the only process that
can resuit in a mean field bias. Similar cffects can be
attributed to processes that atfect the power transmis-
sion of the radar, for example, wet radome attenuation.
and vanation in the power output of the transmitter
(wet radome etfects and the etfects of variation in the
power output can generally be kept to levels small in
comparison with other crror sources). The circum-
stances described previously in which temporal vari-
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ation in radar bias occurs involve the complex inter-
action of numerous processes. Consequently the mean
field bias 1s modeled as a random process.

Manual processing of radar rainfall estimates in a
research setting by a highly trained radar hydrometeo-
rologist with access to automated computer processing
tools and extensive ancillary hydrometeorological in-
formation will likely provide the highest quality radar
rainfall products (as illustrated by Austin 1987). The
precipitation processing systems that will reside at the
NEXRAD computer and at the National Weather Ser-
vice meteorological forecast offices are, however, de-
signed to run in a fully automated mode. Furthermore,
the external information that is available to the
NEXRAD computer consists only of raingage data.
These considerations play an important role in the
procedures developed in this paper for estimation of
the mean field bias.

The procedures developed in this paper follow along
the lines of those developed in the work by Ahnert et
al. (1984) in using a state estimation formulation of
the problem. The sequential estimation procedure of
Cain and Smith (1976) is also similar. Other proce-
dures for bias correction are reported in Wilson and
Brandes (1979), Collier et al. (1983), and Collier
(1986). More generaily, optimal estimation procedures
for combining gage and radar data are reported in Kra-
jewski (1987), Seo et al. (1989), and Seo and Smith
(1990). The bias correction procedure reported in this
paper is one component of NEXRAD precipitation
processing in which optimal estimation procedures are
applied following bias correction.

Our approach to the state estimation problem fol-
lows statistical approaches (Harrison and Stevens 1976:
Smith and Karr 1985: Karr 1986) rather than engi-
neering control approaches (Gelb 1973). Two conse-
quences are the attention given to parameter estimation
(section 4) and exploitation of distributional assump-
tions in deriving state estimators.

Contents of the sections are as follows. The statistical
model rclating rainfall rate to equivalent reflectivity
factor is presented in section 2. Interpretations of the
bias component of the model are presented and dis-
tributional results for the bias process are derived. Also
section 2 develops the observation equation that relates
radar and raingage data to the model bias. In section
3 the state estimation problems of filtering, prediction,
and smoothing are presented and updating procedures
are developed for solving these problems. The role of
cach type of state estimation problem in operational
use of NEXRAD precipitation estimates is described.
In section 4 likelihood-based parameter estimation
procedures for the bias model are developed and tested
via a Monte Carlo experiment. The state estimation
procedures are applied in section 5 to a sample data
case from the NSSL radar in Norman, Oklahoma. The
summary and conclusions are given in section 6.
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2. Model formulation

In this section a statistical model is developed that
relates radar measurements of rainfall to the true rain-
fall field: that is, the rainfall that would be observed at
the ground by an error-free space-time sensor. A com-
ponent of the model is a time-varying random process
representing mean field bias. Specification of the model
serves two purposes for the present study. [t provides
a precise interpretation of the mean field bias. It also
serves as the basis for development of an observation
equation that relates radar and raingage measurements
to the mean field bias. The observation equation and
model of mean field bias are the principal tools required
for procedure development to estimate the mean field
bias. Before presenting the model, some notation is
introduced.

Precipitation rate at time 7 and spatial location x is
denoted £,( x). The index r represents time, in hours,
since the last period of no rainfall. The precipitation
rate process for scan ¢ of hour s averaged spatially over
the bin specified by azimuth i and range j is denoted

Ruisj) = | Dyl fo E(x)dx T =(s— 1)+ AL
U}

(1)

where D, is the land area beneath the radar sample
volume with azimuth { and range J, | D;;| is the surface
area associated with D,,, and At is the time resolution
of radar observations (in hours). It is assumed that the
region D, is large enough that wind drift has a minor
effect on the rainfall observation process. The number
of scans v during an hour is 1/At. For the NEXRAD
system the time resolution is approximately 6 min ( A¢
= ().1 h) during precipitation periods so the number
of scans during an hour will be 10. As noted in (1) the
times 7 for which observations are available. rclative
to the start of the storm. are given by (s — 1) + (A¢,
with ¢ ranging from | to v. The equivalent radar rc-
flectivity factor for scan ¢ in hour s at azimuth i/ and
range J is denoted Z,,({, j).

The statistical model presented below specifies that
rainfall rate can be represented as the product of two
terms. The first term is a power function of equivalent
reflectivity factor with range-dependent parametcrs.
The second term specifies a multiplicative error model
for radar rainfall estimates. The statistical model is ex-
pressed as follows:

Roiyj) = (a(NZ (i, NP MBI D] (2)

In the formulation given previously the model can
be interpreted as a regression model for log rainfall rate
versus log reflectivity factor. The error field € has. for
cach s. ¢, i, and j, a lognormal distrnibution with mean
| and range-dependent standard deviation. The mean
field bias B(s) is a Markov chain with median 1. Its
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complete distribution is specified in the following. Un-
like the mean field bias. the error field ¢ is spatially
varying over the radar field and varies from scan to
scan. Both error processes are assumed to be mutually
independent and to be independent of the reflectivity
process. Underlying model assumptions on the error
processes is the assumption that rainfall rate and re-
flectivity factor follow a lognormal distribution. The
lognormal assumption for rainfall rate and reflectivity
factor has been made by a number of authors (see
Kedem and Chiu 1987; Seo and Smith 1990 for dis-
cussion and additional references).
An aiternative representation of the model is

Roii, ) = (AN Zalis NP esalis ] (3)

where

A.()) = a(j)B(s). (4)

This formulation leads to the interpretation of the bias
process as producing a randomized Z-R relationship.
In this case the randomized multiplicative coefficient
is given by the process { A,(/)}. The formuiation of
(3) also leads to an interpretation of the statistical
model as a “‘random coefficient” regression model (see
Johansen 1984). This interpretation is useful in de-
velopment of parameter and state estimation proce-
dures.

Denote the natural logarithm of the mean field bias
for hour s by ((s); that is,

B(s) = In[B(s)]. (3)

The quantity 5(s) is assumed to be a stationary Markov
chain over the integers (I, . ... T] satisfying

Bs) =a\p(s— 1)+ W(s), W(s)~ N®O,v) (6)

where 0 = g, = |, v is nonnegative, T is the storm
duration in hours, and W (s) is a sequence of inde-
pendent normally distributed random variables with
mean 0 and variance v. The log bias process has mean
0. We denote the stationary variance of the log bias
process by the parameter a,; that is,

a; = var{B8(s)]; s=0,---, T. (7)

The correlation function of the log bias process is given
by

cor[B(s). B(s + k)] = a,*. (8)

Two very distinct conceptual models of radar bias
have simple representations in terms of model param-
cters. It follows trom the assumption of stationarity
that

U=az(l—‘tl|:). (9)

Note that if @, equals 1. v must cqual (. If the corre-
lation parameter a, equals 1. the bias process can vary
randomly trom storm to storm. but 1s tixed over the
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duration of a storm. The log bias, which applies over
the duration of a storm. has a normat distribution with
mean 0 and vanance a,. Conversely, if the correlation
parameter is less than |, the bias varies not only from
storm to storm but also over the course of a storm. A
likelihood ratio test is developed in section 4 to distin-
guish the two cases. It is illustrated in section 5 that
bias estimation procedures perform quite differently in
the two cases.

To develop procedures for estimating the bias pro-
cess B(s) it is necessary to specify the relationship be-
tween radar and raingage observations and the mean
field bias. The number of raingages reporting measur-
able rainfall for hour s of the storm is denoted n(s).
The accumulated rainfall measured by gage & during
hour s is denoted G,(k). Gage locations are specified
in terms of the radar grid coordinates; the location of
the kth gage is denoted [i(k), j(k)]. It follows from
(2) that

LIEI 4

Z Z R i(k). j(k)]

k= | (=]
n(s) v

Z 2 alj()Z.Litk),

JCk)PU RN [iCk), j(k)]

Recall that v i1s the number of radar samples in an
hour. Based on ( 10) and the lognormality of B(s), the
following approximation is used for the observation
equation:

B(s) = . (10)

Y(s) = B(s) + M(s); M(s) ~ N{(O0, o[n(s))?}

(1

where

n(s)

Z Gi(k)
k=i

n(s) v s
2 Z alj(R)Z, Lik), jk)pouen

/

(12)

a(n) is a nonnegative function representing the obser-
vation error given that the number of gages with mea-
surable rainfall is #, and M(s) is a sequence of inde-
pendent normally distributed random variables with
mean 0 and variance o(7)?. It is assumed that the error
function is a power function of the number of gages;
that is,

Y(s)=In

o(n)? = awg™. (13)

The power-taw form of ( 13) allows the error model to
account for correfation of gage observations and is
consistent with results obtained by Rodriguez-Iturbe
and Mejia (1974) in a study of sampling crrors for
rainfall field esumation.
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The observation Y (s) is the log ratio of mean gage
rainfall to mean radar rainfall at gage locations. The
error process M (s) accounts for the approximation of
gage observations for the numerator in (10) and for
the approximation of radar observations to the random
vanable in the denominator of (10). Therefore, both
discrete approximation and measurement errors are
taken into account.

3. State estimation of mean field bias

The formuiations of the bias model and observation
model in section 2 provide a model system in which
procedures can be developed for correcting radar rain-
fall estimates for mean field bias. The procedures de-
veloped in the following will be applied in the
NEXRAD precipitation processing algorithms. The
resuiting precipitation estimates serve multiple pur-
poses. They are used for flash flood forecasting, main
stem flood forecasting, routine river flow and stage
forecasting, and in preparation of long-term hydrologic
forecasts. Automated raingage data are required. along
with radar data, for implementation of the bias esti-
mation procedures. For the majority of radar umbrellas
in the United States it will be possible to obtain more
than 30 gages with automated hourly data. For more
than one-third of the radar umbrellas 100 or more au-
tomated gages are currently available.

In the flash flood application interest focuses on the
most recent rainfall estimates. To correct these esti-
mates for mean field bias the bias must be estimated
for the most recent hour given observations prior to
and including the most recent hour. This type of state
estimation problem is referred to as a filtering problem.
For main stem river forecasting, with the longer re-
sponse times of catchments to precipitation, precipi-
tation estimates prior to the most recent hour are of
significant interest. Consequently, in some situations
we will want to correct for bias in preceding hours given
observations prior to, including, and following a given
hour. This state estimation problem is referred to as a
smoothing problem. The final type of problem we may
face i1s one in which inadequate gage data are available
for the current hour to make a bias computation. in
this case we will want to estimate the current bias from
observations preceding the current hour. This problem
is one of prediction. We define our state estimation
problems more formally in the following.

State estimation is distinguished from parameter es-
timation by virtue of the fact that the objects to be
estimated are random variables rather than unknown
real-valued paramecters. In the problem at hand the
mean ficld bias { B(s) } has been modeled as a random
process with distributional law specified by (5)-(7).
The observations related to the bias process are spec-
ified by the observation Eq. (12). State estimators are
derived. whenever possible, as the conditionai expec-

JOURNAL OF APPLIED METEOROLOGY

VOLUME 30

tation of the process given the observations. Justifica-
tion of the conditional expectation criterion is given
by Karr (1986). We define our state estimation prob-
lems in the following.

Let Y(1), ..., Y(T) be observations of log radar
bias, as defined in ( 12). The state estimation problem
is to compute the conditional expectation of the bias
B(s) given observations Y (1), ..., Y(u) for u less
than or equal to T that is,

B(slu) = E[B(s)|Y(u), + - -, Y(1)]. (14)

If u S 5, the problem is one of prediction; if u = s, the
problem is one of filtering; and if u > s, the problem
is one of smoothing.

To evaluate accuracy of the state estimators we want
to compute the conditional error variance

V(slu) = E{[B(slu) — B(s))*|Y(u), - -+, Y(1)}.
(15)

The bias model is defined in terms of the log bias
process G(s). State estimators for B(s) will conse-
quently be derived in terms of state estimators for 8(s).
The following argument shows how this is done. From
(6) and (11) it can be seen that the random variables
B8(s), Y(1),..., Y(u)have a muitivariate normal dis-
tobution. It follows from Theorem 2.5.1 in Anderson
(1958) that the conditional distribution of 8(s) given
Y(1),..., Y(u)is normal, we will write

L YD) ~ N[B(slu), 3 (slu)]
(16)

[B(s)| Y (u), .

where

Bslu) = E[B(s)| Y (u), -+, Y(1)]  (17)

and
2 (slu) = E{[B(slu) = B Y (u), -+ -, Y(1)}.
(18)

It follows that the conditional distribution of B(s) given
Y(l), ..., Y(u) is lognormal with parameters
B(slu) and Z (s|u). Consequently,

B(slu) = exp(B(slu) + (1/2) T (slw)]  (19)

and

V(sluy = B(s|u)*{exp( 3 (slu)] = 1}. (20)
The remaining problem is to compute state estimates
for log bias. We begin with the filtering problem for
{3(s). It will be scen that the smoothing and prediction
problems simplify to tiltering problems. The condi-
tioning argument u is suppressed for filtering problems,
$o @(s) equals B(s|s)and 2 (5) equals 2 (s]s).
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The Kalman filter can be used to recursively com-
pute B(s) and Z (s). To initiate the procedure, note
that

B8(0) = E[B(0)] =0 (21)

and
2 (0) = E{[6(0) - 6(0)])*} = a,.

For s > 1, the conditional expectations can be com-
puted recursively using the following relations, devel-
oped originally by Kalman (1960):

B(s) = aiB(s — 1) + {H(s)/[asm(s)™ + H(s)]}e(s)
(23)

2 (8) = H(s){1 = H(s)/lam(s)™ + H(s)]} (24)

where

(22)

e(s) = Y(s) - ab(s - 1) (25)
is the “innovation” and
H(s)=a*X (s= 1)+ a1l - a?). (26)

Additional details on the Kalman filter are given in
Gelb (1973).

The prediction problem is easily solved by noting
that

k=1

Bls+k)=a'B(s)+ 3 a’W(s+k—j) (27)
=0
It follows that
Bls + k|s) = a,*d(s). (28)

Similarly,
A=t
TGtk =a*T(s)+ T aVa(l - a,?).

=0
(29)

The smoothing problem can be decomposed into
two parts: computation of a “backwards” filter and
combination with the “forward™” filter of (23). The key
to solving the smoothing problem is the observation
that if the time sequence is reversed, the bias process
remains a Markov process. In other words. if we define

B(s)=B(T -5+ 1) (30)

then gf(s) 1s a Markov process with the same distri-
bution as @(s). This result follows from the facts that
the random variables 3( 1), . ... 8(T) have a multi-
vanate normal distribution with symmetric covariance
function (sce Weiss 1975 for additional details). To
procced. the following additional notation is required
for the backwards filter:

Bu(s) = ELB(HIY(s), + -+ Y(T)) (31)
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Zo(8) = E{[Bs(s) = B Y(s), - - -, Y(T)}.
(32)

The backwards filter and its variance are computed
using the recursive relations of (23) and (24) with the
observations reversed in time.

It follows from normality of the estimators (see An-
derson 1958) that for u > s,

B(slu) = cB(s) + (1 — c)Bs(s)  (33)
where
2o (S)
=l 4
CE i+ 2 (34)
We also have
5 (slu) = 22D Z () (35)

Zo(s)+ Z(s5)°

It can be easily seen that the variance of the smoothed
estimator is at least as small as the filter estimator by
rewriting (35) as follows:

Z (slu) =3 (s) (36)

|
L+ 2 (s)/Zh(s)

In this scction it has been implicitly assumed that
parameters of the observation equation and bias model
are known. Generally, this will not be the case. In order
to effectively implement the state estimation proce-
dures we must develop procedures to estimate un-
known parameters of the model. We address this prob-
lem in the following section.

4. Parameter estimation and hypothesis testing

Paired hourly gage and NEXRAD rainfall estimates
will be archived for parameter estimation and quality
control applications. In this section parameter esti-
mation and hypothesis testing procedures for the mean
field bias model are described. From the paired gage
radar observations we can obtain sampies of the ob-
servation time series Y (s) defined in (12). We will
denote the sample log bias for hour s of the ith storm
by Y.(s). This scction will develop likelihood-based
inference procedures for the bias model using the sam-
ple observations { Y, (s);i =1, -+« . nis= 1.+,
T.} wherc n denotes the total number of archived
storms and 7, denotes the number of hours in the ith
storm. Scasonality is a prominent teature of our prob-
lem. The development given below. however. assumes
stationarity not only during a storm. but also from
storm to storm. The modifications to account tor sca-
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sonality are straightforward but notationally cumber-
some.

The log-likelihood function of the observation pro-
cess { Y,(s)} is the natural logarithm of the joint density
of Y (1),..., Y,(T,); that is,

La(a) = log{p[Y\(1), » Yi(T),
» Ya(l1), , Yao(T)lal}  (37)

where a 1s the vector of parameters a = (a,, d,, as,
as). The main resuit used in parameter estimation is
the following representation of the log-likelihood func-
tion for the model of (11) and ( 12) given observations
from n storms:

- Yi(1)?
Z: a; + aym(1)™

+ In[a; + ami(1)*]

-1
2

e [Yi(s) = aiBi(s = D]?
ZZ:.; 2Zi(s = D)+ am(s)* + ay(1 — a,?)
n T,
-%Zzlnlau 2i(s—=1)
] s=m?

+ aym(s)™ + ay(1 —a,))] + C (38)

where C is a constant. The proof of this result is given
in the Appendix.

Maximum likelihood estimators & = (d,, da, d3, d4)
are solutions, if they exist, to the system of equations

VL,(a)=0 (39)

where V is the gradient operator. Maximum likelihood
estimators cannot be derived analytically from (39).
A gradient search method ( Press et al. 1988) was de-
veloped to numerically solve the system of likelihood
equations.

The parameter estimators obtained from (39) have
the attractive large sample properties usually associated
with maximum likelihood estimators. Asymptotic
normality and consistency (see Bickel and Doksum
1977, for discussion ) can be established by procedures
similar to those presented in the work by Smith ( 1987).

A likelihood ratio test can be developed using (40)
to distinguish between bias models in which random
variation of bias occurs over the course of a storm ver-
sus the model in which the only vanability in the bias
process is storm to storm variability. Recall from scc-
tion 2 that the latter situation resulits if the correlation
parameter equals 1. Denote the maximum likelihood
estimator of the parameter vector a, under the con-
straint that ¢, cquals 1, by a. The log-likelihood ratio
statistic

A, = =2[L,(a) — L.(d)] (40)
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has a x* distribution with 1 degree of freedom, under
the condition that a, equals 1(Bickel and Doksum
1977). The hypothesis that a, equals O is rejected if A,
> X3(1 — a) where X*(1 — ) is the | — a quantile
of a x? distribution with one degree of freedom.

Similar tests can be developed to determine whether
the bias is nonrandom (test a, = 0 versus a, > 0), the
number of raingages influences the observation error
(test a4 = 0 versus a4 different from 0), or significant
error is present in the bias observations (test a; = 0
versus a; > 0). In the case that a, equals O; that is, the
number of gages recording measurable rainfall has no
influence on the observation error, the system of like-
lihood equations will not have unique solutions. In
this case it is, in effect, impossible to distinguish be-
tween observation equation error and variability in the
bias process.

In order to examine the small sampie properties of
the parameter estimators, an extensive Monte Carlo
simulation experiment was performed. The true values
of the parameters a,, a,, a3, and a, were assumed and
both the bias process and its observations were gen-
erated for a specified number of raingages and storms.
The number of hours within a storm was assumed to
have a Poisson distribution with a specified mean. The
number of raingages reporting nonzero rain was sim-
ulated by a Gaussian random variable with a specified
mean and standard deviation. This choice was dictated
by convenience in investigating the influence of the
number of gages on the parameter estimators.

Two different cases were analyzed in detail. The first
one corresponds to a, = 0.8 which means that the bias
process varies both from storm to storm and during
storms. The values of the other parameters were se-
lected to be a; = 0.1, ¢y = 1.0, and a4 = —1.0. Figure
| shows the results based on 100 realizations. The
points correspond to the mean value of the estimated
paramecters with the vertical bars marking a range of
one standard deviation. A notable feature of the results
is that, for the conditions represented by the chosen
parameter values, the estimators are quickly converging
to the true values as the number of storms increases.
For 100 storms (with average duration of 5 h ) one
should get very good estimates. The situation looks
even better for the second scenario (Fig. 2) with q,
=1.0,a; =0.1,ay = 1.0, and a4 = —2.0. In this case.
corresponding to the radar bias varying only between
the storms. a dataset of 100 storms provides excellent
estimatcs.

An interesting result is presented in Fig. 3. It shows
the effect of vanability in the number of raingages re-
porting nonzero rainfall on the estimation of ¢y and
ds4, the two parameters describing the uncertainty in
the bias observations. The quality ot the estimated val-
ues for these parameters does not improve as the av-
erage number of gages increases. Since the standard
deviation of the number of gages was kept equal to |
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for all the runs here, the results indicate that with a
large but essentially fixed number of gages it is difficult
to identify the parameters a1 and a,. [t was noted carlier
in this scction that if the number of gages has no eftect
on the bias error; that is, if a4 equals 0, then the pa-
rameters «» and ¢: cannot be uniquely distinguished.
Figure 3 illustrates a similar fcature of the estimation
problem. If there 1s no variability in the number of
gages reporting rainfall, the parameters a, and ds cannot
be uniqucly distinguished. The practical implications
of this result are minimal. Even in the highly unlikely
case in which a large rclatively constant number of
gages is always available, one can perform random
deletion to insure adequate variability in the number
of gages.

raingages per hour is 10.

It should be emphasized that the results presented
previously, as with any simulation experiment,. are tied
to the validity of the model. The simulation results
imply that if the radar bias model described in section
2 is appropriate for a given setting, one should expect
good performance from the parameter estimation pro-
cedure. The results of the simulation cxperiment should
be helpful in assessing the value of archive data from
the point-of-view of parameter estimation. To evaluate
the performance of the bias estimation procedure de-
scribed in this section and its sensitivity to the model
parameters, 4 separate experiment is underway. Some
ol these issues arc addressed, in a limited way, through
application ot the state estimation procedure to real
data. as described in the following scction.
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FIG. 2. Results of simulation experiment for @, = 1.0, a; = 0.1,ay = 1.0, and a4 = —-2.0.
The rest of the experiment is the same as Fig. 1.

5. Application of bias estimation procedures

In this section the state estimation procedures de-
veloped in section 3 are applied to radar rainfall esti-
mates derived from the NSSL radar at Norman, Okla-
homa, for the storm of 27 May 1987. The storm was
responsible for flash floods resulting in loss of life and
significant property damage. Meteorological patterns
associated with the 27 May storm are typical of flash
flood producing storms east of the Rocky Mountains
(see Maddox et al. 1979; Chappell 1986). Figure 4
shows rainfall rate estimates derived from the
NEXRAD Precipitation Processing System (PPS) for
the bin (of size approximately 4 km?) with highest
storm total accumulation. The sequence of peaks in
rainfall rate is characteristic of quasi-stationary con-

vective events (Chappell 1986). The Z-R relationship
used in the NEXRAD PPS is

Z =300R'*. (41)

The absolute calibration of the NSSL radar is | dBZ.
Additional details on the NEXRAD PPS are given in
Ahnert et al. (1983), Shedd et al. (1989). and Smith
ct al. (1989).

Hourly raingage observations with positive accu-
mulations and within a range of 150 km of the radar
were available for 20 sites over the course of the storm.
The maximum hourly gage accumulation was 53 mm
(2.1 in); maximum storm total accumulation at a gage
was 225 mm (8.9 in). The radar rainfall estimates do
not include range correction adjustments (other than
the usual 1/r* correction in the radar cquation), al-
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though the NEXRAD PPS does include a parameter-
ized range correction procedure (see Smith et al. 1989).
For the present study range effects were minimized by
restricting consideration to gages within 150 km of the
radar. Over this range, beam elevation can be main-
tained at a relatively constant elevation (approximately
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1.25 km for the center of the beam) using the sectorized
hybrid scan strategy of NEXRAD (Shedd et al. 1989).
Table | contains summary information by hour on
radar and raingage measurements. The sample bias
value is the ratio of mean gage rainfall to mean radar
accumulation at gage sites [i.e., exp{ Y (s) }], for Y (s)
as defined in (12). The sample bias ranges from a
maximum of 2.50 in hour 3 to a minimum of 1.8 in
hour 8. Note that the variability of radar observations,
as measured by the coefficient of variation (standard
deviation divided by the mean), is quite comparable
to variability of raingage observations, both in mag-
nitude and temporal pattern. This provides qualitative
support for the assumption that multiplicative mean
field bias is a significant component of radar error. Note
also that the correlation of raingage and radar obser-
vations by hour is relatively high, ranging from a min-
imum of 0.77 to a maximum of 0.96.
Implementation of the state estimation procedure
must be carried out in this case without the benefit of
parameter estimation. Nominal values of @, = 1.0, a,
=0.20, a3 = 1.0, and a4 = —1.0 are used initially for
state estimation. Figure 5a shows sample bias values
along with bias estimates obtained using the procedures
of section 3. The estimated standard deviation of filter
and smoothing estimators are shown in Fig. 5b. One
clear benefit of the smoothing procedure is that signif-
icant improvements over the filter estimates can be
obtained for bias values early in a storm, given sub-
sequent observations. The filter estimates can be seri-
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FIG. 4. Estimated rainfail ratc from the NSSL radar for the bin with heaviest rainfail dunng the 27 May 1987 storm in Oklahoma.
Precipitation estimates arec computed from the NSSL radar data using the NEXRAD Precipitation Processing System.
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TABLE |. Summary statistics for gage radar data.
Gage mean Radar mean
Hour Sample bias (mm) Gage CV (mm) Radar CV Correiation
1 1.97 443 1.42 2.25 1.35 0.71
2 2.50 4,78 1.73 1.91 1.50 0.86
3 1.71 6.32 1.20 3.69 1.16 0.87
4 1.69 5.88 1.32 3.48 1.46 0.85
5 2.00 6.73 2.02 .37 2.26 0.96
6 2.56 6.50 1.52 2.54 1.74 0.92
7 2.06 893 1.29 4.33 1.42 0.86
8 1.61 6.71 1.24 4.18 1.29 0.70

ously biased for early time periods due to the constraint
imposed by the initial conditions of (21) and (22). For
the chosen parameters the filter estimates are quite close
to the smoothing estimates for hours 2 through 8. Both
vary in a small range about the value 2. The estimated
standard deviations of the bias estimators iilustrate
fundamental differences in the filter procedure and
smoothing procedure. For the filter estimators, stan-
dard deviation of the estimators drops by more than a
factor of 2 from hour | to hour 8, reflecting the in-
creasing information available to the filter as the storm
progresses. For the smoothing procedure the standard
deviation varies little over the course of the storm and
is slightly smaller than the final standard deviation of
the filter estimator.

The bias estimation procedures have qualitatively
different behavior if the correlation parameter a, is less
than 1. Figure 6a shows bias estimates in the case that
a, equals 0.9 and all other parameters are unchanged.
Note that the estimators are more responsive to short-
term variation in the sample bias values. As before.
the filter estimator is constrained in the first hour by
initial conditions. In contrast with the initial case, the
filter and smoothing estimators begin to show differ-
ences over the course of the storm. Most notably the
smoothing estimator is less responsive than the hiter
to short-term variation in sample bias values. Also in
contrast to the initial case the estimated standard de-
viation ( Fig. 6b) for the bias responds to fluctuations
in sample values. Note that the estimated sample stan-
dard deviation of the smoothing cstimator increases
substantially from the initial case. A decrease in the
correlation parameter translatces to a decline in infor-
mation content for bias estimates.

If the bias value can be accurately charactenized. even
for a small number of gages. then the bias cstimates
will be highly compliant with the samplc bias values.
In Fig. 7a bias estimators arc shown for the case in
which the observation equation variance parameter d,
has been dropped from 1.0 to 0.1. Both the smoothing
and filter estimators cssentially replicate the sample
values in this case. Note also in Fig. 7b that if the ob-
servation equation variance is quite low, the standard
deviation of bias estimators is correspondingly low.

Similar performance of bias estimators is obtained
when the variance parameter a, is large. In Fig. 8a bias
estimates are shown for the case in which a, is increased
from 0.2 to 1.0 (with a, at its initial value of 1). Al-
though the bias estimates are quite similar to those
shown in Fig. 7a it is for quite different rcasons. as
reflected in Fig. 8b, which shows the standard deviation
of the estimators. In the present case bias estimates are
compliant not because sample bias values are partic-
ularly accurate but because the bias equation variance
is too large to allow the state estimation procedures to
rule out sample fluctuations as insignificant.

The results of this section show that modest changes
in parameter values can produce significant changes
in performance of the bias estimation procedures for
a real-data case. These resuits underscore the need for
cfficient parameter estimation procedures and archiv-
ing of the necessary data to carry out parameter csti-
mation. The bias estimation procedures developed in
this paper are attractive, in comparison to the proce-
dure of Ahnert et al. (1985). in part due to availability
of parameter cstimation procedures. The bias estima-
tion procedures proposed in this paper arc also com-
putationally simpler than the procedurce ot Ahnert ct
al. (1985) and have the added capability of operating
in the smoothing mode.

6. Summary and conclusions

Mean ficld bias of radar rainfall estimates is modcled
as a random process that vanes hourly over the course
of a storm. Mean ficld bias values are independent from
storm to storm. Within a storm the scquence of bias
values constitutes a Markov process with lognormal
distribution. The observation equation that rclates ra-
dar and raingage data to the random bias is based on
the statistical model of cquivalent radar retlectivity
measurements given in (2). The observation cquation
specifics that the log bias equals the log of the ratio of
mean gage observations to mean radar observations
(at gage locations) plus a normally distnbuted crror
term. Vaniance of the error term is specitied as a power
law function of the number of raingages reporting
measurable rainfall.
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Based on the model of mean field bias and the ob-
servation equation, state estimators are derived in sec-
tton 3 for the mean field bias. State estimators are de-
rived for three situations: 1) estimating the bias for a
given hour from observations up to and including the
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FIG. 5. (a) Bias cstimates for the 8 h 27 May data casc using parameter values a, = 1.0. a; = 0.1, 4y
= 1.0, and a, = —1.0. Sample bias values arc denoted by boxes. Filter estimates are denoted by crosses.

Smoothing cstumates are denoted by diamonds. (b) Estimated standard deviation ot filter estimators ( denoted
by boxes) and smoothing cstimators ( denoted by crosses ).
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hour: this is a filtening problem, 2) estimating the bias
for a given hour trom observations preceding, during,
and following the hour; this is a smoothing problem,
and 3) estimating the bias for a given hour trom ob-
servations preceding the hour: this is a prediction



408

JOURNAL OF APPLIED METEOROLOGY

VoLuME 30

4 1 & 1

1

PNN RSN SN
N We O ND VW

[ad
1

Bias
~

e e e = m =
~IlLibala

—F

Time (in hours)

0.8

0.4 -

Standard ODeviatlion

Time (in hours)
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problem. In each case the state estimators arc obtained
by a sequential procedure which has at its basis the
Kalman filter. Each problem has application to the
NEXRAD precipitation processing procedures.
Likelihood-based inference procedures are devel-
oped for model parameters in section 4. The major
result is the representation of the log-likelihood func-

tion for the model given in ( 38). Maximum likelihood
estimators arc obtained from the likelihood function
by a gradient search algorithm. Hypothesis testing pro-
cedures are developed to assess structural properties of
the bias model and observation equation. In particular
a test is developed for distinguishing whether the bias
varies over the course of a storm versus an alternative
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in which the only variability in the bias process is from
storm to storm. Simulation results illustrate that con-
vergence of the parameter estimators can be refatively
fast, with data from approximately 25 storms providing
reasonably accurate parameter estimates.

The state estimation procedures are applied in sec-
tion 5 to a sample data case from the NSSL radar at

Norman, Oklahoma. An attractive feature of the pro-
cedure developed in this paper for off-site processing
is the flexibility otfered by the smoothing procedure.
The state estimation results underscore the need for
efficient parameter estimation procedures.

In conclusion it should be emphasized that obtaining
high-quality radar rainfall products depends on quality
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of the radar signal and on development of an integrated
processing system with a strong focus on quality control
(as discussed by Hudlow et al. 1983). The procedures
developed in this paper for bias adjustment are but one
piece of an integrated processing system. For the
NEXRAD system bias adjustment is a particularly im-
portant component because the processing system s

fully automated and because raingage data are the oniy
cxternal hydrometeorological data that will be im-
ported to the NEXRAD system.
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APPENDIX
Derivation of the Likelihood Function

The derivation of the representation for the likeli-
hood function in (38) of section 4 is given below.
Proof:

La(a) =Inp(Y (1), - - -, Yi(T));, - -+, 5 Ya(),
tt Yn(Tn)] (A1)

=In [] pL¥i(1), - - -, Y(T)]

i=1

(A2)

n T
=1In[] [H Y Yi(s—=1), -+, Y,-(l)]}

imi Ls=2
X plY(1)] (A3)
n T,
=3 { 2Inp[}’.(S)IY.(s— 1), -, Y,(l)l}
j=i 5"
+lIn[p(Y.(1)]. (A4)
From (10)-(12) we have
Y,(1) = 8,(1)+ M(1) (AS)
implying that
Y. (1) ~ MO, a; + ami(1)*). (A6)

It follows from Egs. (10)-(12) that tor s greater than
| the conditional distribution of Y,(s) given Y,(s = 1),
..., Y,(1)is Gaussian. The moments can be calculated
as follows:

E[Y(s)IY(s—1), -+, V(1]
= E[B(s) + Mi(s)| Y (s = 1), - - -, Y(1)] (A7)
= Bi(s). (A8)
Similarly,
var[Y,(s)| Y (s — 1), - - -, Y (1)]
= EQUY($) = E[Y($)|Y(s= 1), - - -, Y, (1)}?]

Yi(s= 1), -+, Y. (1)) (AY)
= E{[B.s) + M(s) — aiB(s — 1]?|
Y(s=1), ---. Y,(1)} (A10)

= E{[aiB(s — 1)+ Wi(s) + M(s)
—aBi(s — DI Y(s = 1), -, V(D)) (AL
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= E{{[aBi(s = 1) = aiBi(s — 1)] + W(s)
+ M)} V(s = 1), -+, Y(1)) (Al2)
=a,’ 2, (s= 1) +am(s)™ + ax(l — ar%). (A13)

It follows that,
[Yi()IY(s = 1),..., Y(])]
~ N[aBi(s = 1),a* T (s —1)

+ ami(s)™ + ay(1 — a,?)]. (Al4)

Equation (38) follows immediately.
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