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Various estimation procedures using ordinary, universal, and disjunctive cokriging are evaluated in
merging rain gage measurements and radar rainfall data. The estimation procedures and the simulation
experiments were described in part 1 (Seo et al., this issue) of this two-part work. In this part, the
experiments are described in detail. An objective comparison scheme, devised to compare a large
number of estimators, is also described. The results are presented focusing upon (1) the potential of
radar-gage estimation using cokriging over radar-only estimation and gage-only estimation under
widely varying conditions of gage network density and the error characteristics of radar rainfall, (2) the
potential for using universal or disjunctive cokriging over ordinary cokriging, (3) how the uncertain
second-order statistics affect the estimators, due to lack of rain gage measurements, and (4) how the
statistical characteristics of ground truth rainfall affect the estimators.

INTRODUCTION

This paper is part 2 of the two-part series. In the first part
[Seo et al., 1990], the experimental design for testing several
algorithms of optimally merging radar and rain gage data is
described. The testing is based on two numerical experi-
ments. Both experiments use computer-generated fields of
radar and rain gage observations of an original rainfall field.
In experiment I the original field is a radar rainfall field from
the GATE experiment. In experiment II the original field is
a realization of a space-time rainfall model.

The organization of this paper is as follows: details of the
simulation used in experiment I, the procedure used in
comparing the estimators, results from experiment I, details
of the simulation used in experiment II, results from exper-
iment II, and conclusions and future research recommenda-
tions. To follow the material presented in this paper, it is
essential to first read part 1 [Seo et al., 1990].

EXPERIMENT I SIMULATION

The GATE radar rainfall data selected were eight hourly
fields from day 245, phase 2 of the GATE experiment
[Hudlow and Patterson, 1979]. The data covered the devel-
oping, maturing, and dissipating stages of a tropical convec-
tive storm. Eight hours were selected (hours 3, 6, 12, 15, 18,
21, and 24) from the 24-hour period. For each hour, a 200 x
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200 km area showing active rainfall was chosen from the
radar umbrella of radius of 200 km. The reader is referred to
Seo [1988] for the rainfall maps and the empirical semivari-
ograms. Temporal variation of the sample mean, variance,
and skewness coefficient of the chosen rainfall fields are
shown in Figure 1.

For each hourly rainfall field, assumed as the ground truth
rainfall field, a total of 24 combinations of the radar rainfall
field and the point gage rainfall field were generated in a
single simulation run. The values of the parameters used for
the radar rainfall generator were (1) variance of the logarith-
mic ratio of the radar-rainfall to the ground-truth rainfall
(denoted ‘‘SIGMAR”’) (values of 0.005 and 0.02 were used
representing small and large measurement error in the radar
rainfall field, respectively), (2) bias in the mean of the radar
rainfall field (denoted ‘“‘BIAS’’) (values of 1 and 2 were used
representing no bias and an overestimation bias of 100
percent, respectively), (3) correlation distance of the random
noise in the radar rainfall field (denoted ‘*CORDIS”’) (values
of 8 and 16 km were used representing, relatively speaking,
short and long correlation distances, respectively). These
values of the parameters result in eight combinations. In
addition, three rain gage network densities of 32, 160, and
286 gages over the 200 X 200 km area were used to generate
the point gage rainfall fields. Gages were assumed to be
randomly scattered. This is not an unrealistic assumption in
that towns (which are likely to have gages) are known to be
randomly scattered [Karr, 1986]. The number of rain gages is
denoted ‘“NG.”’ The first density approximately corresponds
to the average rain gage network density over the continental
United States (one gage per 10002000 km? [Wilson and
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Fig. 1. Temporal variation of sample mean, variance, and skew-

ness coefficient of the ground truth rainfall.

Brandes, 1979]) and is referred to as the low gage density.
The second is approximately the gage density above which
radar-gage estimates are found to be no better than gage-only
estimates for Illinois convective storms [Hildebrand et al.,
1979]; this is referred to as the medium gage density. The
third is referred to as the high gage density.

For each assumed ground truth rainfall field, a single
simulation run involved the following steps:

1. Generate a radar rainfall field (using one of the eight
combinations of parameter values).

2. Generate a point gage rainfall field (using one of the
three rain gage densities).

3. Perform rainfall estimation.

4. Compute estimation error statistics.

5. Go to step 2 until all three gage densities are used.

6. Go to step 1 until all eight combinations are used.

Following this procedure, there were 24 combinations of
the radar rainfall fields and the point gage rainfall fields in a
single simulation run. For each combination, both gage-only
and radar-gage estimation were performed.

Ideally, we would have repeated the above steps to obtain
enough simulation runs to achieve a clear convergence in the
estimation error statistics. Due to the heavy computational
requirements, however, a compromise had to be made. To
check the convergence, a total of 20 simulation runs were
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TABLE 1. Example of Pairwise Comparison Among the
Estimators in Experiment 11
BR RA OB 01 02 DB D1 D2

BR Y

RA P

OB Y

01 T

02 Y Y

DB Y “ o

D1 Y Y Y cee

D2 Y Y Y Y Y Y

For storm type I under the percent mean error criterion under the
global pooling. ‘*“Y’’ denotes that estimates from the estimator in the
column were better than the estimates from the estimator in the row.
For example, the BR estimates were better than the RA estimates
only, and the O2 estimates were better than the BR estimates and
the RA estimates only.

made using the assumed ground truth field of hour 3. It has
the largest coefficient of variation, and the estimation error
statistics had the slowest rate of convergence. After 10
simulation runs, the estimation error statistics were always
observed to be converging. Therefore the number of simu-
lation runs was set at 10 for the rest of the experiment. For
further details on the convergence characteristics, the reader
is referred to Seo [1988].

If the estimation in step 3 had always been successful, the
total number of estimated rainfall fields from 10 simulation
runs for each estimator would have been 240 (or 480 for hour
3 from 20 simulation runs), excluding the radar-only estima-
tion. However, the estimation was not always successful
because (1) the variogram(s) could not be fitted due to lack of
raingage data, (2) the generalized (cross) covariance(s) did
not converge and thus could not be estimated, (3) the
semipositive definiteness conditions were not met, or (4) the
conditionally semipositive definiteness conditions were not
met. For these reasons, the total number of estimated
rainfall fields varied from one estimator to another and from
one assumed ground truth field to another. The minimum
number of estimated rainfall fields was set at 55. Whenever
the number of estimated rainfall fields fell below this mini-
mum, the corresponding estimator was excluded from the
comparison. The average numbers of estimated rainfall fields
obtained from a single estimator were 274, 131, 145, 103,
173, 187, 163, and 141 for hours 3, 6, 9, 12, 15, 18, 21, and 24,
respectively.

COMPARISON OF THE ESTIMATORS

The following abbreviations will be used throughout to
designate the estimators: BR, the Brandes’ method; RA, the
radar-only estimation; OB, DB, UB, the gage-only estima-
tion using ordinary, disjunctive, and universal block kriging,
respectively; O1, D1, Ul, the radar-gage estimation using
ordinary, disjunctive, and universal cokriging I, respec-
tively; 02, D2, U2, the radar-gage estimation using ordinary,
disjunctive, and universal cokriging II, respectively;

To compare the estimators, we used the following types of
pooling of the estimation error statistics:

1. For global pooling, for each hour of the eight hourly
ground truth fields, the estimation error statistics were
pooled over all the simulation runs made using all 24
combinations. Thus the comparisons made under global
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TABLE 2. Mathematical Expressions of the Performance Measures

Performance Measure Expression Definitions
Percent mean error 1001 2 where m, is the mean of the ground truth rainfall, n is
PME = - D Gi—x) the total number of data in the ground truth rainfall
men;_ L field, %; is the rainfall estimate at location #, and x; is
the ground truth rainfall at location i.

Percent root mean square 100 [1 2 12 where o, is the standard deviation of the ground truth

error PRMSE = — < — 2 (%i—x)? rainfall.

Ix | Mi=a

Standardized mean square L2 (5 x)? where o7 is the kriging or the cokriging variance at

error _ i location i.

SMSE=- 3 - ocation i
i=1 i

Maximum error of MAXE, = max {& —x}

overestimation L

i=1,"++,n

Maximum error of MAXE, = min {& —x;}

underestimation i=1eeen
Relative percent mean error nj where x;; is the ground-truth rainfall at location i

(at level j) > (X5 — x;) satisfying (j — 1)o, < xj < jo,, &j; is the coinciding

i=1 estimated rainfall, and »; is the number of ground
RPME = 100 ——— (= —100) truth rainfall data satisfying the above set of

nj
Z Xji

i=1

inequalities.

pooling reflect the overall relative performance among the
estimators. Whenever a result obtained from global pooling
is given, it will be indicated by the term ‘‘global(ly).”’

2. For marginal pooling, for each of the four parameters
used in generating the radar-rainfall field and the point gage
rainfall field, for each value of the parameter, the estimation
error statistics were pooled over all the simulation runs
made, only when the estimation error statistics were ob-
tained using the radar rainfall field and the point gage rainfall
field generated from that particular value of the particular
parameter. Therefore there were two pools each for SIG-
MAR, BIAS, and CORDIS, and three pools for the gage
density. In this way, the effect of each parameter could be
evaluated. Whenever a result obtained from marginal pool-
ing is given, it will be indicated by the term ‘‘marginal(ly).”

Once the estimation error statistics were pooled for all the
estimators for each performance measure, for each hour, the
estimators were ranked under each pooling type, as follows:

1. The empirical cumulative distribution of the estima-
tion error statistics were constructed for all estimators. If the
empirical cumulative distribution for estimator A lay above
that for estimator B, the estimates from estimator A were
considered to be better than the estimates from estimator B.
An example is shown in Figure 2 involving ordinary cokrig-
ing I and ordinary cokriging I under the percent root mean
square error (PRMSE) criterion. This approach has a definite
advantage over using, for example, only the mean of the
estimation error statistics as it also accounts for the variabil-
ity of the estimation error statistics.

2. The step 1 results of the pairwise comparisons among
the estimates were tabulated as, for example, in Table 1 for
experiment II.

3. Estimator A is considered to have performed better
than estimator B, if, in step 2, the number of estimators,
against which the estimates from estimator A were better, is
larger than the number of estimators against which the
estimates from estimator B were better. For example, the

final ranking obtained from Table 1 may- be written in the
following form of groups of equal performance (from the best
to the worst group): D2-D1-02-BR, OB, O1, DB-RA. The
rationale behind the above criterion is that every estimator
has a certain merit of its own. No disagreement between step
1 and step 3 can arise: if estimator A is ranked higher than
estimator B in step 3, the estimates from estimator A would
never be worse than the estimates from estimator B in step
1.

A similar ranking procedure was used for percent mean
error (PME), standardized mean square error (SMSE), max-
imum errors (MAXE), and relative percent mean error
(RPME). It differs only in that the absolute values of the
estimation error statistics (absolute values were taken after
the log transform for SMSE) were used to construct the
empirical cumulative distribution. By using the absolute
values, no preference was given to either overestimation or
underestimation. Table 2 shows the mathematical expres-
sions of the performance measures.

The performance measures were computed for only the
rain area in the ground truth field. Thus they measure
average performance given that it is actually raining (i.e.,
when the rain area is perfectly known). This procedure was
selected for two reasons: the radar rainfall generator and the
rain gage rainfall generator were already assumed to be
perfect sensors in identifying the presence or absence of rain
[Seo et al., 1990], and the amount of computation was
substantially reduced since estimation was performed for
only those points or blocks inside the rain area. It is
important to note that this procedure is more favorable to
gage-only estimation than to radar-gage estimation. In real
world situations, it is generally unknown as to whether or
not it is actually raining at all points in the area of interest.
Since rain gage data generally contain much less information
on rain area than radar data, the assumption of perfectly
known rain area should benefit gage-only estimation more
than radar-gage estimation.



918

EXPERIMENT I RESULTS

The results were compiled focusing on the following
issues:

1. Are the radar-gage estimates better than both the
radar-only estimates and the gage-only estimates? Particular
attention was given to the following situations: For the low
gage density (i.e., with the average gage density over the
continental United States), are the radar-gage estimates
better? For the case of no bias in the mean of the radar
rainfall field (i.e., when the radar-only estimates are likely to
be of good quality), are the radar-gage estimates better than
the radar-only estimates?

- 2. Does any particular cokriging estimator perform bet-
ter than the others?

3. How much improvement do cokriging II estimators
provide over cokriging I estimators?

4. How do the characteristics of the ground truth rainfall
affect the estimators?

In comparing a pair of estimators, an ideal situation would
be when one estimator performed better (i.e., was ranked
higher) than the other at all stages of the storm development.
In such a case, a clear conclusion can be drawn. In many
cases, however, one estimator performed better than the
other at one hour but did worse at another hour. For this
reason, the following definitions were made:

1. Estimator A is ‘‘superior’” to estimator B if A per-
formed better than B more times than A did worse than B.

2. Estimator A is ‘‘clearly superior’’ to estimator B, if A
performed never worse than B, and if A did better than B at
least once.

3. Estimator A is “‘tied’’ with estimator B if A performed
better than B as many times as A did worse than B, or if A
and B did equally well at all times.

The distinction between ‘‘superiority’” and ‘‘clear superi-
ority’’ is an important one. Only ‘“clear superiority”’ implies
that an estimator never performed worse than another at all
stages of storm development.

In the next subsections, we present the findings for each
performance measure. Most of the figures are given in the
form of a modified box-whisker plot. The upper and lower
ends of the whisker represent 95 and 5% levels, respectively.
The upper and the lower sides of the box represent 75 and
25% levels, respectively. The median is shown by the
horizontal bar inside of the box. The arithmetic mean is
shown as the horizontal bar which is wider than the box. It
is not possible to present all the relevant figures in a journal
article. The reader is reminded that most of the figures in this
paper are only examples and therefore do not support all of
our conclusions. More detailed results are given by Seo
[1988] and Azimi-Zonooz [1989].

Comparisons involving UB, Ul, and U2 are given sepa-
rately since their performance depends on the presence or
absence of a nonconstant trend. For brevity, only OB was
used to represent the gage-only estimation. BR is not in-
cluded in the general comparison as its poor performance
was evident. Thus the estimators included in the general
comparison below were RA, OB, O1, 02, D1, and D2 only.
Since O2 and D2 made use of near perfectly known vario-
grams and error-free spatially averaged gage rainfall data (for
D2, also assumed to be constant, perfectly known mean), it
was expected that O2 performs better than OB and O1, and
that D2 performs better than OB, O1, 02, and D1. According
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Fig. 3. From the top to the bottom, coefficient of variation of

the ground truth rainfall, correlation distance of the ground truth
rainfall, PME of the O2 estimates, and PRMSE of the O2 estimates.

to this reasoning, certain comparisons are not mentioned if
the relative performance among the estimators were as
expected.

Percent Mean Error

The PME measures how well the unbiasedness property of
the kriging and the cokriging estimators was realized. Visual
inspection showed that the unbiasedness of the kriging and
cokriging estimates was most noticeably affected by the
coefficient of variation of the ground truth rainfall. The
smaller the coefficient of variation, the smaller the variance
of the PME. An example involving O2 is shown in Figure 3.
The pattern was similar for the other kriging and cokriging
estimators.

Globally, the Ol estimates were as unbiased as the OB
estimates, because Ol and OB were tied in rank. The
relative unbiasedness of the O1 estimates, however, showed
a strong dependence on the error characteristics of the radar
rainfall field: O1 was superior to OB only when there was no
bias or when CORDIS was long, whereas O1 was inferior to
OB when SIGMAR was high, BIAS was high, or CORDIS
was short. When the gage density was low or medium, Ol
and OB were tied in rank. When the gage density was high,
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TABLE 3. Percentages of the Times UB, Ul, and U2 Identified
the Order of the Trend to be Greater Than Zero

Hour
3 6 9 12 15 18 21 24
UB 5 6 12 12 7 10 13 10
Ul 10 11 25 37 97 55 96 100*
u2 0 0 10 14 100* 44 100* T

For example, at hour 3, UB identified the order of the trend in the
point gage rainfall field to be nonconstant 5% of the total number of
estimation completed.

*The number of estimated rainfall fields obtained was insufficient
for the estimator to be included in the comparison.

tNot a single estimated rainfall field was obtained, and thus the
estimator was excluded from the comparison.

however, the unbiasedness was better achieved by the
gage-only estimation, as O1 was clearly inferior to OB.

Globally, D1 estimates were more biased than Ol esti-
mates, as D1 was inferior to Ol. This was not totally
unexpected. Disjunctive kriging or cokriging, unlike its
ordinary or universal counterpart, makes use of the sample
mean, which is assumed perfectly known. The sample mean
used in DB or D1, however, is likely to be in error due to
lack of data. The DI estimates are thus likely to be biased
since D1 takes the error-prone sample mean as its estimate
whenever the point, for which the estimate is desired, lies
outside the zone of influence of surrounding data. Margin-
ally, D1 was superior to O1 only when the gage density was
low.

Globally, D2 was superior to O2. At hour 21, the D2
estimates were more biased than the O2 estimates. It was
unusual in that the D2 estimates were fully expected to be
the least biased since D2 made use of the perfectly known
(assuming that it is constant) mean of the ground truth
rainfall field. Under the PME criterion, it is not expected to
achieve the level of performance of D2 in reality. The
structure identification used in universal cokriging indicated
the presence of a nonconstant trend at hour 21 (see Table 3).
It was suspected that the unusual biasedness of the D2
estimates at hour 21 might be due to the nonhomogeneity in
the mean. A possible numerical problem could not, how-
ever, be ruled out. Marginally, O2 was comparable to D2
only when the gage density was high, as they were tied in
rank.

Globally, O1 and D1 were clearly superior and superior to
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Fig. 5. An example showing the relative unbiasedness of the
estimates at different values of bias (hour 15).

RA, respectively. When there was no bias, however, only
the D2 estimates were as unbiased as the radar estimates, as
D2 and RA were tied in rank. When the gage density was
low, both O1 and D1 were inferior to RA, but O2 and D2
were superior and clearly superior to RA, respectively.
When the gage density was medium or high, both O1 and D1
were clearly superior to RA. This indicates that, for exam-
ple, for the ordinary cokriging estimates to be less biased
than the radar estimates, either of the following two may be
required: (1) with the average gage network density over the
continental United States, at least the covariances and the
cross covariance must be known near perfectly; and (2) the
gage network density must be higher than the average gage
density over the continental United States, when the co-
variances and the cross covariance are estimated, with large
uncertainty, only from the presently available data.

Figures 4 and S show examples of the relative unbiased-
ness among the estimates at various gage densities and at
different values of BIAS, respectively.

The dependence of the unbiasedness of the kriging and the
cokriging estimates on the characteristics of the ground-truth
rainfall suggests that an estimator may be more useful at one
stage of storm development than at others. For example,
when the gage density was low, the O1 estimates were less
biased than the radar estimates only at hours 15, 18, and 21.
These three hours constitute the mature stage of the storm.
The corresponding ground truth rainfall fields are character-
ized by a lower coefficient of variation and a longer correla-
tion distance. When the gage density was low, the 02
estimates were still more biased than the radar estimates at
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Fig. 4. An example showing the relative unbiasedness of the estimates at various gage network densities (hour 12).
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Fig. 6. An example showing the relative performance among the estimators under the PRMSE criterion at various
gage network densities (hour 9).

hours 3, 6, and 24. The first two hours constitute the early
developing stage of the storm, and hour 24 corresponds to
the dissipating stage. The three corresponding ground truth
rainfall fields are characterized by a higher coefficient of
variation and a shorter correlation distance.

Percent Root Mean Square Error

The PRMSE is a measure of performance in the minimum-
error-variance sense. The smaller the PRMSE, the more
accurate, on the average, the estimate for a 4 X 4 km block
and thus the more accurate the mean areal precipitation
(MAP) estimate over an arbitrary area. Visual inspection
showed that the PRMSE of the kriging and cokriging esti-
mators was affected most noticeably by the correlation
distance of the ground truth rainfall. The longer the correla-
tion distance, the smaller the PRMSE (see Figures 3 and 8).

Better performances of O1 over OB, and D1 over O1 were
clearly seen. Globally, O1 was clearly superior to OB.
Throughout the marginal comparison, O1 was never inferior
to OB. Globally, as well as throughout the marginal compar-
ison, O1 was clearly superior to RA, and thus we focused on
the comparison among the cokriging estimators.

Globally, D1 was clearly superior to O1. Throughout the
marginal comparison, D1 was never inferior to O1. Globally,
D1 was clearly inferior to O2. Marginally, D1 was superior to
02 only when the gage density was low. D1 performed
particularly well when the gage density was low. Recall that
when the gage density was low, D1 was also superior to O1
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Fig. 7. An example showing the relative performance among
the estimators under the PRMSE criterion at different values of bias
(hour 12).

under the PME criterion. Under the PRMSE criterion, D1
was superior not only to O1 but also to O2 when the gage
density was low.

Globally, D2 was superior to O2. At hours 3 and 21, D2
performed worse than Q2. Recall that, at hour 21, D2 also
petformed poorer than O2 under the PME criterion. The
relative performance of D2 showed a strong dependence on
the error characteristics of the radar rainfall field: D2 was
inferior to 02 when SIGMAR was high, BIAS was high, or
CORDIS was long. When the gage density was low or
medium, D2 was superior to O2. When the gage density was
high, however, D2 was inferior to O2. When the gage density
is high enough, D2 is seen to offer little advantage over O2.
Recall that when the gage density was high, D2 was only tied
in rank with O2, even under the PME criterion.

Figures 6 and 7 show examples of the relative performance
among the estimators at various gage densities and at dif-
ferent values of BIAS, respectively. Figure 8 shows the
mean PRMSEs of the estimates at all hours under the global
pooling. The improvement by O1 over OB is small. DI
improves over both OB and O1 substantially and reaches
almost the performance level of O2. Unusually poor perfor-
mance by D2 at hour 21 seems to be due to a numerical
problem rather than nonhomogeneity.

200+
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Fig. 8. Mean PRMSEs of the estimates at all hours under the

global pooling.
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Standardized Mean Square Error

The SMSE measures accuracy of the kriging or cokriging
variances. A perfect estimator will yield an SMSE of 1. The
SMSE also indicates how closely the assumptions required
for kriging or cokriging are met. In this subsection, only the
results from the global pooling are given.

A rather uniform pattern of relative performance was
found over the 8 hours among all the kriging and the
cokriging estimators, including UB, U1, and U2. It may be
summarized by the following ranking (from the best group to
the worst group): 02-D2-UB-OB-DB-U1-U2-0O1-D1. An ex-
ample is shown in Figure 9. Only O2 and D2 were seen to
have met the assumptions required for kriging or cokriging.
At hour 21, unusually poor SMSEs were observed for D2.
Both O1 and D1 tended to grossly underestimate the estima-
tion variances more than OB and DB. This suggests that the
uncertainties associated with both the semivariogram of the
spatially averaged gage rainfall field, and the cross variogram
deteriorated further for O1 and D1 than the uncertainty
associated with the semivariogram of the point gage rainfall
field alone did for OB and DB.

Maximum Errors

To measure the extreme behavior of the estimators, the
maximum errors were examined. In this subsection, only the
results from the global pooling are given. As for the maxi-
mum error of overestimation, the following ranking summa-
rizes the relative performance among the estimators (from
the best group to the worst group): D2-D1-02-0O1-OB-RA.
Similarly, for the maximum error of underestimation: RA-
02, D2-01-D1-OB. Better performances by the cokriging II
estimators over the cokriging I estimators and the cokriging
I estimators over OB are readily seen. Figure 10 gives an
example of the relative performance among estimators.

Relative Percent Mean Error

For flood forecasting, one of the most important aspects of
rainfall estimation is the ability to locate areas of intense
rainfall and predict high rainfall depths. To measure this
ability and to examine the characteristics of the estimators,
we decomposed the rainfall occurring area into six subareas
of equal rainfall depth levels. Level 1 denotes the rainfall
depth greater than zero and less than one standard deviation
of the ground truth rainfall, level 2 denotes the rainfall depth
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Fig. 9. Anexample showing the SMSEs of the estimates under the
global pooling (hour 18).
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Fig. 10. An example showing the maximum errors of overesti-
mation (top) and the maximum errors of underestimation (bottom).
The dashed line corresponds to the maximum rainfall depth ob-
served in the ground truth rainfail field (hour 18), and thus the
maximum errors of underestimation are bounded by it. Note that the
larger the maximum error of underestimation, the better.

between one standard deviation and two standard devia-
tions, etc. For each area, the relative percent mean error was
computed. For simplicity in this subsection, no distinction
was made between ‘‘superiority’’ and ‘‘clear superiority.”’
Thus, in this discussion, the term ‘‘superiority’’ implies
either ‘‘superiority’’ or ‘‘clear superiority’’ as defined pre-
viously. Also, only the results from global pooling are given.

In general, all the kriging and cokriging estimators consis-
tently overestimated the lower rainfall depth and consis-
tently underestimated higher rainfall depth. The overall
performance of O1 was better than OB: O1 was superior to
OB at all levels except level 3. The overall performance of
D1 was better than O1 (D1 was superior to O1 at all levels
except level 2). Surprisingly, O2 was superior to D2 at all
levels except level 1. Visual inspection showed that the
inferiority of D2 to O2 at higher levels was partially due to
higher variances of the RPMEs of the D2 estimates. When
only the mean of the RPMEs were considered, D2 performed
better than O1 at levels 1-3 but still did worse at levels 5 and
6.

In general, the kriging and cokriging estimators consis-
tently performed better than the radar-only estimator at
higher levels. At lower levels, however, the opposite was
observed: RA was never inferior to any of the kriging or the
cokriging estimators at levels 1 and 2. Figures 11 and 12
show examples of the relative performance among the esti-
mators under global and marginal pooling, respectively.

It was again seen that the characteristics of the ground
truth rainfall field affect the estimators. To illustrate this, a
portion of the table used in the marginal comparison between
D1 and RA at level 2 is shown in Table 4. When the gage
density was low, D1 performed better than RA only at hour
21 where the coefficient of variation was the smallest and
correlation distance the longest. When the gage density was
medium, D1 performed better than RA only at the mature
stage. When the gage density was high, D1 performed worse
than RA only at the early developing and dissipating stages.
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Fig. 11.

LEVEL

An example showing the relative performance among the estimators under the RPME criterion (hour 9). At

each level, the six box-whisker plots correspond to RA, OB, O1, D1, 02, and D2 from the left to the right.

A similar pattern was observed for the other kriging and
cokriging estimators.

EXPERIMENT II SIMULATION

In this experiment, assumed ground truth rainfall fields
were generated using the space-time rainfall model by
Valdes et al. [1985]. Experiment II was structured very
similarly to experiment I; therefore we describe only the
steps that were different from those in experiment I. Unlike
experiment I, the gage locations were fixed throughout the
simulation. A total of 286 randomly scattered gage locations
were generated only once over the 200 X 200 km area. The
first 32 gage locations represented the low gage density. The
first 32 and next 128 gage locations represented the medium
gage density, and all 286 gage locations represented the high
gage density. A single simulation run consisted of the
following steps:

1. Generate an assumed ground truth field (one of the
three storm types).

2. Generate a radar rainfall field (using one of the eight
combinations of the values of the parameters).

3. Select a raingage network (one of the three networks).

4, Perform rainfall estimation.

5. Compute the estimation error statistics.

6. Go to step 3 until all three networks are used.

7. Go to step 2 until all eight combinations are used.

For all three storm types, only the rainfall fields corre-
sponding to the first hour of the storm development were
used. The reader is referred to Seo [1988] for the rainfall
maps and the empirical semivariograms. Unlike the GATE
data, the rainfall fields from the space-time rainfall model
have the largest mean and variance and the longest correla-
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Fig. 12. RPMEs of the O1, D1, and U1 estimates when the gage
density was high at hour 15. At each level, the three box-whisker
plots correspond to O1, D1, and Ul from the left to the right.

tion distance at the first hour of the storm development for
all three storm types. The storms die off quickly, and too
small a number of data points are available at later hours. A
total to 10 simulation runs were made for each storm type.

In experiment I, the gage network configurations were
allowed to vary from one radar rainfall field to another since
we had only one realization of the assumed ground truth field
(i.e., the hourly GATE data). In experiment II, however, a
multiple number of realizations of the assumed ground truth
field was available from the rainfall model; thus the gage
network configurations were left unchanged as would nor-
mally be the case in a real world rain gage network.

EXPERIMENT II RESULTS

The average sample statistics of the assumed ground truth
fields are shown in Figure 13 for each storm type. Probably,
the two biggest differences between experiment I and exper-
iment II were the assumed ground truth fields in experiment
IT were statistically more homogenous and had generally
longer correlation distance. The results from experiment II
probably present a more favorable picture for kriging and
cokriging estimators than under real world situations. In
particular, disjunctive kriging and cokriging estimators
would be expected to excel under the structure of experi-
ment II. Disjunctive Kriging or cokriging, in the Gaussian
domain, are equivalent to optimal linear estimation [Journel
and Huijbregts, 1978] and should benefit, to a greater extent,
from homogeneity in the mean.

The results given below were compiled following the same
procedure used in experiment I, treating the storm types as
the hours in experiment I. They thus reflect the overall
performance of the estimators for all three storm types. The
estimators included in the comparisons below are RA, OB,
01, 02, D1, and D2.

TABLE 4. Comparison Between D1 and RA at Level 2 Under
the RPME Criterion

NG/hour 3 6 9 12 15 18 21 24
32 * * * B * * D1 *
160 * * * T D1 D1 D1 *
286 * * D1 Di T D1 D1 *

D1 denotes that D1 performed better than RA.
*D1 performed worse than RA.
D1 and RA performed about equally.
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Percent Mean Error

Globally, the O1 estimates were less biased than the OB
estimates, as O1 was clearly superior to OB. As in experi-
ment I, however, the relative unbiasedness of the O1 esti-
mates depended on the error characteristics of the radar
rainfall field: O1 was clearly superior to OB when SIGMAR
was low or CORDIS was long, whereas Ol was clearly
inferior to OB when BIAS was high or CORDIS was short.
When the gage density was low, O1 was clearly superior to
OB. When the gage density was medium or high, however,
O1 was inferior to OB. The D1 estimates were as unbiased as
the O1 estimates, as D1 and O1 were tied in rank. Margin-
ally, D1 was clearly inferior to Ol only when gage density
was low or high. Globally, D2 was clearly superior to O2.
Marginally, D2 was inferior to O2 only when BIAS was high.

Globally, both O1 and D1 were clearly superior to RA.
Marginally, both O1 and D1 were clearly inferior to RA only
when there was no bias. When there was no bias, only D2
was comparable to RA, as was observed in experiment I.

Percent Root Mean Square Error

In both experiments I and II, better performances of O1
over OB, and D1 over Ol were clearly seen. Globally, Ol
was clearly superior to OB. Throughout the marginal com-
parison, O1 was never inferior to OB. Globally and through-
out the marginal comparison, D1 was clearly superior to O1.
Globally, D1 was also superior to O2. D1 was clearly inferior
to O2 only when the gage density was high.

Globally, both O1 and D1 were clearly superior to RA.
When there was no bias, however, O1 was inferior to RA,
but both O2 and D1 were clearly superior to RA. Figure 14
shows the mean PRMSEs of the estimates for all three storm
types under global pooling. The improvement by O1 over
OB is very small. D1 improves substantially over both OB
and O1, and also improves over O2 for storm types 1 and 2.
The results under the SMSE criterion were very similar to
those of experiment I and therefore are not presented here.

Maximum Errors

In this subsection, only the results from the global pooling
are given. As for the maximum error of overestimation, the
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Fig. 13. Theoretical mean, standard deviation, and correlation

distance of the ground truth rainfall for each storm type.
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relative performance among the estimators may be summa-
rized by the following ranking (from the best group to the
worst group): D2-O2, D1-O1, OB-RA. Similarly for the
maximum error of underestimation, the ranking is D2-RA,
D1-OB-01, 02. When only the maximum error of underes-
timation is considered, the relative performance of the
ordinary cokriging estimators was poorer than in experiment
I, whereas the relative performance of the disjunctive
cokriging estimators was better than in experiment I.

Relative Percent Mean Error

As was observed in experiment I, no distinction was made
between ‘‘superiority’” and ‘‘clear superiority,”’ and only the
results from global pooling are given. The general perfor-
mance patterns were similar to those in experiment I. The
relative performance of O1 was poorer than in experiment I:
01 was superior to OB only at levels 1, 4, and 5. The relative
performance of disjunctive cokriging estimators was better
than in experiment I: D1 was superior to O1 at all levels, and
D2 was never inferior to O2 at any level. All the kriging and
cokriging estimators were inferior to RA only at level 1.

CONCLUSIONS AND FUTURE RESEARCH
RECOMMENDATIONS

Under various conditions of rain gage network density and
error characteristics of radar rainfall data, the radar-gage
estimation using ordinary or disjunctive cokriging is shown
to consistently provide rainfall estimates that are better, in
the minimum-error-variance sense, than the gage-only or
radar-only estimates. The improvement from ordinary
cokriging is only marginal. Disjunctive cokriging, on the
other hand, shows substantial improvement over ordinary
cokriging and almost provides the potential level of perfor-
mance obtainable in the ordinary cokriging framework.
When the ground truth field closely satisfies the homogeneity
assumptions, the margin of improvement by disjunctive
cokriging is greater.

The consistency of the improvement, under various radar
rainfall error characteristics, makes either ordinary or dis-
junctive cokriging an attractive tool in rainfall estimation.
Even when radar rainfall data are bias-free, the radar-gage
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estimates from disjunctive cokriging are better than the
radar-only estimates. The quality of radar rainfall data is not
usually known a priori. If the radar rainfall data are known to
be of good quality, there may be no advantage in merging
radar rainfall data and rain gage measurements. Under a
range of raingage network densities, the margin of improve-
ment by gage-radar estimation using cokriging is greatest
over gage-only estimation when the gage density is lowest
(i.e., with the average gage density over the continental
United States). It should be remembered that the assumption
of perfectly known rain area used in the estimation scheme
was more favorable to gage-only estimation than to radar-
gage estimation.

On the average, radar-gage estimates obtained from ordi-
nary cokriging are as unbiased as gage-only estimates ob-
tained from ordinary kriging. The relative unbiasedness of
merged radar-gage estimates, however, is seen to be affected
by the error characteristics of the radar rainfall data, and
when the gage network density is sufficiently high, the
unbiasedness is better achieved by gage-only estimation.
The unbiasedness property is seen to be better realized by
ordinary cokriging than by disjunctive cokriging. When there
is a high bias in the mean of the radar rainfall field, however,
any of the cokriging estimators is capable of removing the
adverse effect of the high bias.

In the mini-max sense (maximum errors of underestima-
tion and overestimation), the radar-gage estimates are gen-
erally better than the gage-only estimates. When the homo-
geneity assumptions are well met, disjunctive cokriging
shows substantial improvement over ordinary cokriging.
The kriging and cokriging estimators tend to overestimate
low rainfall depths and underestimate high rainfall depths.
The merged radar-gage estimates are generally better than
the gage-only estimates in predicting either low or high
rainfall depths. Disjunctive cokriging, particularly when the
homogeneity assumptions are well met, improves substan-
tially over ordinary cokriging in predicting either low or high
rainfall depths.

Universal cokriging is seen to offer little or no advantage
over ordinary cokriging or disjunctive cokriging. It is com-
putationally expensive, and structure identification is likely
to be unsuccessful. However, it is seen, in a few cases, to
provide better predictions of high rainfall depths when a
nonconstant trend is present (see Figure 12).

In real world applications, the following guidance can be
given concerning the choice between ordinary cokriging and
disjunctive cokriging. When the rainfall data do not clearly
indicate the presence of a nonconstant trend, disjunctive
cokriging can be expected to perform significantly better
than ordinary cokriging, but at the expense of a 10-fold
increase in CPU time. When the rainfall data do indicate
nonhomogeneity in the mean due to, for example, oro-
graphic effects, ordinary cokriging is an inexpensive alterna-
tive.

Unbiasedness and error variance of Kriging and cokriging
estimates are found to be affected by the coefficient of
variation and correlation distance of the ground truth rain-
fall, respectively. If the rainfall field has a smaller coefficient
of variation and a longer correlation distance than those seen
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in this work (e.g., stratiform rainfall field), a larger reduction
in root mean square error may be expected.

The potential of cokriging in rainfall estimation is greatly
reduced by uncertain second-order statistics. In cokriging,
the second-order statistics are estimated only from the
presently available data. Then, due to the sparsity of rain
gages, the second-order statistics associated with gage rain-
fall will be estimated with large uncertainty. It is recom-
mended that the Bayesian approach [e.g., Kitanidis, 1986] be
used. By making use of the past measurements of rainfall, a
priori information on the second-order statistics can be
obtained, which can then be updated with the presently
available measurements. In this way, both the past and the
present measurements of rainfall are utilized. This approach
has been investigated by one of the authors [Azimi-Zonooz,
19891, and issues such as the margin of improvement versus
additional computational requirements will be reported in
the near future.
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