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ABSTRACT

A Methodology for Updating a Conceptual Snow Model
With Snow Measurements

Conceptual hydrologic models are used to simulate basin snow cover
and to forecast streamflow in the Western U.S. Seasonal forecasts are
generated months in advance to provide critical information for the
efficient management of scarce water resources.

The conceptual models account for the detailed water balance of a
basin and require accurate estimates of basin precipitation and
temperature. The high spatial variability of precipitation in the
mountains and the relatively sparse data network can lead to large
uncertainties in modeling precipitation and current snow cover
conditions. Snow-water-equivalent data provide information that might
be used to adjust simulated snow cover conditions, in order to improve
streamflow forecasts.

A methodology was developed for updating the states of a snow model
with observations of point snow-water-equivalent, and it was applied
using the National Weather Service snow accumulation and ablation
model. A Kalman filter was used to combine estimates of the states from
the model simulation with estimates from observations based on their
relative uncertainties. Two approaches were tested for relating the
model states to the observations using an estimate of the model state,
which has been conditioned on the historical streamflow. The first
approach is based on regression, whereas the second approach uses
optimal interpolation to estimate snow-water-equivalent throughout the
basin.

The methodology produced significant improvements in daily,
monthly, and seasonal streamflow simulation. The improvements in the
Seasonal values were particularly dramatic, because of their magnitude
and the importance of seasonal forecasts to water management. Once the
methodology is incorporated into an operational forecast system,
enormous benefits could be realized through more efficient water use.



Chapter 1
INTRODUCTION

Hydrologic models are used in streamflow forecasting to model snow
cover states and to predict snowmelt runoff. These models are often
applied on a lumped basis over areas with a wide range of snow
accumulation and melt characteristics. Observations of snow-water-
equivalent, i.e., the total frozen and liquid-water content of the snow
cover expressed as a depth of liquid water, provide additional
information about the state of the snow cover at selected points. The
purpose of this research is to develop an objective methodology for
extracting areal information from the point snow observations and using
this information to update the states of a conceptual snow model.
Improving the estimates of the model snow cover states should result in
more accurate streamflow forecasts.

Background

In the Western United States, more than 70 percent of the annual
water supply results from snowmelt (Barton, 1977). Forecasts of water
supply are critical for reservoir flood control operations, agricultural
and industrial planning, irrigation scheduling, hydropower planning,
municipal water supply operations, water quality management, riverine
navigation, and wildlife and recreation planning. These forecasts are
needed months in advance to make decisions concerning reservoir
~eleases, water allocation, hydropower projections, planting strategies,
and manufacturing production levels. Forecasts of water supply are
particularly valuable for reservoir operations. Most reservoirs are
operated with the conflicting objectives of flood control and water
conservation. Valuable reservoir space is left empty so that it will be
available to control possible future flood waters. Reservoir operators
use water supply forecasts to determine which reservoir releases must be
made so as to reduce the risk of flooding to an acceptable level. If
releases are not large enough, severe flooding may occur later and the
potential exists for damage to spillways and possible dam failures. On
the other hand, excessive releases produce unnecessary flooding,
decrease hydropower benefits, and waste water that might otherwise have
been conserved. Accurate forecasts and their associated uncertainties
are needed to ensure proper operation of reservoirs and efficient use of
the avallable water. Castruccio et al., (1981) estimated that a 6
percent improvement in forecasting accuracy would produce $36.5 million
in annual benefits to agriculture and hydropower in the West.’

Historically, regression models have been used to predict seasonal
water supply from snowmelt. This practice dates back to early in this
century when Mt. Rose snow course data were used to forecast the level
of Lake Tahoe. Regression procedures in use today may include baseflow,
precipitation; and snow-water-equivalent as independent variables. The
procedures are used from January to May to forecast seasonal water



supply. More recently, conceptual hydrologic models have been used for
streamflow forecasting in the mountainous West. These models are
typically applied on a lumped-area basis, and they attempt to model the
processes of snow accumulation and melt and to perform soil-moisture
accounting. The conceptual models provide detailed streamflow
information and have the potential to produce accurate forecasts under a
wide range of hydrologic conditions.

, The conceptual snow models use inputs of precipitation and
temperature to simulate the snow accumulation and melt processes. These
models keep continuous account of variables needed to describe the snow
cover e.g., snow-water-equivalent, areal cover of snow, and snow cover
heat storage. The variables used by a particular model to describe
conditions at some point in time are called model states. The snow
cover states provide advance information about snowmelt runoff that will
occur months later. Since the mid-seventies, conceptual models have
been used within the National Weather Service (NWS) Extended Streamflow
Prediction (ESP) procedure (Twedt et al., 1978; Curtis and Schaake,
1979; Day, 1985) to produce probabilistic snowmelt runoff forecasts.

The ESP procedure depends upon reliable parameter estimates for the’
conceptual models, representative historical time series of mean areal
precipitation and temperature, and accurate estimates of the current
model states.

Model and data errors both contribute to poor estimates of model
states. Model error is introduced because of our inability to represent
perfectly the physical processes integrated over a basin. Even with
perfect knowledge of the current states of the hydrologic system and its
future inputs, our forecasts would contain errors due to our inability
to describe accurately how the system evolves in time. Data errors are
introduced due to measurement errors and our inability to adequately
estimate meteorological inputs on an areal basis.

Observations of snow-water-equivalent are another source of
information about the water balance in mountainous areas. Peck and
Schaake (1989) showed that the seasonal deviation from the long~term
mean winter precipitation can be highly correlated over large distances
in the mountains. These snow-water-equivalent observations, which are a
measure of winter precipitation, provide information about the snow-
water-equivalent throughout the basin that could be used to improve the
estimates of snow model states (Colbeck et al., 1979). Objective
procedures are presently lacking, however, to incorporate these snow
data into the conceptual snow models.

Research Objectives

The purpose of this research is to develop a methodology for
incorporating snow-water-equivalent measurements into a conceptual snow
model to improve snowmelt forecasts. The specific objectives of the
study are:

1. >To provide a review of the literature on snowmelt simulation,
updating of hydrologic model states, and spatial interpolation
of hydrometeorologic variables.



2. To develop an approach for extracting areal information from
" point snow-water-equivalent observations.

3. To use estimation theory to develop an objective methodology for
" updating the snow model states based on the relative
uncertainties of the model simulated states and the states
estimated from snow observations.

4., To demonstrate the methodology by assessing its effect on
" streamflow simulation on a test basin.

Thesis Organization

The remainder of the thesis is organized into four chapters.
Chapter 2 is a review of the relevant literature on snowmelt models,
updating, and spatial interpolation. The methodology is presented in
Chapter 3. This presentation includes a discussion of the theoretical
basis of the methodology and an outline of how it is applied. Chapter 4
develops the details of the approach and presents the results from an
application to a test basin. A summary of the work, conclusions, and
recommendations for future research are included in Chapter 5.






Chapter 2

LITERATURE REVIEW

Snow Measurements

Circa 1909, Dr. James E. Church of the University of Nevada
developed the Mt. Rose sampler for collecting snow data (State of
California, 1971). Church was interested in gathering information on
the effects of mountains and forests on the accumulation of snow. His
technique consists of inserting a hollow tube into the snow cover,
removing the tube and its contents, and weighing the contents to
determine the water-equivalent of the snow. Ten to fifteen measurements
are taken at 50 to 100 foot intervals along a line called a snow course,
and the measurements are averaged to produce a single snow-water-
equivalent value for the snow course. Estimates based on the Mt. Rose
sampler consistently overestimate the actual water-equivalent by 7 to 12
percent (Linsley et al., 1975). Snow courses are clearly marked, so
that measurements can be taken along the same line each year. A
discussion of the factors to be considered in locating snow courses is
given by Codd and Work (1955). It is important to note that snow
. courses provide a measure of snow accumulation, but they were not
intended to provide an accurate estimate of actual basin snow-water-
equivalent.

Snow courses were first formally measured in 1910 near Lake Tahoe
(California, 1971). Interest by power companies, irrigation
authorities, and municipalities in the rise of Lake Tahoe due to
snowmelt led to the use of snow survey data in forecasting the lake
level. The water-equivalent of the snow cover on Mt. Rose was found to
be significantly correlated with the rise of Lake Tahoe. Lake level
forecasts improved when additional snow courses were added to the
forecast relationship. Other techniques for collecting snow data have
been developed, but the Mt. Rose sampler developed by Church is still
commonly used to measure snow course snow-water-equivalent. The Soil
Conservation Service (SCS) of the U.S. Department of Agriculture has the
responsibility for coordinating the Cooperative Snow Survey Program in
the Western U.S., excluding California. As part of this program, snow-
water-equivalent is measured at over 1800 snow courses each month during
the late winter and early spring (Palmer, 1988). These snow course
measurements are used as an index of the water-equivalent of the snow
cover and to help to prediet runoff.

In an attempt to provide more timely and more frequent data, the
SCS began a program in the mid-1960's to develop and test new sensors,
In 1978, the SCS began receiving hydrometeorological data from remote
sensors through the SNOTEL (snowpack telemetry) system {(Schaefer, 1982},
which now consists of almost 600 sites. The system uses meteorburst
communication to relay sensor measurements to master polling stations,
which relay the data across land lines to a central site. The primary



sensors at the remote sites measure snow-water-equivalent, temperature,
and precipitation. Pressure pillows are used to estimate snow-water-
equivalent. As snow accumulates, the pressure inside the pillow
increases, ‘and pressure transducers are used to determine the weight on
the pillow. In addition to problems related to malfunctions of the
pressure transducer and telemetry, snow pillows sometimes underestimate
the snowpack water-equivalent because of ice lenses which bridge across
the pillow (Linsley et al., 1975). Non-vertical loading of the snow on
the pillow can cause overestimates or underestimates of snow-water-
equivalent. The major advantage of the SNOTEL system is that it
provides daily data from a network of remote sensors in areas that are
not easily accessible.

The National Weather Service (NWS) of the U.S. Department of
Commerce began research in 1969 to develop a technique using natural
terrestrial gamma radiation attenuation to measure snow-water-equivalent
and soil moisture from a low flying aircraft (Carroll et al., 1985b).
The NWS currently maintains an operational Airborne Gamma Radiation Snow
Survey Program that includes over 1400 flight lines (Carroll and Allen,
1988). The program was designed to provide real-time snow-water-
equivalent data to the NWS Forecast Offices and River Forecast Centers
for use in issuing spring snowmelt flood outlooks and river and flood
forecasts for the midwestern portion of the U.S. The data are also used
for selected water supply forecasts issued by the NWS and for Lake
Superior water supply forecasts issued by the U.S. Army Corps of
Engineers. Flight lines range from 15 to 20 km long, and data are
collected over a path approximately 300 m wide (Carroll et al.,
1985b). The data are reported as mean areal measurements over this
area.

In the Midwest, snow accumulates more uniformly than in the
mountainous West because of the absence of pronounced orographic
effects. In some areas, the flight lines are dense enough that snow-
water-equivalent can be contoured (Carroll and Marshall, 1985a).
Provided the snow accumulation is relatively homogeneous and the
measurements are dense enough, a simple averaging process may give
adequate estimates of basin mean areal snow-water-equivalent. Although
the technique was developed for use in the Midwest, gamma data are now
being collected over flight lines in the West (Carroll and Allen,
1988). Utilizing these data from mountainous areas will present the
same difficulties as using point data, since the gamma data provide
estimates of snow-water-equivalent over areas that are small in
comparison to the total basin area.

Research is currently being conducted on the estimation of areal
snow-water-equivalent from satellite data (Hall et al., 1984; and Rango,
1986). This research is very preliminary and thus far, reliable
estimates of areal snow-water-equivalent from satellite data are not
available.

Snowmelt Models

Regression-type models have been used to forecast water supply from
snowmelt since the first Lake Tahoe forecast was made using snow-water-



equivalent measured at Mt. Rose. Kohler (1957) provides an annotated
bibliography of the significant papers published from 1951 to 1956
dealing with water supply forecasting. He states that almost all of the
papers reviewed used some form of correlation analysis to relate various
indices of basin water storage to seasonal water supply runoff.
Sufficient data are not available on an areal basis to directly
determine water supply runoff from a basin water balance relationship.
Regression is one way to use the available point measurements of
precipitation and snow-water-equivalent, which may not adequately
represent basin water balance components. Independent variables in the
regression procedures may include streamflow, fall precipitation, spring
precipitation, winter precipitation, and snow-water-equivalent. The
dependent variable is seasonal runoff volume, typically April through
July or April through September. Regression procedures are currently
used throughout the forecast season, January to May, to produce seasonal
water supply forecasts. The regression procedures work very well in
average years, but have difficulty in forecasting years very dissimilar
from the years used to develop the regression equation (Curtis and
Schaake, 1979). Attempts have been made to adapt the procedures to
real-time data (Huber, 1984), but the regression procedures used by
operational water supply forecasting agencies have changed very little
in the last 30 years.

As an alternative to the regression procedures, simulation models
have been developed to attempt to model the processes of snow
accumulation and ablation. The simulation models explicitly account for
the magnitude and timing of the important water balance components.
Snowmelt models fit into three general categories: 1) empirical
temperature-driven melt factor models, which do not keep account of snow
cover state variables (i.e., water-equivalent, heat deficit, liquid
water, and areal coverage); 2) models that use index methods to
represent heat exchange relationships, but also keep account of snow
cover state variables; and 3) actual energy budget snow models that also
keep account of snow cover state variables.

Models which fall into the first category are typically based on
the generalized relationship:

M=K ( Ta - Tm ) (2.1)

where, M = calculated snowmelt,

K = melt factor,
Ta" average daily air temperature, and
Tm = average daily air temperature above which melt occurs.

Numerous models based on this simple relationship appear in the
literature (Linsley, 1943; U.S. Army Corps of Engineers, 1972;
Bergstrom, 1975; Martinec, 1975; Charbonneau et al., 1977; Quick and
Pipes, 1977; Hannaford et al., 1979; Turcan, 1981; "and Sugawara,
1984). These models are strictly empirical, but they may have some
parameters that can be related to watershed characteristics. Many of



the models include additional features which account for specific
complexities of the snowmelt and runoff processes. Both the Martinec
and Hannaford models have incorporated snow covered area into the
snowmelt calculation. The Hannaford model calculates an elevation above
which the watershed area is not effective in producing melt. Below this
elevation, it is assumed that the snowpack is primed, i.e., isothermal
at 0°C, and ready to transmit and discharge water. The Martinec model,
referred to as the Snowmelt-Runoff Model (SRM), was designed to accept
satellite snow covered area observations as input. SRM calculates melt
over the snow covered area and uses a simple routing procedure to
improve daily runoff simulation. The model by Quick and Pipes (UBC)
modifies temperature in an attempt to account separately for melt due to
convective heat transfer, radiant energy input, and latent heat

changes. The CEQUEAU model, developed by Charbonneau et al., accounts
for melt differently in forested and non-forested areas.

Models in the second and third categories are considered conceptual
because they attempt to simulate individual processes. In the second
category, most of the models use air temperature as an index of heat
exchange at the surface of the snow cover. When the temperature is
above some base temperature, surface melt is assumed to occur. Negative
heat storage is retained as a model state, so that heat losses and gains
can be calculated during non-melt periods. Examples of models which fit
into this category are contained in Eggleston (1971), Willen et al.
(1971), Anderson (1973), Leavesley (1973), and Speers et al. (1978).

Air temperature has been found to be a reasonable index to heat exchange
at the snow-air interface. In addition, air temperature is usually
available, and generally reliable assumptions can be made about its
areal variability. These models become deficient when air temperature
is not a good index to the energy exchange. This occurs: 1) under clear
skies with very cold temperatures (melt is underestimated); 2) with very
warm temperatures and little or no wind (melt is overestimated); and 3)
with high dewpoints and high winds (melt is underestimated), (Peck and
Anderson, 1977).

The last category includes models which explicitly calculate the
basic energy transfers of radiation, sensible heat transfer, latent heat
content, and the heat content of precipitation (Anderson, 1972).
Anderson (1976) describes a point energy budget snowmelt model. Other
examples of models which fit into this category are NAM-II (Nielsen and
Hansen, 1973) and SHE/IHDM (Morris and Godfrey, 1978). The
disadvantages of models in this category are the additional data inputs
required, since the data are not readily available, not easily
estimated, often of poor quality, and not easily extrapolated to an
areal basis.

Model Updating

The procedure of adjusting a model's states so that the model
simulation reflects observations is referred to as updating. Updating
techniques range from relatively simple empirically based procedures to
much more complex optimal estimation techniques. An example of an
empirical technique is the NWS Computed Hydrograph Adjustment Technique
(CHAT) (Sittner and Krouse, 1979). In CHAT, precipitation input to a



soil-moisture accounting model is varied until the observed runoff
volume matches the simulated runoff volume. The ordinates of the unit
hydrograph are "warped" until the shapes of the simulated and observed
hydrographs agree within some prespecified tolerance.

An optimal estimator processes measurements to produce a minimum
error estimate of the state of a system by utilizing knowledge of system
errors, measurement errors, and initial condition information (Gelb et
al., 1974). The Kalman filter, for example, is an optimal estimator
which provides a linear unbiased minimum variance estimate of a model
state. The theory is developed in detail in Kalman (1960), and Kalman
and Bucy (1961). The technique has been applied to problems in
satellite orbit determination, submarine and airecraft navigation, -and
space flight (Jazwinski, 1970). In the 1970's, the Kalman filter became
popular in the field of hydrology. Hino (1973) was one of the first to
apply the Kalman filter to hydrologic problems, when he used it to
update the parameters of a linear discharge model. Since then, many
applications of the Kalman filter to water resources have appeared in
the literature, e.g., Bras and Rodriguez-Iturbe (1976), Lettenmaier and
Burges (1976), Szollosi-Nagy (1976), Chiu (1978), Wood and Szollosi-Nagy
(1978), Bolzern et al. (1980), Kitanidis and Bras (1980a), 0'Connell
(1980), Cooper and Wood (1982), Bergman and Delleur (1985), Burn and
McBean (1985), Mizumura and Chiu (1985), Brazil (1988), and Georgakakos
et al. (1988).

Most of the hydrologic applications of the Kalman filter have dealt
with the state and/or parameter estimation of linear transfer function
models, e.g. unit hydrograph, autoregressive (AR) models, autoregressive
moving average (ARMA) models, or autoregressive moving average models
with exogenous inputs (ARMAX). These models are easily put into an
adaptive framework, but because of their inability to model nonlinear
processes adequately, they often require frequent updating to maintain
accurate estimates of the states. The adaptive linear models are most
useful when the forecast lead times are short in comparison to the
response time of the watershed, the hydrologic conditions are changing
slowly, and the error in the measurement of the inputs is large relative
to the error in the measurement of the outputs (Kitanidis and Bras,
1980a). As the forecast lead time increases and the error in the
measurement of the inputs decreases, the ability of the model to
correctly simulate the natural processes becomes more important.

Kitanidis and Bras (1980a) applied the extended Kalman filter to
the Sacramento soil-moisture accounting model, which is an extremely
nonlinear, lumped-parameter, conceptual rainfall-runoff model. In the
extended Kalman filter, nonlinear models are linearized using Taylor
series expansion or statistical linearization (Bras and Rodriguez-
Iturbe, 1985). The filter was used to update the Sacramento model
states based on streamflow observations. The model was then used with
the updated states to forecast streamflow at various lead times, and
these forecasts were compared to those obtained with one of the linear
adaptive models. Forecast errors were similar for very short forecast
lead times, but the forecasts from the Sacramento model became
increasingly more accurate than the forecasts from the linear model as
the lead time increased.
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Kalman filtering applications to hydrology have concentrated
primarily on updating rainfall-runoff models for short-term forecasts of
streamflow. In the references cited previously, only Burn and McBean
(1985) and Mizumura and Chiu (1985) included snowmelt in their models.
Both of these models were designed to forecast streamflow with only one
day of lead time. Though the Burn and McBean model requires basin snow
covered area as an input, neither model is designed to use snow-water-
equivalent measurements. Leu (1988) applied a Kalman filter to a point
temperature index snow model, and he updated with snow-water-equivalent,
snow depth, and snow cover temperature observations. He used pattern
recognition techniques to estimate the spatial distribution of snow, but
the procedure has not been applied to large areas with large=-scale
variability.

Some attempts have been made to improve long-term streamflow
forecasting accuracy in snowmelt areas using updating. One example of
updating for longer-term forecasts is given by Tangborn (1978), in which
a linear regression model based on the water balance concept is used.
The unique aspect of Tangborn's approach is the use of part of his
forecast period as a test season and the subsequent use of the
streamflow forecast error in the test season to adjust the streamflow
forecast for the entire forecast period.

Carroll (1978) developed a procedure to objectively incorporate
snow-water-equivalent data into a conceptual snowmelt simulation
model. 1In this procedure, a linear regression is performed between
historical point snow-water-equivalent observations and the model
simulated areal snow-water-equivalent state. In the updating step, a
water-equivalent is calculated from the regression equation and, using
an empirical relationship, weighted against the model simulated water-
equivalent to determine an updated water-equivalent estimate. Limited
testing indicated that the procedure improved forecasts (Carroll and
Peck, 1979), but verification is difficult, since the procedure is
empirical with very little statistical or conceptual basis.

Areal Estimation

A central difficulty in updating a model's states with point snow-
water-equivalent observations is that most models perform snowmelt
calculations on a lumped rather than on a distributed basis. The states
of a lumped model represent averages over an area, SO the snow-water-
equivalent observations must somehow be related to the model's lumped
areal snow-water-equivalent state. Conceptually, this can be viewed as
two distinet transformations. The first transformation derives an
estimate of the true areal snow-water-equivalent from the point
observations, and the second transformation relates the areal estimate
to the model areal snow-water-equivalent state. The second
transformation is required because there may not be a one-to-one
correspondence between the model state and the true areal snow-water-
equivalent, due to inadequacies in model structure, inputs, and/or
parameter estimates. A model may compensate for inadequacies by
introducing a bias into one or more of its states. There is, however,
no way of verifying that a model-estimated areal snow-water-equivalent
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state accurately represents the true areal snow-water-equivalent, since
observed areal water-equivalent data are not available.

The first transformation, converting point observations of snow-
water-equivalent to an areal estimate of snow-water-equivalent, has
received little attention. Johnson et al. (1982) developed a
correlation area weighting scheme for combining point, line, and areal
estimates of a variable, e.g., snow-water-equivalent. Each measurement
is weighted based on the portion of the watershed that is correlated
more highly with it than any other measurement. Correlations are
partially based on judgement, since the data are usually not available
to make an objective estimate. The technique has not been extended to
areas where the underlying process is not homogeneous.

Although the transformation from point to areal snow-water-
equivalent has received little attention, the transformation from point
to areal precipitation has been researched extensively. Theissen (1911)
developed a technique that is still used today to calculate average
precipitation over large areas. The technique weights each
precipitation observation based on the fraction of the basin that is
closer to this observation point than any other. Spatial interpolation
techniques have been used to estimate point precipitation at ungaged
points (Tabios and Salas, 1985). Estimated point precipitation is then
integrated (or summed) to produce an estimate of the basin areal
precipitation. A polynomial interpolation technique estimates the
precipitation at a point as a polynomial function of the point's
coordinates. The polynomial coefficients are estimated by minimizing
the sum of the squared errors between the observed precipitation and the
predicted precipitation. Inverse weighting represents another spatial
interpolation technique commonly used to estimate mean areal
precipitation. When inverse weighting is used, the rainfall at a point
is interpolated as a linear combination of the observed values. The
observations are weighted as an inverse function of the distance to the
interpolated point. A major disadvantage of this technique is that it
does not recognize potentially redundant information, e.g., when two
observations are situated close together.

Another set of techniques falls under the category of optimal
interpolation. This set includes the objective analysis technique
developed by Gandin (1965) and the kriging technique developed by
Matheron (1971). These techniques also assume that the interpolated
values are linear combinations of the observations, but the coefficients
are determined by minimizing the expected value of the squared
difference between the interpolated value and the true value (mean
squared error criterion). In order to use these methods, the spatial
variability of the process, which is usually estimated from the
observations, must be described. Gandin uses the spatial correlation
function, and Matheron uses variograms to describe this spatial
variability. Though these techniques assume the underlying process is
stationary in space, an extension of kriging (universal kriging) allows
a trend to be accounted for in the mean (Bras and Rodriguez-Iturbe,
1985). These techniques have been used by many researchers for the
analysis of rainfall fields (Creutin and Obled, 1982; Chua and Bras,
1982; and Bastin et al., 1982).
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The concepts of optimal error criteria have been extended for
rainfall analysis and network design. Rodriguez-Iturbe and Mejia
(1974b) showed the relationship between point and areal rainfall based
on the correlation structure of the point rainfall. A multivariate
point rainfall model, developed by Mejia and Rodriguez-Iturbe (1974), -is
able to simulate point processes with the appropriate temporal and
spatial variability. A multidimensional model which was developed by
Lenton and Rodriguez-Iturbe (1977a) as an extension of the point model
. is able to synthesize areal rainfall that preserves the correct areal
covariance structure using the point covariance relationship as input.
Models such as these have been used for rainfall network design
(Rodriguez-Iturbe and Mejia, 1974a; Bras and Rodriguez-Iturbe, 1976a;
and Lenton and Rodriguez-Iturbe, 1977b). Bras and Rodriguez-Iturbe
(1976b) used a rainfall-runoff model in’'conjunction with a multivariate
rainfall model for rainfall network design. This methodology used
streamflow forecast accuracy as a criterion. Smith and Karr (1985)
present a physically based space-time rainfall model intended for
management and design applications. Schaake and Peck (1986) developed a
methodology for analyzing data networks in mountainous areas, that
accounts for the spatial variability of the long-term mean precipitation
and the spatial correlation of the seasonal deviations from the long
term-mean precipitation. A simple runoff model is incorporated into the
methodology, so that the effect of the network configuration on
streamflow forecast errors can be assessed.

The interpolation/estimation procedures that have been applied to
areal precipitation estimation generally rely upon one of two
fundamental criteria: 1) a network which is dense in relation to the
spatial variability of the precipitation process so that the
interpolation does not produce excessive errors; or 2) the ability to
estimate the mean and spatial covariance of the precipitation process.

Summary

The theory and application of snow accumulation and ablation models
is well documented in the literature. 1In addition, estimation theory
has been used extensively in the updating of hydrologic models and in
the analysis of precipitation data networks. Some of this work has
addressed the problems encountered in applying these techniques in
mountainous areas, however, very little work has been done in the
spatial analysis of snow-water-equivalent data and in the incorporation
of these data into snow models for large-scale basin application. This
research partially fills this void by developing an objective
methodology for extracting areal information from point snow-water=-
equivalent observations and using this information to update the states
of a large-scale conceptual snow model.
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Chapter 3
METHODOLOGY

Overview

When conceptual snowmelt simulation models are used in conjunction
with a rainfall runoff model, they provide detailed streamflow
information and have the potential of producing accurate forecasts under
a wide range of hydrologic conditions. There are obstacles, however, to
applying the conceptual snowmelt simulation models. They require
estimates of basin precipitation and temperature, which are typlically
calculated from relatively sparse networks of point measurements. The
interaction of atmospheric dynamics with the topography complicate the
spatial variability of precipitation in mountainous areas. Futhermore,
high elevation precipitation data are scarce because of the difficulty
in locating and servicing gages at high elevations. These data are
often a source of error because of the high winds in these areas and the
effects of wind on obtaining accurate precipitation measurements (Larson
and Peck, 1974). The errors in estimating precipitation at high
elevations are particularly important from a water balance standpoint,
since the majority of the precipitation in a basin falls at the higher
elevations. Additionally, errors in temperature affect the
determination of the form of precipitation, i.e., rain or snow, and the
calculation of snowmelt. A reasonable estimate of the spatial
distribution of temperature can be made based on a local temperature
versus elevation relationship, but lapse rates may vary significantly
during individual events.

Errors in model inputs, model formulation, and parameter estimates
contribute to inaccurate estimates of snowmelt and snow cover states.
Estimation theory provides a logical framework within which an estimate
of a state variable from a model simulation can be objectively combined
with one from observations, based on the relative accuracy of the
estimates. The methodology described herein applies a Kalman filter to
a conceptual snow model so that the snow model states can be updated
based on observations of snow-water-equivalent.

Figure 3.1 shows a schematic for the updating methodology. Areal
precipitation and temperature estimates are computed from the
meteorological observations and input to the snow model filter, which
then computes estimates of the current snow model states and their
uncertainties. Similarly, snow-water-equivalent observations are
processed through an objective analysis procedure to produce an estimate
of the model areal snow-water-equivalent from these snow data. This
estimate and its uncertainty are also input to the snow model filter and
used to update the current estimates of the model states. Melt is
computed using the updated states and input to rainfall-runoff and
routing models, which then predict streamflow.
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Model Selection

The methodology requires a snow model that keeps continuous account
of the snow cover states. The National Weather Service (NWS) snow model
developed by Anderson (1973) was selected for this research, because it
is used operationally by the NWS in most of the West, it has been tested
extensively, and it is well accepted by snow hydrologists. It was
included as part of a World Meteorological Organization (WMO) snowmelt
model intercomparison study (WMO, 1986). The model is conceptual and
typically applied on a lumped area basis, but basins may be subdivided
to minimize the effect of lumping inputs, parameters, and states over
large non-homogeneous areas.

The model parameters are defined in Table 3.1, and Figure 3.2
presents a flowchart for the Anderson snow model. Precipitation and
temperature are required as inputs. Air temperature 1s compared against
the parameter PXTEMP to determine whether precipitation falls as rain or
snow. Melt is calculated when the air temperature is greater than the
parameter MBASE. During non-rain periods, melt is assumed to be a
linear function of the difference between the air temperature and MBASE:

M = Mq(T, - MBASE) (3.1)
where, M = amount of melt (mm/6 hr),
-1 -1
Mp = melt factor (mm « °C « 6 hr ), and

T, = air temperature (°C).

M, varies as a function of the time of Year and the parameters MFMIN and
MFMAX. This variation accounts for the Seasonal change in incoming
solar radiation and albedo.

During rain periods, several assumptions can be made that allow
melt to be calculated through simplification of the energy balance
equation:

Energy available for melt = Q, + Qg + Q + Qg +Q (3.2)

m
where, Qn = net radiation transfer,
Q¢ = latent heat transfer,

sensible heat transfer,

O
=3
[]

Q, = heat transfer across the snow-soil interface, and

: Qm = heat transfer by mass changes (advected heat)
If it is assumed that: 1) the incoming solar radiation is negligible
because of overcast conditions; 2) the incoming longwave radiation is

equal to blackbody radiation at air temperature; and 3) the relative
humidity is 90 percent, equation (3.2) can be expressed as:

- L3
M= 3.67 - 10 (Ta+ 273) = 20.4 + 0.0125 PxTa + (3.3)

8.5 f(ud) [(0.9e¢S - 6.11) + 0.00057 PaTa]
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Table 3.1

NWS Snow Model Parameters

PXTEMP Temperature above which precipitation is assumed to be rain

(°C).

SCF Multiplying factor to correct for precipitation gage catch
deficiency during periods of snowfall.

MBASE Base temperature for melt computations during non-rain periods
(°C).

UADJ Average six-hour wind function during rain on snow events
(mm/mb) .

MFMAX Maximum non-rain melt factor which occurs on June 21
1

(mm + °c”! « 6 hr ).

MFMIN Minimum non-rain melt factor which occurs on December 21
-l
(mm - °C 1.6 nr ).

TIPM Antecedent temperature index parameter (0.0 < TIPM < 1.0).
NMF Maximum value of negative melt factor which occurs June 21
¥
(mmg - oc™l « 6y, !
SI Mean areal water-equivalent above whicn 100 percent areal snow

cover always exists (mm).
PLWHC Percent (decimal) liquid water holding capacity.
DAYGM Daily melt at the soil-snow interface (mm).
ADC Areal depletion curve,

1 Note: 1 mm, = the amount of energy per unit area required to freeze
or melt 1 mm of water.
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where, Px = water-equivalent of precipitation (mm), .
f(ua) = function of the wind speed, u, (mm « mb ),
eg = air temperature saturation vapor pressure

(mb), and
P, = atmospheric pressure (mb).

The atmospheric pressure is estimated in the model from an altitude-
pressure relationship. The wind function is represented by the model
parameter UADJ. Under these assumptions, the melt is reduced to a
function of air temperature.

Energy is also exchanged between the snow cover and the air during
non-melt periods. It is assumed that the heat exchanged during non-melt
periods is proportional to the temperature gradient in the upper portion
of the snow cover, The temperature at the snow surface is assumed to be
air temperature, and the temperature within the snow cover is defined
by:

TI, = TI, + TIPM - (Ta - TI1,) (3.8

where, TIi = snow cover temperature index at the end of time
period i (°C).

The heat exchange is calculated as:

M
f
H = NMF - (ﬁfﬁif) « (TI, Ta) (3.5)
where, H = change in the snow cover heat deficit (mme/6hr).
(Note: 1 mm, = the amount of energy per unit area required to

freeze or melt 1mm of water.)

The model keeps continuous account of any negative heat storage that
accumulates in the snow cover. This heat deficit represents the amount
of heat that must be added to return the snow cover to an isothermal
state at 0°C. Melt can only occur when the negative heat storage of the
snow cover is reduced to zero.

As snow does not accumulate or melt uniformly in a basin, some
areas become bare before others. This is important in snowmelt
simulation, since the amount of melt is directly proportional to the
amount of snow covered area. The model accounts for changes in the
areal extent of a snow cover through an areal depletion curve, which
defines the areal extent of snow cover as a function of the ratio of the
current areal water-equivalent to a maximum areal water-equivalent. The
maximum areal water-equivalent, AI, is the smaller of the model
parameter SI and the maximum areal water-equivalent accumulated in the
current season. A sample areal depletion curve is shown in
Figure 3.3. For values of water-equivalent greater than Ay, the basin
is assumed to be completely covered with snow. As the water-equivalent
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drops below A;, the areal extent of snow cover is determined from the
areal depletion curve. If a significant snowfall occurs when the areal
extent of snow cover is less than 100 percent, the model assumes that
the areal extent of snow cover is 100 percent until 25 percent of the
new snow melts, and that it then returns to its original position on the
areal depletion curve along the dashed line in Figure 3.3.

A snow cover can hold some liquid-water against gravity drainage.
The model assumes that the maximum amount of liquid-water which can be
held against drainage is a fraction of the frozen-water in the snow
cover, and represents this fraction with the parameter PLWHC. Using
empirical relationships, excess liquid-water is lagged and attenuated
through the snow cover to simulate snow cover outflow.

It was necessary to convert the snow cover outflow to streamflow
for calibration and verification of the methodology. The Sacramento
soil-moisture accounting model (Burnash et al., 1973) was used to
convert the snow cover outflow to runoff. The Sacramento model is one
of a family of lumped, deterministic, conceptual watershed models, a
schematic for which is shown in Figure 3.4. The model keeps continuous
account of the contents of several soil moisture zones. The schematic
shows how water moves between zones and eventually becomes runoff. The
model has been used extensively by the NWS in conjunction with the
Anderson snow model. It was compared against other models in a WMO
rainfall-runoff model intercomparison study (WMO, 1975). The unit
hydrograph procedure (Linsley et al., 1975) was used to time distribute
the runoff to the basin outlet.

Kalman Filter Formulation

An optimal estimator processes measurements to produce a minimum
error estimate of the state of a system by utilizing knowledge of system
errors, measurement errors, and initial condition information (Gelb et
al., 1974). The Kalman filter (Kalman, 1960, and Kalman and Bucy, 1961)
is an optimal estimator which provides a linear unbiased minimum
variance estimate of a model state. 1In order to apply the Kalman
filter, the system and measurement dynamics must be expressed as linear
functions of the model states. 1In discrete form, the system equation
expresses the state vector at time t+1 as a function of the state vector
at time t and any external driving forces. The measurement equation
relates the state vector to the observations. Numerous sources describe
the formulation and derivation of the filter equations (Gelb et al.,
1974, and Jazwinski, 1970). The discrete form of the Kalman filter is:

System Equation

+ G u +T W (3.6)

Xg = Ppoq Xpoq P Gy oy Ty W,

~ Measurement Equation

z, = H x_ +v (3.7)
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where, X, = state vector at time t, (n x 1)
Z, = measurement vector at time t, (m x 1)
ug = input vector at time t, (» x 1)
W, = system noise vector at time t, (p x 1)
V. = measurement noise vector at time t, (m x 1)
¢, = system transition matrix at time t, (n x n)

Gy = input weighting matrix at time t, (nxr)
I‘t = Systém noise weighting matrix at time t, (n x p)
Ht = state/observation weighting matrix at time t, (m x n).

System and measurement noise are assumed to be independently and
identically distributed Gaussian random variables with the following
properties:

E(wt) = 0,

E(Vt) ; 0,

Bliy W) = Qs

T

T
E(wt vk) =0 for all t,k ,

where, Q = system error covariance matrix,
R = measurement error covariance matrix, and
6tk = Kronecker delta function, such that 6tk= 1, t =k,
5tk= 0, t = k.

The solution to the filter can be derived by assuming that the optimal
estimator is a linear combination of the optimal state estimate before
an observation and of the observation itself. The requirements that the
estimator be unbiased and possess minimum variance lead directly to the
solution:

~ ~

Xerrse ™ ¥ Xppp * G Yy (3.8)
T T T
Peatse = 9 Pypp & * Ty Q T *+ GU .G (3.9)
-l
K H' . (R . +H . P HY ) (3.10)

Kevr = Peaase Hen t+1 t+1 “te1/t T+
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-~ ~ -~

+ K (z - H

Xeerzeer = Xeerze T Koer U Zpar T Hpsy Fpase) (3.11)

= (I~ Kt+ H_,.) (3.12)

Pt+1/t+1 1 ¢+ Pt+1/t

estimate of state vector at time t,

%
=3
o
3
®
>
[]

given information at time s, (nx 1)

Pt/s = gtate estimate error covariance matrix at time t,

given information at time s, (n x n)
Uy = input noise covariance matrix, (r xr)
K¢ = Kalman gain matrix at time t, (n x m)
I = identity matrix, (n x n).

A schematic diagram of the filtering procedure is shown in
Figure 3.5. The filter is used to forecast the states and their error
covariance matrix given observations up to time period t. Observations
are made for time period t+1, the Kalman gain is calculated, and the
states are updated for time period t+1 given observations up to time
period t+1. The state error covariance matrix is updated, the time is
incremented, and the procedure is repeated for the next time period.

As the Anderson snow model is extremely nonlinear, the Kalman
filter can not be directly applied. The extended Kalman filter,
however, allows a nonlinear system to be linearized about some nominal
state vector, which is usually selected to be the current estimate of
the conditional mean of the state vector. System state-space equations
are usually written in the form:

dx
dt

where x 1s the state vector and u is the vector of inputs. In this
case, the equations were written in integral form:

= f(x,u) (3.13)

t+1
dx
el w (3.1

where f. is the integrated state-space equation for state i. First-
order Taylor series approximations were then made for the integrated
state-space equations to produce the following linear equation:

Xipq = X, = Atxt + Btut + Ct (3.15)
where A and B, are (n x n) constant matrices at time t and Ct is a
(n x 1) constant vector at time t. A ’ Bt' and C,. are recalculated at
each time step. In practice, the complete nonlinear state-space
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equations are used to forecast the states, and the piecewise linearized
equations are only used to propagate the state error covariance matrix.

The measurement equation (3.7) is also shown as a linear function
of the states, The measurements in this case are snow course
measurements of snow-water-equivalent. These measurements are combined
external to the filter to form a single observation, 2y, of the model
sSnow-water-equivalent states. Ht is simply a vector denoting the
locations corresponding to the frozen and liquid-water-equivalent
states.

Development of the Measurement Equation

The measurement equation requires forming an observation of the
model snow-water-equivalent from the snow course measurements. The
model states represent averages over a large area, but there is no
guarantee that the model water-equivalent states would correspond to the
true water-equivalent over the area, if the true areal water-equivalent
could somehow be measured. Thus, how can a sparse network of snow
course measurements be used to estimate the model snow-water-equivalent
states?

An approach developed as part of this research takes advantage of
the fact that streamflow observations provide information about
precipitation and snow cover integrated over a basin. One of the most
important forecasts generated in the West is the seasonal streamflow
volume forecast for water supply. Errors in the seasonal volume
forecasts result from errors in the model states, errors in the mean
areal precipitation and temperature inputs, and inaccuracies in the
models themselves. Once most of the snow has fallen, much of the volume
error 1s due to inaccurate estimates of model snow-water-equivalent.
Historical optimal estimates of model Snow-water-equivalent can be made
by adjusting the snow-water-equivalent states until the model simulates
the proper seasonal volume. These estimates are called pseudo-observed
states, and they represent our best estimates of the true model states
conditioned on our knowledge of the historical seasonal streamflow
volumes.

Given an historical record of pseudo-observed states for some date,
€.g., April 1, and an historical record of snow course measurements for
the same date, it is possible to develop a regression equation that
estimates the pseudo-observation as a function of the snow course
measurements. A linear relationship was assumed between the pseudo-
observed state and the snow course measurements:

P.0. = ] e.x. + cg }/ (3.16)
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where, P.O. pseudo-observation for April 1,

ey = coefficient for snow course i,

¢, = constant,

Xy = April 1 measurement for snow course i, and
n = number of snow course sites.

The coefficients are estimated from the historical data, so that the
equation can be used in real-time to transform the snow course
measurements into an observation, Z . Different equations were
developed for different times of year., The major disadvantage of the
regression-based procedure is that an historical record of snow course
measurements is required in order to estimate the coefficients. If a
new station is added to the network, it can not be used in the procedure
until many years of data are available.

A second procedure was developed that does not require a long
historical record for estimation of the coefficients. The procedure is
a spatial interpolation approach that was first applied to
meteorological fields by Gandin (1965). It is assumed that a value in
the field can be estimated as a linear combination of the observations:

- n
Y(x,) = ) AJ y(xj) (3.17)
j=1

estimate of the process Y at location x,,

where, Y(x,)
n = number of observation locations,

A, = weight to be applied to observation j, and

observation of process at location xj.

The field is usually assumed to be statistically homogeneous and
isotropic with a mean of zero, but the procedure can be adapted for more
complicated fields. The procedure can also account for observation
errors, but it is assumed here that the observation errors are zero.
Mathematically, the problem can be expressed in terms of a state model,
which defines the assumptions made about the process, and a data model,
which defines the relationship between the process and the observations.

Y(xj)

State Model

Y is a random process
E[Y(x)] = 0, where x represents location
VAR[Y(x)] = VAR[Y] for all x

COV(Y(xi),Y(xj)) = p(xi,xj) + VAR(Y)
where p(xi,xj) = p(xi - x,) = correlation coefficient

J

between two points (x; = xj) apart.
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Data Model
Y(xi) = Y(xi)
The estimation error is given as:

~ n
e = Y(xo) = ¥Y(x,) = Y(x,) - J AJ y(x.) (3.18)
3=1 ’ |

The technique is an optimal interpolation technique because the weights
are derived by minimizing the error variance.

n
VAR(e) = VAR(Y) - 2 ] AJ CoOVIY(xy),y(x,)] +

j=1 J
1)
Ad, COVEy(x,.),y(x.)] (3.19)
=1 g=1 R
UARLe) - -2 COVT¥(x0),y(x)]
i
n
+2 7 COVLy(x4),y(x4)] i=1,n  (3.20)
j=1
Setting Q!%%Sil_ = 0, yields:
i
n
COVLY(xg),y(x;)] = ] Aj COV[y(xi),y(xj)] i=1,n (3.21)
j=1

There are n linear equations and n unknowns. The vector of weights is
computed using matrix algebra. By substituting equation (3.21) into
equation (3.19) and simplifying, the error variance can be expressed as:

n
VAR(e) = VAR(Y) - ¢ Aj COV[Y(xo)oY(XJ)] (3.22)
J=1

Three important characteristics of the technique (Gandin, 1965) are:

1. When the observation errors are assumed to be zero and one of
the stations coincides with the point to be estimated, that
station is assigned a weight of one and all of the other
stations are assigned a weignt of zero.

2. When all of the stations are located so far away from the point
to be estimated that they are uncorrelated with it, all of the
stations are assigned a weight of zero and the point is
estimated as its mean. :
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3. When all of the stations are uncorrelated with one another,
their weights reduce to their correlation coefficient with the
point to be estimated.

The snow-water-equivalent field is extremely variable in both space
and time. If, however, the mean and variance can be estimated, the
field can be transformed into a field of standardized deviates.

X;5 X,
zij = __~.]___l_ . (3.23)
S,
J
where, ziJ = standardized deviate for year i at location j,
Xij = snow-water-equivalent for year i at location j,
ij = mean snow-water-equivalent at location j, and
SJ = standard deviation of snow-water-equivalent at

location j.

If the correlation structure of the field is known, the equations above
can be used to interpolate the field of standardized deviates., The
interpolation procedure can be outlined as:

.

Obtain snow-water-equivalent measurements.

Transform measurements into standardized deviates.
Interpolate standardized deviates at each grid point.
Transform grid point standardized deviates into snow-water-
equivalent estimates.

WD -
« o

Since the true areal water-equivalent may not correspond to the pseudo-
observed state, some adjustment is needed for the interpolated water-
equivalent values before they can be used to update the model states.
Linear regression was used to develop a relationship between the pseudo-
observed state and the estimated areal snow-water-equivalent from the
interpolation procedure,

m
121 Y(xi)
P.0. = C;, ———— + Co (3.24)

where, Co, C;, = constants,
N m = number of grid points in the subarea, and
Y(xi) = estimated snow-water-equivalent at grid point i.

The spatial interpolation procedure provides an approach that also
estimates the pseudo-observed state as a linear combination of the
observations, but it offers several advantages over the regression-based
approach. It provides an estimate of the snow-water-equivalent at all
of the grid points based only on snow measurements. In addition, long
historical records are not required for all of the stations in the
network, and changes to the network do not necessitate deriving new
equations. As stations are removed from the network, the estimation
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error will increase, but the same equations are valid. Conceptually,
the interpolation approach is appealing because it provides a
statistical framework for estimating station weights, that could be
extremely useful in network design.

, The interpolation procedure was used for different months

throughout the snow accumulation and ablation season. The procedure
required estimation of the mean and variance of the field, as well as
the correlation structure of the standardized deviates for each month.
The mean of the field was estimated in two ways. Precipitation maps for
the period October through April are available for large portions of the
West. Peck and Brown (1962) showed a relationship between the ratio of
October through April precipitation to April 1 snow-water-equivalent and
latitude and elevation for stations in Utah. This type of a
relationship provided a basis for estimating the mean snow-water-
equivalent field during the snow accumulation season given October
through April precipitation.

After April 1, melt occurs in many areas, and the spatial
variability of melt has a significant effect on the field of snow-water-
equivalent. A procedure was developed to derive mean snow-water-
equivalent fields throughout the snow accumulation and ablation
season. This procedure uses the snow model to determine the spatial
variability of melt. Each model subarea is divided into zones based on
aspect, forest cover, and elevation, and the snow model is applied to
each zone to determine the amount of melt that would occur provided
there was snow. It is assumed that the major difference from zone to
zone is the melt rate on clear days, and this difference in melt rates
is accounted for by adjusting the model maximum and minimum melt
factors. Zones were classified into three aspect categories: north,
south, and horizontal. East and west aspects were included with
horizontal, since all three receive equivalent amounts of solar
radiation when the radiation is integrated over a day. Based on
information published by the Corps of Engineers (1956), it was assumed
that the ratio of a melt factor on a north-facing slope to that on a
horizontal surface is 0.7 and the ratio of a melt factor on a south-
facing slope to that on a horizontal surface is 1.2. These values are a
function of season and latitude, but these assumptions are realistic for
much of Colorado and Utah for the major part of the snowmelt season.
Forested areas were distinguished from non-forested areas in the zone
classification scheme. Kuusisto (1984) cited research by Kuzmin that
showed how melt rates varied as a function of forest canopy density.
These results indicate that a canopy density of 30 percent produces a
ratio of the melt factor in a forested area to that in a non-forested
area of 0.7. It was assumed that the melt factors used for the subareas
in the lumped model would be reasonable first approximations for the
melt rates for horizontal, non-forested zones in the subarea. Since all
of the zone melt factors were related to the melt factors for
horizontal, non-forested zones, the melt factors assigned to horizontal,
non-forested zones could then be adjusted until the proper amount of
melt was simulated over the subarea. The subarea temperature time
series was lapsed to the appropriate zone elevation, and six hour melt
calculations were performed for each zone for each year of record.
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Monthly snow accounting was performed for each grid point taking
into account the grid point precipitation and the melt from the
appropriate zone. The monthly snow-water-equivalent was computed from:

where, SWEi = grid point snow-water-equivalent at the beginning of
month i,
SFi = grid point snowfall during month i, and
ZMij snowmelt during month i for zone j, when grid point is
contained in zone j.

The monthly snowfall at the grid point was estimated as:

OAng
SFi = oiP . ZSFij (3.26)
sa
where, OAP8p = average October through April precipitation at the grid

point,

OAPsa = average October through April precipitation for the
subarea, and

ZSFiJ = snowfall during month i for zone j, when grid point is
contained in zone j.

These monthly calculations were performed for each historical year, and
the mean snow-water-equivalent was computed at each grid point for each
month. A relationship between the mean and standard deviation of the
snow-water-equivalent at a point was developed based on the historical
snow course observations. This relationship was used to estimate the
standard deviation at each grid point given the mean at the grid point.

The correlation structure of the field is also needed before the
standardized deviates can be interpolated. The correlation between the
standardized deviates of each pair of stations was calculated and
plotted as a function of distance. A simple correlation function of the
form:

p = ae ¥ (3.27)

where, correlation coefficient,
= constants, and

distance between points.

a,

» T v
|

was fit to these data. The interpolation procedure was tested by
estimating the data at each of the snow course sites, and comparing the
actual error to the predicted error. Peck and Schaake (1989) found that
additional variability in the correlation between stations could be
explained by including orographic precipitation as another variable in
the correlation function. The Peck and Schaake correlation function was
also tried on the Animas data.

Given the mean snow-water-equivalent at all of the grid points, a
relationship between the mean and standard deviation of the snow-water-
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equivalent, and a correlation function for the standardized deviates,
the snow course measurements can be interpolated and grid point
estimates of snow-water-equivalent can be made. The grid point snow-
water-equivalent estimates can be averaged over the subareas to produce
estimates of mean areal snow-water-equivalent. Equation (3.24) can be
used to convert these values to observations of the model states.

Summary

A methodology has been presented for updating the states of a
conceptual snow model. The methodology uses an extended Kalman filter
to produce optimal model state estimates. Two techniques are presented
for relating the snow course observations to the model state. One is
based on regression and the other is an optimal interpolation technique
that takes into account the correlation structure of the data.
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Chapter 4

PROCEDURE DEVELOPMENT

.Introduction

A methodology was presented in Chapter 3 for updating the states of
a lumped conceptual snow model with point observations of snow-water-
equivalent. This chapter details the development and testing of the
state-space equations and the application of the Kalman filter
equations. Data from the Animas Basin in Colorado is used in the
development of the updating procedure and in assessing its value.

State-Space Model

The methodology presented in Chapter 3 requires the development of
a system equation in order to apply the Kalman filter. The first step
in the development of the system equation is to express the model in
state-space form. This section describes the development of the state-
Space equations for the NWS snow accumulation and ablation model.

The NWS snow accumulation and ablation model is extremely
nonlinear, and like many conceptual models, it makes frequent use of
thresholds to indicate when the operating rules of the model change.
Kitanidis and Bras (1980a) discuss two techniques for linearizing
threshold functions and they use both techniques in linearizing state-
Space equations for the Sacramento soil-moisture accounting model. The
first technique involves substituting a continuous nonlinear function
for the threshold and linearizing the nonlinear function using a Taylor
series approximation. The second technique is statistical linearization
(Gelb et al., 1974), in which the coefficients are estimated by
minimizing the error of the linear approximation to the nonlinear
function. Gupta and Sorooshian (1985) observed that the thresholds used
in conceptual models create a modality of behavior in the models. They
treat the thresholds by writing separate state-space equations for the
different operating modes of the model. The technique used here is
similar to that of Gupta and Sorooshian. Zero-one integer variables
were used to indicate when the model switches from one mode to another,

Nonlinear state-space equations were written for five snow model
states: frozen water-equivalent, negative heat storage, liquid water-
equivalent, snow cover temperature index, and areal extent of 3now
cover. In the original model, four states are used to describe the
current areal depletion curve. The states are the maximum water-
equivalent accumulated this Season, the value of areal extent of snow
cover where the new snow line leaves the areal depletion curve, the
water-equivalent value where the new snow line leaves the areal
depletion curve, and the water-equivalent value of the new snow line for
100 percent cover. 1In the state-space model formulation, these states
are referred to as endogeneous states. They are treated as parameters
that change in time. That is, they are carried along in time to
describe the current areal depletion curve, but their variance is not
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propagated. Any uncertainty introduced to the system through these
endogeneous states is included as part of the system error tern.

The areal depletion curve defines the areal extent of Snow cover as
a function of water-equivalent. 1In the state-space model, the curve is
plecewise linearized at each time step. The model parameters are
assigned symbols in Table 4.1 to simplify the notation. The model
states, inputs, constants, and some computed variables are presented and
defined in Table 4.2. The zero-one integer variables that are used to
indicate the model modes are defined in Table 4.3. Snowmelt, free
water, and heat exchange are defined separately in order to simplify the
state-space equations.

As discussed in Chapter 3, the model calculates snowmelt
differently for rain periods than it does for non-rain periods. The
equations for computing melt during a 6-hour time period are given below
for the two cases:

Snowmelt
During Non-rain Period --
M= (1 ~-L,,) [Mf (Ta = Ps) Mg, + .0125 Px(1 - Fs) (4.1)
* Ta(1 - KIO)] Xs + Lo](xl + Px FS pz - GmX5)
During Rain Period --
[
M= (1 - Lox) Xs [0 ([oO](Ta + 273)] - 55-55)

9 -
. o~4278.63/(T_ + 242.792)

+ p,(2.10291 + 10 - 51.935)

+ ,004845 Pa Pu Ta + .0125 PX (1 - Fs) Ta(1 = Ko, 1 (4.2)

* Loy(x, + PX FS P2 - Gm Xs)

Melt water and rainfall produce free water that must be absorbed or
released by the snow cover. The free water that is produced during a
time interval is defined as:

Free Water
W=M+P (1- Fs) X (4.3)
The negative heat storage that accumulates in the snow cover during
cold periods was also discussed in Chapter 3. The change in this

negative heat storage during a 6-hour period is defined as:

Heat Exchange Mf
H=(1-Ny) — Ps [x4 = Hoy(xy = T_ Ko,)
Ps a

(4.4)

" T Ko d X, =Ny, %, =P F p,

01 2
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Table 4.1

State-Space Model Parameters

State-Space Notation

P1
P2
Ps
Pu
Ps
Ps
P»
Pe
Ps
Pio

P

The parameters are defined in Table 3.1.

Model Parameter

PXTEMP

SCF

MBASE

UADJ

MFMAX

MFMIN

TIPM

NMF

SI

PLWHC

DAYGM
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Table 4.2

State-Space Model Variable Definitions

Model States:

Symbol Name Definition
X, WE Solid water-equivalent portion of the
snow cover (mm)
X, NEGHS Heat deficit (mme)
X3 LIQW Liquid water held against gravity
drainage (mm)
X, TINDEX Antecedent snow temperature index (°C)
Xs AESC Areal extent of snow cover
Inputs:
Symbol Definition
Px Precipitation
Ta Temperature
Constants/Variables:
Symbol , Definition
o Stefan-Boltzman constant
Sn Snowfall amount above which the

temperature index of the snow cover is
set to the air temperature.

Fs Fraction of precipitation occurring as
snow.

Gm Groundmelt for the current time period.

Tw Total water-equivalent.

AI The greater of the parameter SI’ or the
maximum accumulated water-equivalent this
season.

SB Water-equivalent value which defines the
lower limit of the new snow line.

Sw Water-equivalent value which defines the

upper limit of the new snow line.
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Table 4.3

State-Space Model Zero-One Integer Variables

Definition

If the heat deficit £ the maximum amount of
negative heat storage the snow cover can
retain;

otherwise.

If the temperature index £ 0°C, and physically
realistic based on the values of the solid
water—equivalent and the heat deficit;
otherwise.

If the snowfall X the limit above which the
temperature index of the snow cover is set to
the air temperature;

otherwise.

If the liquid water > the maximum amount of
liquid water that can be held in the snow cover;
otherwise,

If (the heat deficit + the heat exchange) >
free water;
otherwise.

If the air temperature 2> 0°C;
otherwise.

If the snowmelt < amount of frozen water
available;
otherwise.

If the air temperature £ MBASE;
otherwise.

If the change in heat storage is greater than
the amount needed to bring the heat deficit
to 0;

otherwise.



38

The state-space equations were written in the integral form defined
in equation (3.14)., The equations represent the change in each state
over a b6-hour period.

The change in the frozen-water-equivalent state for the time period
is defined as:

Frozen Water-Equivalent

fxSPszpz-Gmxs-M+w+(X2+H-W)Jox (4-5)

The change in the negative heat storage state for the time period
is defined as:

Negative Heat Storage

£, =[H-W=-Jdg,(x, +H=W)] (1 - Fg,) (4.6)
+ Fo,[0.33(x, £,) - x,]

The change in the liquid water-equivalent state for the time period
is defined as:

Liquid Water~Equivalent

X3

f3 =-I°1X—1-Gm X5 +J°1 I°l (W-X2 _H) (uo7)

+ (1 = I,,) [pyo (x, + £,) = x,]

The change in the temperature index state for the time period is
defined as:

Temperature Index

£, = [=H,, (x, - Ta Koy) + py (x, - Ta) (Hoy= 1] (4.8)
* (1 = Goy) = Gy, X,

The change in the areal extent of snow cover for the time period is
defined for the four possible types of positions on the areal depletion
curve. In the case where the snow cover is above the areal depletion
curve, it is assumed that the areal extent of snow cover is 100 percent
with complete certainty. In the other cases, it is assumed that the
areal extent of snow cover state varies linearly with total water-
equivalent for the time period. The change in the areal extent of snow
cover state for the time period is defined as:
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Areal Extent of Snow Cover

Case 1 (Tw.l AI) snow cover is above the areal depletion curve =--
fs =1 - X, (4.9)

Case 2 (Tw ﬁ-SB) snow cover is following the areal depletion
curve --

£, = C, AT, (4.10)

where, C, = average rate of change over the time period in areal
extent of snow cover with respect to total water-
equivalent, and
ATw = change in total water-equivalent.

Case 3 (Tw > SB) and (Tw.i Sw) snow cover is 100% because of new
snow =--

fs =Cl ATw (L‘¢11)

Case 4 (Tw > SB) and (Tw < Sw) Snow cover is on the new snow
line --

fs = Cy AT, (4.12)

Results from the nonlinear state-space equations compared very
closely with results from the original model. Values of the states and
other model computed values were output at a six-hour time step for both
the state-space model and the original model. Ten statistics, shown in
Table 4.4, were computed from the output. The statistics resulting from
a one-year simulation for one parameter set and one set of precipitation
and temperature time series are given in Table 4.5. Different parameter
sets and time series were tested to ensure that the comparison results
were not limited to one basin. The results indicate that the state-
space model very closely simulates the results of the original model.
Several discrepancies were observed, however, when the state-space model
simulations were compared to the original model simulations. Some of
these observations led to changes in the original model to improve its
simulation. The major reason for any remaining differences between the
two models is that in the original model, the areal extent of snow cover
is updated at the beginning of a time period for any snowfall that
occurs during the period. In the state-space model, on the other hand,
the areal extent of snow cover is updated at the end of the time
period. This causes more groundmelt to be produced by the original
model, since groundmelt occurs even during cold time periods which might
have experienced snow. This has the effect of slightly delaying the
snowmelt produced by the state-space model and causing a slight negative
bias in the annual runoff. It was concluded that the differences were
not significant and the state-space model formulation was accepted.



Average Error

Absolute Maximum Error

Average Absolute Error

RMS Error

Bias

Mean

Variance

Correlation Coefficient

where,

4o

Table 4.4

Comparison Statistics

I(x - y)
n

MAX |x - y|

E|x - yI

n

L(x = y)2 %

n
(x - y)
Ly

LX Ly
n s N

2 2
n x = (Ix)

2 2
niy - (Iy)

n{n - 1)

IXy = n X §
nS S
X Y

X = state-space model discharge, and

y = original model discharge.

n(n - 1)
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Kalman Filter Formulation

As discussed in Chapter 3, application of the extended Kalman
filter requires linear state-space equations. Linearizing these state-
space equations produces an equation of the form given in equation
(3.15). This equation can be rewrlitten as:

xt...‘l = (I + A)xt + Btut + Ct (u-13)
where, I = identity matrix.
This is the form needed for the filter and shown in equatlion (3.8).

Using a Taylor series first order approximation, the elements of At and
Bt are defined as:

of ;

AiJ = =55 (4.14)
J
of

Bij = auj (4.15)

The vector C, is never defined, since the original nonlinear equations
are used to propagate the states, and a constant term does not affect
the propagation of the covariance matrix. The partial derivatives Ai
and B, are given in the Appendix. The analytical derivatives were
verifieéd by comparing them with derivatives calculated by finite
differencing the state-space equations for 23 scenarlios. These
scenarios were designed to exercise different model components to ensure
that the derivatives were correct for all of the model modes of
operation.

Once the derivatives were verified, they were used in equations
(3.8) through (3.12) with ¢, = (I + At) and G, = B.. Some tests were
made with synthetic data to verify that the filter equations were
working properly. The model was run and the states were output at the
end of each day. The simulated states were corrupted with Gaussian
noise and treated like observations. The first test used daily
observations of each state to update the model states. Since the true
model states and the uncertainty of the observations were known, the
performance of the filter could be assessed. 1In one run, the model was
given poor initial conditions and the updating quickly improved the
estimates of the states. In another run, the model was given good
initial conditions and the updating did not significantly change the
state estimates, despite the noisy observations.

In reality, there will not be observations of all of the model
states, but only an observation of total water-equivalent to use for
updating. An updating test was made using daily observations of total
water-equivalent that were corrupted with noise. During the
accumulation season, most of the adjustment was made to the frozen-
water-equivalent, and the liquid-water-equivalent was changed very
little. During the melt season, the liquid-water content of the snow
cover was at its maximum, and the adjustment was distributed
proportionally between the frozen and liquid-water-equivalents, while
the other three states did not change significantly.
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The next set of tests used daily observations of total water-
equivalent and added Gaussian noise to the precipitation and temperature
inputs. This additional noise caused the water-equivalent to track more
irregularly with the observed, but it remained reasonably close to the
observed. This occurred even though a positive bias was created in the
model simulation due to the precipitation. Gaussian noise was added to
the precipitation, but the precipitation was set to zero whenever this
resulted in a negative precipitation value. Since there are many
periods of zero precipitation, this occurred frequently and produced a
positive bias in the precipitation.

The last test with synthetic data used monthly observations of
total water-equivalent and added noise to the precipitation and
temperature time series. The water-equivalent states took longer to
adjust because of the reduced number of observations, but the estimates
of the water-equivalent states were significantly improved by the
beginning of the melt season. All of the tests indicated that the
filter was working properly. The next step was to test the filter with
real data. ’

Test Basin

The Animas River at Durango, Colorado was selected as the test
basin for the updating methodology. Located in Southwestern Colorado in
the San Juan River Basin, the Animas, with a drainage area of 692 square
miles, was considered a good candidate because of the limited irrigation
and hydropower regulation that occur in the basin. Figure 4.1(a) shows
the position of the Animas in the Upper Colorado Basin draining to Lake
Powell, and Figure 4.1(b) shows the Animas drainage network and the
locations of the snow courses used in this test. The basin ranges in
elevation from approximately 6500 ft-MSL at Durango to over 13000 ft-MSL
(see Figure 4.2), with a mean basin elevation of 10100 ft-MSL.

The basin was subdivided for modeling into an upper area and a
lower area. One rationale for subdividing basins is to separate the
part of the basin that contributes significant runoff only in extremely
wet years from the part of the basin that always contributes significant
runoff, since it is difficult for a lumped model to duplicate this
effect otherwise. Based on the October through April precipitation map
shown in Figure 4.3 and the snow cover depletion pattern observed from
satellite photographs, the basin was subdivided at its mean elevation.
Thirty-five years of mean areal precipitation and temperature time
series were developed for the two subareas using data from twenty
precipitation stations and nine temperature stations. All temperature
and precipitation station data were checked to ensure consistency during
the period of record.

Parameters were estimated for the snow, soil-moisture accounting,
and unit hydrograph models by trial and error primarily, but some
parameter fine-tuning was done using a hill climbing automatic
optimization routine (Monro, 1971). The snow model parameter estimation
was performed using the original snow model, and as an additional
verification of the state-space model, the simulated versus observed
streamflow statistics were computed for both the original model and the
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state-space model (see Table 4.6). The original model produces a
slightly larger volume on an annual basis than the state-space model
because of the manner in which the areal extent of snow cover is updated
at the beginning of a time step, but the other statistics from the two
models are almost identical. Simulated and observed hydrographs for
three years are plotted in Figures 4.4 through 4.6 to show how the model
performs under different hydrologic conditions without updating. The
years 1952, 1960, and 1981 produced high, medium, and low volumes of
snowmelt runoff, respectively.

Thirteen snow courses in the vicinity of the basin were selected
for this test, but only four of these were located inside the basin.
Table 4.7 shows the characteristics of the thirteen sites. Preliminary
measurement equations were created for both the upper and lower areas by
developing a regression relationship between the pseudo-observed values
and the four sites in the basin. These equations were used to test the
filter with real data. A sensitivity analysis was performed to develop
insight into the importance of various filter inputs. Base-run values
were selected and the variance elements of the system error and input
error covariance matrices were adjusted systematically. The system
error variances were adjusted by a factor of ten and the input error
variances were adjusted by a factor of two. The off-diagonal elements
were set to zero to reduce the number of values that must be identified.

The base-run values were:

WE NEGHS LIQwW TINDEX AESC
1.0 0.0 0.0 0.0 0.0
0.0 0.0025 0.0 0.0 0.0
Q= 0.0 0.0 0.01 0.0 0.0
0.0 0.0 0.0 0.0025 0.0
6.0 0.0 0.0 0.0 0.01
Py T,
10. .
U =
0. b,

The filter was run for the entire snow accumulation season and the
model states were updated each April 1. The results from the
sensitivity analysis are shown in Table 4.8. The error variance is
shown for each state before and after the update for different
variations from the base-run. The frozen-water-equivalent state error
variance was sensitive to increases in the frozen-water-equivalent state
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Table 4.6

Streamflow Error Statistics for the Animas (1949-1983)

Original Model State-Space Model

Annual

Bias (%) -.34 0.00
Monthly

Avg. Absolute Error (mm) 5.40 5.38

RMS Error (mm) 9.76 9.79

Daily

Avg. Absolute Error (cmsd) 4,99 5.00

RMS Error (cmsd) 9.79 9.81

Correlation Coefficient .9u6 .46
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Table 4.8

Effects of Updating on the State Error Variance

BEFORE
AFTER WE NEGHS LIQW TINDEX AESC
BASE 8560 37.0 218 0.2 0.01
1250 36.9 216 0.2 0.01
Q,,= 0.1 8000 37.0 218 0.2 0.01
1250 36.9 216 0.2 0.01
Q;,= 10. 14100 37.0 218 0.2 0.01
1290 37.0 217 0.2 0.01
Q2= .00025 8560 36.9 216 0.2 0.01
1250 36.8 215 0.2 0.01
Q.= .025 8570 38.8 229 0.2 0.01
1270 38.7 227 0.2 0.01
Qss= .001 8560 37.0 213 0.2 0.01
1250 36.9 211 0.2 0.01
Q;3= 0.1 8560 37.0 266 0.2 0.01
1290 36.9 265 0.2 0.01
Q,.= .00025 8560 37.0 217 0.2 0.01
1250 36.9 216 0.2 0.01
Quu= .025 8560 37.8 220 0.4 0,01
1260 37.7 218 0.4 0.01
Qss= .001 8560 36.8 217 0.2 0.00
1250 36.7 215 0.2 0.00
Qss= 0.1 8570 39.6 227 0.2 0.10
1260 39.5 225 0.2 0.10
Uy,= 5. 4610 24,4 126 0.2 0.01
1060 24.4 125 0.2 0.01
U,,= 20. 16465 62.3 401 0.2 0.01
1500 62.1 397 0.2 0.01
Usa= 2. 8540 31.4 204 0.1 0.01
1240 31.3 203 0.1 0.01
Uzzg 8. 8590 48.3 2”“ ' 005 0-01
1280 48.1 242 0.5 0.01
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system error variance, but it was not sensitive to decreases in this
variance. The frozen-water-equivalent error variance was sensitive to
both increases and decreases in the precipitation error variance. The
negative heat storage error variance was not sensitive to changes in the
negative heat storage system error variance, but it was sensitive to
changes in both the precipitation and temperature error variances. The
liquid-water-equivalent error variance reacted to changes in several of
the system error variances, but it was only sensitive to changes in the
precipitation and temperature error variances. The temperature index
state error variance was sensitive to an increase in the temperature
index system error variance and to changes in the precipitation and
temperature error variances. On April 1, the area is still completely
snow covered, so the areal extent of snow cover error variance is simply
the system error variance for one time step.

Several things were learned from the trial runs with real data.
Initially, it was assumed that the precipitation error had a constant
variance. This assumption was causing the variance of the errors of
several of the states to change abruptly even when no precipitation was
occurring. A more reasonable assumption is that the precipitation error
has a constant coefficient of variation. The variance of the
precipitation error was calculated at each time step as:

2

VAR(pg) = (cvpe . Px) (4.16)

where, pg = error in precipitation,

CVpe = gcoefficient of variation of precipitation error.
This modification resulted in smoother propagation of the state error
variances. When the areal extent of snow cover decreased below 100
percent, there was a negative correlation between the frozen-water-
equivalent and the areal extent of snow cover. This correlation added a
significant amount of variance to the error in the frozen-water-
equivalent state when the uncertainty of the areal extent of snow cover
state was large, but in general, the uncertainty of the frozen-water-
equivalent state was propagated smoothly.

The variance of the error in the negative heat storage state
increased slowly, but it decreased to zero when the negative heat
storage was zero. When the negative heat storage became zero, however,
the uncertainty in the negative heat storage state produced an increase
in the uncertainty of the frozen and liquid-water-equivalent states.
This is expected since the model equations dictate that the negative
heat storage is converted to water-equivalent when the negative heat
storage is reduced. The uncertainty of the liquid-water-equivalent
state increased slowly, except when the negative heat storage was equal
to zero. When the negative heat storage is greater than zero, any free
water is frozen, but when the negative heat storage is equal to zero,
excess water is available to become liquid-water-equivalent.

Decreases were observed in the variance of the error in the liquid-
water-equivalent state when the snow cover was at its maximum water
content. When the snow cover contains its maximum water content, the
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liquid-water-equivalent becomes a function of the frozen-water-

equivalent:
X, = PLWHC + x, (4.17)

2
Py; = PLWHC =+ P,;, (4.18)
where, Pii = gtate error varlance for state i.

Typically, the parameter PLWHC is small, so the variance of the error in
the liquid-water-equivalent state becomes a small fraction of the
variance of the error in the frozen-water-equivalent state. This
sometimes produced sudden changes in the variance of the error in the
liquid-water-equivalent state when the snow cover reached its maximum
water content. In reality, as this limit is approached, the uncertainty
of the liquid-water-equivalent state may decrease, but it would probably
happen gradually. The model does not detect that a threshold is
approaching, so the estimates of the uncertainties of some of the states
may not be accurate in the vicinity of these thresholds. This could
affect the updating in some cases.

The variance of the error in the temperature index state assumed
the value of the variance of the error in the temperature after a new
snowfall and then receded. It does not appear to seriously affect the
uncertainties of the other states.

The variance of the error in the areal extent of snow cover state
assumed the value of the areal extent of 'snow cover system error
variance as long as the snow cover was 100 percent. When the cover
decreased below 100 percent, the variance increased. The state-space
equation for areal extent of snow cover was written as a function of the
change in total water-equivalent. Realistic values of the variance were
propagated in most cases, but unrealistic values were observed when the
slope of the areal depletion curve became extremely small. This
sometimes occurred after a shallow snowfall that produced a large change
in areal extent of snow cover. A small change in water-equivalent
produced'a large change in the areal extent of snow cover state. The
uncertainty in the water-equivalent change was magnified in the
uncertainty of the areal extent of snow cover state. One would expect a
large uncertainty in the areal extent of snow cover state under these
circumstances, but these values may not be reliable. A change was made
in the original model to avoid the use of the new snow line for
extremely small snowfalls. This smooths the propagation of the variance
of the error of the areal extent of snow cover state and prevents it
from driving the variance of the frozen-water-equivalent state to
extremely large values. In general, the filter seems to be propagating
reasonable estimates of the state error covariance matrix.

Regression Approach

One approach discussed in Chapter 3 for estimating observations of
the model states is the development of a regression equation between the
pseudo-observed values and the point snow-water-equivalent
observations. The pseudo-observed values are model water-equivalent
states that allow the model to simulate the correct seasonal runoff
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volumes. Historical pseudo-observed values are determined by
iteratively adjusting the model water-equivalent states until the model
produces the correct seasonal volume. The adjustments are made to the
liquid and frozen-water-equivalent states for the upper and lower areas
by maintaining the ratio between the liquid and frozen-water-equivalent
in each area and the ratio of total water-equivalent from one area to
another. 'The pseudo-observed values for water years 1949 thru 1983 are
plotted against the simulated total water-equivalent in Figure 4.7, for
the upper area of the Animas, and in Figure 4.8 for the lower area of
the Animas.

Forward stepwise regression with deletion (MeCuen, 1986) was used
to develop the regression equation to predict the pseudo-observed value
from the snow-water-equivalent observations. In some cases, only two or
three stations could explain significant variability in the pseudo-
observed values with positive coefficients. The significance level for
including stations was decreased, however, until at least four stations
appeared in the equation with positive coefficients. All 35 years of
data were used to determine which stations were selected. A special
procedure was devised to verify the updating methodology with as much
data as possible, while maintaining a valid verification. Observations
of the model states were estimated by developing a separate regression
equation between the pseudo-observed values and the point observations
for each year, neglecting that year's data. This allowed the updating
procedure to be verified on all 35 years of data. Spud Mountain, Red
Mountain Pass, Upper Rio Grande, and Rico snow course data were used in
the April 1 equation for the upper area, whereas Cascade, Spud Mountain,
Upper Rio Grande, and Rico snow course data were used in the April 1
equation for the lower area. The results shown in Table 4.9 for the
upper area indicate that eliminating one year does not produce much
variability in the regression coefficients. Years 1949 and 1950 have
the same coefficients, since both of these years contain missing data
and the estimated coefficients are based on the data from 1951 through
1983. Figure 4.9 and Figure 4.10 show the pseudo-observed values
plotted against the estimates of the pseudo-observed values from the
regression equations for the upper and lower areas, respectively.

Before the filter equations can be used for updating, estimates of
the Q, R, and U matrices are required. The square of the root-mean-
square (RMS) error between the pseudo-observed values and their
estimates from the regression equations was used as an estimate of the R
value for each subarea. For the upper area on April 1, R = 3000, and
for the lower area on April 1, R = 1000. Reasonable values were
selected for the U matrix based on experience with hydrometeorological
data. The coefficient of variation for the precipitation error was
assumed to be 0.2 and the variance of the temperature error was assumed
to be 1.0. The off-diagonal elements of the U and Q matrices were
assumed to be zero. The diagonal element of Q for the frozen-water-
equivalent state was determined by trial and error. It was adjusted
until the average frozen-water-equivalent error on April 1 was
approximately equal to the square of the RMS error between the pseudo-
observed snow-water-equivalent and the simulated snow-water-
equivalent. This error is much greater in the upper area than in the
lower area, primarily because more snow occurs in the upper area. The
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1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983

MEAN

STD. DEV.
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Table 4.9

Upper Subarea Regression Coefficients for April 1

SPUD RED MT UPPER RIO
MOUNTAIN PASS GRANDE RICO CONSTANT

0.414 0.161 0.067 0.184 80.5
0.414 0.161 0.067 0.184 80.5
0.410 0.144 0.106 0.189 85.8
0.419 0.158 0.070 0.161 82.0
0.112 0.162 0.067 0.185 79.8
0.416 0.159 0.065 0.183 81.5
0.402 0.179 0.084 0.172 70.8
0.438 0.163 0.026 0.166 76.0
0.420 0.159 0.060 0.183 80.2
0.377 0.174 0.094 0.199 83.0
0.350 0.233 0.111 0.146 62.7
0.412 0.163 0.066 0.184 79.8
0.416 0.161 0.062 0.184 79.7
0.433 0.139 0.044 0.188 88.3
0.420 0.157 0.055 0.181 83.3
0.393 0.157 0.093 0.201 90.2
0.422 0.156 0.050 0.184 81.3
0.415 0.158 0.068 0.182 81.8
0.349 0.211 0.125 0.207 62.0
o.m7 0.160 0.060 0.184 80.5
0.439 0.115 0.014 0.272 98.7
0.437 0.132 0.086 0.167 86.7
0.429 0.128 0.068 0.213 89.4
0.410 0.166 0.071 0.178 79.2
0.433 0.190 0.000 0.136 62.6
0.413 0.159 0.067 0.185 82.1
0.415 0.158 0.063 0.185 82.1
0.423 0.161 0.071 0.161 79.0
0.413 0.149 0.073 0.189 89.3
0.404 0.210 0.006 0.194 59.1
0.486 0.110 0.191 0.077 74.0
0.422 0.147 0.058 0.202 84.9
0.377 0.128 0.145 0.211 111.8
0.409 0.181 0.033 0.199 72.7
0.413 0.164 0.074 0.167 77.0
0.413 0.160 0.070 0.182 80.5
0.024 0.024 0.036 0.028 9.9
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other diagonal elements were assigned reasonable values based on the
results of the updating sensitivity analysis. In the lower area:

0.5 0.0 0.0 0.0 0.0
0.0 0.01 0.0 0.0 0.0
Q= 0.0 0.0 0.01 0.0 0.0
. 0.0 0.0 0.0 0.01 0.0
0.0 0.0 0.0 0.0 0.0001
and in the upper area:
8.5 0.0 0.0 0.0 0.0
0.0 0.01 0.0 0.0 0.0
Q= 0.0 0.0 0.01 0.0 0.0
0.0 0.0 0.0 0.01 0.0
0.0 0.0 0.0 0.0 0.0001

Once the Q, R, and U matrices were estimated, the model states were
updated with April 1 observations derived from the regression
equations. Figure 4.11 shows the observed seasonal volumes plotted
against the simulated seasonal volumes, and Figure 4.12 shows the
observed seasonal volumes plotted against the updated seasonal
volumes. The updating decreased the unexplained variance of the
observed volumes from 10 to 5 percent. Daily, monthly, and seasonal
streamflow statistics are shown for the simulation and the updating run
in Table 4,10. The updating produced significant improvements in the
streamflow simulation. Although the pseudo-observed values were
developed based on the observed seasonal volumes, the updating improved
the daily and monthly streamflow statistics, as well as the seasonal.

As a further test of the value of the filter, another updating run
was made with R = 0.0 for the upper and lower areas. When R is set to
zero, it implies that there is no error in the observations and the
updated states are made consistent with the observations. The results
from the run setting R equal to zero are also shown in Table 4.10. The
seasonal volume statistics from the updating run with R = 0.0 are
slightly inferior to the statistics from the updating run with realistic
values for R. This indicates that the model simulation provides
important information and that the filter is useful in combining the
information from the model simulation with the information from the
observations.

Regression Approach - Other Months

The results presented thus far are based on updating only on
April 1, but the state error covariance matrix is propagated throughout
the snow season. This leads to the following questions: Can updating:
improve earlier forecasts when the snow cover is still accumulating?
Can earlier observations provide any additional information for April 1
forecasts? Can updates made during the melt season, e.g. after April 1,
improve later forecasts? 1In order to address these questions, separate
regression equations were developed for the first of each month from
February to May. This required the iterative computation of pseudo-
observed values for the first of each month. As before, a separate
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Table 4.10

Streamflow Error Statistics - Updated with Regression

Dailz
Avg. Absolute Error (cmsd)

RMS Error (cmsd)

Correlation Coefficient

Monthly

Avg. Absolute Error (mm)

RMS Error (mm)

Seasonal (April - September)

Average Error (106m3)
Absolute Max, Er-r-or-(106m3)
Avg. Absolute Error (106m3)
RMS Error (10%m3)

Bias (%)

Correlation Coefficient

Updated

Simulated (April 1)
5.00 4,52
9.81 8.52
946 .958
5.38 4,57
9.79 7.56

-2.3 2.8

220.4 116.3
62.3 38.3
80.2 50.2
~0.4 0.5
.951 .976

Updated
(April 1) R=0

4,52
8.51
.958

4.56

T.71

7.0
126.1
43.1
53.3
1.2

972
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regression equation was developed to predict each year by omitting that
year from the analysis. R was again estimated by using the square of
the RMS error between the pseudo-observed values and the estimated
values from the regression equations between the pseudo-observed values
and the point snow-water-equivalent observations. The statistics
between the pseudo-observed values and their estimates from regression
are summarized in Table 4.11 for both the upper and lower subareas.

In general, the relationship between the pseudo-observed values ‘and
the estimates from the regression equations improved -as the season
progressed. For the lower area, however, the correlation coefficient
decreased for the May 1 equation. Although, the mean pseudo-observed
value for the upper area increased slightly from a value of 523 mm to
539 mm from April 1 to May 1, the mean pseudo-observed value for the
lower area decreased from 137 mm to 44 mm during this period. The
elevations of the snow courses range from 8700 ft-MSL to 11020 ft-MSL,
with six of the snow courses above the highest elevation in the lower
area., Because of the significant amount of melt that occurs in the
lower area, the snow courses may not be good indicators of what is
happening to the snow-water-equivalent in the lower area after
April 1. Despite this fact, the regression technique was able to
explain 88 percent of the variability of the pseudo-observed values in
the lower area on May 1.

The updating runs were made using the same Q and U matrices as
before, and the streamflow error statistics are given in Table 4.12.
Updates were made on the first of each month, beginning in February
through the date shown. These results can be compared to the simulated
streamflow error statistics given in Table 4.10. Updating only on
February 1 reduced the unexplained variance in the seasonal streamflow
volumes from 10 to 7 percent. Each month, the results were slightly
improved over the previous month's results. The unexplained variances
for the February, March, April, and May update runs were, respectively,
72, 52, 48, and 43 percent of the unexplained variance for the
simulation without updating. The results from the updating run with
updates on February 1, March 1, and April 1, however, were not
significantly better than the results shown in Table 4,10, where
updating was only done on April 1. Although the update was primarily
designed to improve seasonal volume simulation, the daily and monthly
streamflow error statistics also were improved. Figures 4.13 and 4.14
show the effect of updating on the frozen-water-equivalent state and its
variance for the periods January to June, 1971 and January to June,
1980, respectively. Figures 4.15 and 4.16 show the effects of updating
on hydrograph simulation for 1971 and 1980, respectively. Updating
improved the hydrograph simulation in both years.

Regression Approach - Summary

Regression equations were used to relate the snow course
measurements to the model states. The true model states for a
particular date were estimated by iteratively adjusting the model water-
equivalent states until the correct seasonal streamflow volume was
simulated. These estimates of the model states, termed pseudo-observed,
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Table 4.11

Statistics for Regression Pseudo-Observed Estimates

Upper Area - Feb 1 Mar 1 Apr 1 May 1

Average Error (mm) 5.7 9.7 3.5 3.5

Absolute Max. Error (mm) 179.7 202.7 134.1 114.6
Avg. Absolute Error (mm) 52.5 44,3 41.9 41.1
RMS Error (mm) 67.5 59.4 54,4 50.3
Bias (%) 1.6 2.3 0.7 0.7
Correlation Coefficient .863 .916 .946 .966

Lower Area

Average Error (mm) -0.6 -0.6 1.7 0.7
Absolute Max. Error (mm) 56.8 57.3 72.8 60.9
Avg. Absolute Error (mm) 25.5 24.2 25.8 11.7
RMS Error (mm) 30.4 29.3 32.0 17.4
Bias (%), -0.4 -0.4 1.2 1.6

Correlation Coefficient .909 .938 .952 .939
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Table 4.12

Streamflow Error Statistics - Updated with Regression
- QOther Months

Updating Through

Daily Feb 1 Mar 1 Apr 1 May 1
Avg. Absolute Error (cmsd) 4,76 4,59 4,50 4. 46
RMS Error (cmsd) 9.00 8.59 8.40 8.30
Correlation Coefficient .954 .958 .959 .960
Monthly

Avg. Absolute Error (mm) 4,95 4,67 4,47 4,32
RMS Error (mm) 8.39 7.60 7.32 7.09

Seasonal (April - September)

Average Error (1O6m3) 1.7 5.4 5.6 3.5
Absolute Max. Error (10%m3)  176.8 142.9 116.1 99.6
Avg. Absolute Error (106m3) 49.4 42,2 39.4 35.6
RMS Error (10°m3) 63.3 52.8 48.7 46.4
Bias (%) 0.3 1.0 1.0 0.6

Correlation Coefficient .965 .975 977 .979
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were derived for the first of each month, February to May, for the 35
year period 1949-1983, These pseudo-observed values were used to
develop the regression equations needed to estimate observations of the
water-equivalent states for updating.

Updating with these derived observations of the water-equivalent
- states produced significant improvements in the streamflow simulation.
The daily, monthly, and seasonal streamflow statisties all significantly
improved as a result of the updating. :

Spatial Interpolation Approach

As discussed in Chapter 3, a spatial interpolation approach offers
several advantages over a regression approach. It provides an estimate
of the entire snow-water-equivalent field, it does not require a long
historical record of all of the observations, it is easily adaptable to
a changing network, and it is conceptually appealing. In order to apply
the interpolation approach as it was outlined in Chapter 3, the mean,
standard deviation, and correlation structure of the field are
required. In this approach, standardized deviates of snow-water-
equivalent observations are interpolated. The mean and standard
deviation of the observations are used to convert the observations into
standardized deviates, and the mean and standard deviation at each grid
point in the field are used to transform the field of interpolated
standardized deviates into a field of estimated snow-water-equivalent.
Areal estimates are computed by averaging the snow-water-equivalent
values over the areas of interest. Regression can be used to relate the
estimates of areal snow-water-equivalent from the spatial interpolation
approach to the model states via the pseudo-observed values.

As with the regression approach, initial efforts were focused on
updating using April 1 snow-water-equivalent observations. An April 1
mean snow-water-equivalent map was prepared for the Animas based on the
October through April precipitation map for the area and an extension of
the relationship between October though April precipitation and April 1
Snow-water-equivalent shown in Peck and Brown (1962). Their
relationship was extended to elevations below 8000 ft-MSL through
extrapolation., Mean areal snow-water-equivalent values were calculated
for the upper and lower areas from this relationship and compared to the
pseudo-observed values. In the upper area, the mean computed from the
map was 23.6 in. and the pseudo-observed value was 20.4 in., whereas in
the lower area, the mean computed from the map was 10.1 in. and the
pseudo-observed value was 5.2 in.

Several attempts were made to adjust the map values until they were
consistent with the pseudo-observed values for the upper and lower
Subareas. The lower area required significantly more adjustment than
the upper area, however, and it was difficult to balance the necessary
adjustments without producing a discontinuity in the snow-water-
equivalent at the border separating the subareas.

It was not clear why the adjustments were needed, but several
factors that could contribute to an explanation were recognized. The
October through April precipitation map was based on the period 1931-
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1960 and the mean pseudo-observed value was for the period 1949-1983.
Although the periods are not the same, the mean precipitation at the
stations used in the study for the period 1949-1983 agreed reasonably
well with values from the October though April precipitation map. In
addition, the relationship between October though April precipitation
and April 1 snow-water-equivalent is extremely sensitive at the lower
latitudes and elevations, since significant snowmelt occurs in these
areas by April 1. Additional data or other factors may be needed to
better define the relationship in these areas. The relationship was
developed primarily from snow course data, but locations selected for
Snow courses may not be representative of a large portion of a basin.
Snow courses are located in protected areas that typically accumulate
and retain more snow than much of the surrounding area. An
underestimate of the snow that falls in these areas, along with
unrepresentative snow retention, could lead to an overestimate of April
1 mean snow-water~equivalent using these snow course data.

To avoid this inconsistency between the snow-water-equivalent from
a mean April 1 map and the pseudo-observed values, a new relationship
was developed to express the April 1 snow-water-equivalent as a function
of the October through April precipitation and elevation. The form of
the function is:

_ E _ C,
SWE_ ¢ GGga5- ~ C) (4.19)
OAP :
where, SWE = April 1 snow-water-equivalent,
OAP = October-April precipitation,
E = Elevation (ft. MSL), and
C,, C,, C, = Constants.

This function produced the shape that one would expect, and it provided
three coefficients that could be fit to data from the basin. The
constant, C,, is the highest elevation, in thousands of feet, below
which there is never significant snow on the ground on April 1. This
elevation was assumed to be 7000 ft-MSL for the Animas, producing a
value of 7 for Cy. The constants, C, and C,, were estimated by trial
and error adjustments until the mean areal snow-wat er-equivalent values
for the upper and lower areas, predicted using the function, were equal
to the pseudo-observed values. A plot of the resulting function is
shown in Figure 4,17. The mean April 1 snow-water—-equivalent field
computed using this function and the October through April precipitation
map is shown in Figure 4.18.

. Peck and Schaake (1989) report that the average coefficient of
variation of winter precipitation is 0.33 in the Upper Colorado Basin.
The snow courses around the Animas indicated a somewhat hi gher
coefficient of variation in the April 1 snow-water-equivalent., Initial
interpolation runs assumed a constant coefficient of variation of 0.4 in
estimating the standard deviation of the field. Under this assumption,
an interpolated standardized deviate of -2.5 implies no snow on
April 1. If it is assumed that the standardized deviates are
identically distributed, it follows that each point has the same
probability of having no snow. In general, one would expect areas with
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Figure 4.18 Mean April 1 Snow-Water-Equivalent Map (From Function) -
10 In. Isolines
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little snow accumulation to have a much higher probability of having no
snow on April 1 than areas with heavy snow accumulation. This apparent
inconsistency occurs because areas with little snow accunulation have
skewed distributions of snow-water-equivalent, but it also occurs
because areas with little snow accumulation have coefficients of
variation that are greater than those in areas with heavy snow
accumulation. To account for this effect, it was assumed that the
standard deviation could be expressed as:

C.

S =C,x (4.20)

standard deviation of the snow-water-equivalent,
= mean of the snow-water-equivalent, and
constants.

where, S
b
2

C,, C

Several values of C, and C, were tested in the interpolation

procedure. Adjustments to C, and C, produced slight improvements in the
relationship between the pseudo-observed values and the interpolated
snow-water—equivalent estimates for both areas, however, the year-to-
year variablility was still underestimated by the interpolation procedure
in the lower area. Figure 4.19 is a plot of the function selected for
April 1 with the snow course values also shown.

The correlation function was developed by fitting an exponential
function of the form of equation (3.27) to the sample interstation
correlation values. A more complicated form (Peck and Schaake, in
press) that uses the geometric mean of the orographic¢ component of
precipitation between two points as an additional independent variable
was also tested. When the more complicated correlation function was
compared to the simple correlation function, however, by testing its
performance in interpolating station values, its results were slightly
inferior. The function used for April 1 is plotted with the sample
values in Figure 4,20, It was noticed that several of the stations are
responsible for much of the scatter in the plot. When these stations
are removed, the correlation coefficient appears to decrease more slowly
with distance. Despite this observation, the function was fit to the
sample points from all of the stations, since this would probably be
more representative of what could be expected throughout the basin.
Three stations, however, (Ironton Park, Lake City, and Porcupine) were
not used as estimator stations because the actual error was much larger
than the predicted error at these stations, when they were estimated
from the other stations. Table 4.13 shows the results from the tests of
the interpolation procedure using all 13 stations as estimator stations
and from using the 10 best stations as estimator stations.

Standardized deviates were calculated from the observations and
interpolated for each historical year. Figures 4.21 and 4.22 show the
fields of standardized deviates for 1971 and 1980, respectively. The
resulting snow-water-equivalent fields are shown in Figures 4.23 and
4.24. The standardized deviates for 1971 were all negative, indicating
that the basin had below normal snow accunulation, whereas the
standardized deviates for 1980 were all positive, indicating that the
basin had above normal snow accumulation. The snow-water-equivalent
fields for each year were averaged over the upper and lower areas to
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Figure 4,21 1971 Standardized Deviate Field
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produce areal estimates of snow-water-equivalent. The pseudo-obser ved
values are plotted against the areal estimates from the interpolation
procedure in Figure 4.25 for the upper area and Figure 4.26 for the
lower area.

The final step in preparing estimates of observations of the model
states using the interpolation approach is a regression step. This step
adjusts for the fact that the model states may not correspond to the
actual areal water-equivalent, and for the fact that there may be a bias
in the interpolated estimates. A regression equation of the form given
in equation (3.24) is developed between the pseudo-observed values and
the areal snow-water-equivalent estimates from the interpolation
procedure. For the purpose of verification, a separate regression
equation was developed to predict each year, neglecting that year's
data., Figures 4.27 and 4.28 show the pseudo-observed values plotted
against these estimates for the upper and lower areas, respectively.

The measurement error variance, R, was estimated as the square of the
RMS error between the pseudo-observed values and the estimates from the
interpolation regression equations. R was estimated to be 2700 for the
upper area and 1000 for the lower area. The model states were updat ed
each April 1 with the estimated observations of the model states using
these values for R. Table 4,14 gives the streamflow statistics from the
updating run. These statisties can be compared to the statistics given
in Table 4.10 for the updating run with the observations derived using
the regression approach. The results based on the interpolation
approach are at least as good as, and in some cases slightly better than
those based on the regression approach. Figure 4.29 is a plot of the
observed seasonal volumes versus the updated seasonal volumes using the
interpolation approach.

Spatial Interpolation Approach-Other Months

In order to apply the spatial interpolation approach to other
months, mean snow-water-equivalent fields are needed for each of the
months, In determining the mean snow-water-equivalent field for
April 1,1t was assumed that a simple elevation relationship could be
used to adjust October though April precipitation. Assuming that the
spatial pattern of precipitation is reasonably consistent throughout the
winter, it may be possible to derive similar relationships for other
months during the accumulation season. After April 1, however,
significant snowmelt occurs at the lower elevations. As snownelt is a
function of many factors other than elevation, a simple function can not
adequately describe the spatial variability of melt in the basin, even
on an average basis. One way to define this spatial variability of melt
is to actually model the melt at different points throughout the
basin. This could provide a technically sound methodology for
determining monthly mean snow-water-equivalent values throughout the
accunulation and melt seasons.

An elevation data base was available for the area with data spaced
at every 30 seconds of latitude and 30 seconds of longitude, a grid size
that would provide an appropriate level of spatial detail for basins the
size of the Animas. The elevation data base was used to compute aspect
and slope at all of the grid points. A fire fuel data base, derived
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Table 4.14

Streamflow Error Statistics - Updated with Interpolation

Updated
Daily (April 1)
Avg. Absolute Error (cmsd) 4,50
RMS Error (cmsd) 8.47
Correlation Coefficient .958
Monthly
Avg. Absolute Error (mm) 4,51
RMS Error (mm) 7.39
Seasonal (April - September)
Average Error (106m3) 1.0
Absolute Max. Error (106m3) 116.7
Avg. Absolute Error (10%m3) 37.0
RMS Error (10%m3) 48.6
Bias (%) 0.2

Correlation Coefficient 977
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from satellite images, was obtained from the Bureau of Land Management
and used to determine which grid points were forest covered. Performing
melt computations at each grid point would require a prohibitive amount
of computer resources. To avoid this, grid points were assigned to
zones based on melt characteristics. Table 4.15 shows how the various
basin characteristics which affect melt are distributed in the Animas
Basin. As discussed in Chapter 3, zones were classified by aspect as
north-facing, south-facing, or horizontal. Grid points were assigned to
horizontal zones if their aspect was east-facing, west~-facing, or if
their slope was less than 10 percent. It was assumed that the melt
factor in a north-facing zone was 0.7 times the melt factor in a
horizontal zone, and that the melt factor in a south-facing zone was 1.2
times the melt factor in a horizontal zone. It was also assumed that
the melt factor in a forested zone was 0.7 times the melt factor in an
non-forested zone. Using these relationships, it was possible to assign
melt factors to each zone, once values were assumed for a horizontal,
non-forested zone. The melt factors used in the lumped model were used
as initial estimates of the melt factors for the horizontal, non-
forested zone, and zone melt computations were performed for 36 zones.
When the monthly snow accounting procedure described in Chapter 3 was
applied to the Animas, no melt factor adjustments were required.

The resulting mean snow-water-equivalent maps for February 1,
March 1, April 1, and May 1 are shown in Figures 4.30, 4.31, 4.32, and
4,33, respectively. Table 4.16 compares the mean area snow-water-
equivalent values derived from the spatial model to the snow-water-
equivalent values from the lumped model. The basin totals agree quite
closely, but the spatial model estimates more show in the lower area and
less snow in the upper area than the lumped model on May 1.

As a qualitative check of these grid point snowmelt calculations,
the average snow line predicted by the monthly mean maps was compared to
a series of areal snow cover maps derived from satellite photographs for
1985 and 1986. There appeared to be reasonable agreement in the way
Snow cover retreated, except along the ridge on the southwest edge of
the basin. The modeling results showed that the snow cover is not
depleted in this area as quickly as the satellite photographs
indicated. This could be due to an overestimate of the precipitation in
this area or an underestimate of the melt rates.

Equation (4.20) was used to estimate the standard deviation of the
Snow-water-equivalent at each grid point. Figures 4,34, 4.35, and 4.36
show the functions plotted with the sample points for February 1,

March 1, and May 1, respectively. Equation (3.27) was used to estimate
the correlation function for each of the months. The functions used for
February 1 and March 1 were very similar to the equation used for

April 1, and are shown plotted with the sample points in Figures 4.37
and 4.38, respectively. The same 10 stations, which were used to
estimate April 1 snow-water-equivalent, were also used to estimate
February 1 and March 1 snow-water-equivalent. A different approach was
taken for May 1, since many of the stations frequently reported zero
Snow-water-equivalent on May 1. These stations were eliminated from the
May 1 analysis, leaving 7 stations to estimate the correlation function
and to perform the interpolation. The correlation function and Sample
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Figure 4.30 Mean February 1 Snow-Water-Equivalent Map (From Spatial
Melt Analysis) - 10 In, Isolines
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Figure 4.31 Mean March 1 Snow-Water-Equivalent Map (From Spatial
Melt Analysis) - 10 In. Isolines
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Figure 4.33 Mean May 1 Snow-Water-Equivalent Map (From Spatial
Melt Analysis) - 10 In. Isolines



Spatial Model

Upper Area

Lower Area

Lumped Model

Upper Area

Lower Area

Comparison of Spatial Model to Lumped Model
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Table 4.16

Mean Areal Snow-Water-Equivalent (mm)

Feb 1 Mar 1 Apr 1 May 1 June 1
3 419 508 514 299
116 140 141 79 11
us7 559 649 593 310
Feb 1 Mar 1 Apr May 1 June 1
340 418 512 534 300
127 152 137 45 0
Le7 570 649 579 300
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points for May 1 are shown in Figure 4.39. The correlation coefficient
decreases more slowly with distance for May 1 than it did for the other
months., Despite the small amount of scatter in the sample points, this
function may actually overestimate the correlation throughout the basin,
since the function has been fitted to only points that receive and
retain significant snow in most years.

The interpolation approach was used for each month, February to
May, for all 35 years of data. Areal values were computed for the lower
‘and upper areas from the interpolated snow-water-equivalent fields. As
before, pseudo-observed values were estimated by developing a regression
equation between the pseudo-observed values for the month and the areal
estimates from the interpolation procedure. A separate equation was
developed for each year, neglecting that year's data. This procedure
was applied to each month, and the resulting statistics between the
pseudo-observed values and their estimates from the interpolation
regression equations are shown in Table 4.17. The relationship between
the pseudo-observed values and their estimates improved from February to
April, but degraded in May. The square of the RMS error was used to
estimate the R values in the filter, and the estimates of the pseudo-
observed states were used to update the simulated snow-water-equivalent
states the first of each month from February to May. The streamflow
error statistics are given in Table 4.18 and show that the updating
produced significant improvements in the daily, monthly, and seasonal
streamflow statistics. The results improved as additional observations
were included from February to April, but updating with May observations
did not seem to improve the simulation. When these results are compared
to those in Table 4.14, the results of updating with April 1
observations are seen to be slightly better than those in which the
states were updated with February, March, and April observations. When
the results from updating with interpolated observations are compared to
the results in Table 4,12 (obtained from updating with regression-
derived observations), the results are seen to be slightly better using
the observations from the regression approach. Figures 4.40 and 4,41
show the resulting snowmelt hydrographs for 1971 and 1980,
respectively. These updated hydrographs are not significantly different
than the updated hydrographs that were produced using the regression
approach.

Spatial Interpolation Approach-Summary

Optimal interpolation was used to estimate the entire snow-water-
equivalent field. Standardized deviates of the snow course observations
were computed and interpolated at grid points. Estimates of the mean
and standard deviation of the snow-water-equivalent field were then used
to compute an estimate of the snow-water-equivalent field from the field
of standardized deviates. The snow-water-equivalent field was averaged
over the subareas to produce estimates of areal snow-water-equivalent,
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Table 4,17

Statistics for Interpolated Regression

Pseudo~-Observed Estimates

Ugger Area

Average Error (mm)
Absolute Max., Error (mm)
Avg. Absolute Error (mm)
RMS Error (mm)

Bias (%)

Correlation Coefficient

Lower Area

Average Error (mm)
Absolute Max., Error (mm)
Avg. Absolute Error (mm)
RMS Error (mm)

Bias (%)

Correlation Coefficient

0.1
158.6
46,7

0.0

.879

_Feb 1

Mar 1 Apr 1 May 1
0.3 0.2 -0.2
128.6 99.1 159.4
43.3 .3 51.5
54.5 52.3 67.7
0.1 0.0 0.0
<921 . 949 .937
0.1 0.6 2.6
61.3 Th1 59.5
24,6 24.0 19.1
29.1 31.2 25.4
0.0 0.4 5.9
.939 .954 .869



Streamflow Error Statistics

Dailx

Avg. Absolute Error (cmsd)
RMS Error (cmsd)

Correlation Coefficient

Monthlz

Avg. Absolute Error (mm)

RMS Error (mm)

Seasonal (April-September)

Average Error (106m3)
Absolute Max. Error (106m3)
Avg. Absolute Error (1O6m3)
RMS Error (106m3)

Bias (%)

Correlation Coefficient

107

" Table 4.18

- Updated with Interpolation
- Other Months

Updating Through

Feb 1

4.78
9.10

. 952

4.93
8.58

Mar 1 Apr 1 May 1
4,63 4.50 4.50
8.72 8.4y 8.40
.956 .958 .959
4,70 4,48 4,39
7.86 7.36 7.32

0.6 2.0 0.4

149.0 131.2 126.7
41.9 37.9 38.6
56.7 k9.5 50.4

0.1 0.3 0.1
.969 975 <974
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and regression equations were developed between the pseudo-observed
values and the areal estimates. This procedure was used to develop
observations for the first of each month, February to May, to use in
updating. Updating with these observations produced significant
improvements in the streamflow simulation. The results improved as
additional observations were used for updating through April, but
updating with the May observations did not significantly affect the
results,

Two techniques were developed for estimating the mean snow-water-
equivalent field. The first technique adjusts the field of October
through April precipitation using an elevation relationship. This
technique was successfully demonstrated for April 1. The second
technique modeled snowmelt in zones of similar snowmelt
characteristics. Monthly accounting of snow-water-equivalent was
performed at the grid points and averaged over 35 years to produce
estimates of the mean snow-water-equivalent fields for the first of each
month, February to May.

Summary

A procedure for updating the states of a conceptual snow model has
been developed and tested on the Animas Basin near Durango, Colorado.
Two approaches were successfully tested for relating the snow course
observations to the model states. Both approaches use an estimate of
the optimal model state that is conditioned on the historical seasonal
streamflow. The first approach is based strictly on regression, whereas
the second approach uses optimal interpolation to estimate snow-water-
equivalent throughout the basin. Both techniques produced significant
improvements in daily, monthly, and seasonal streamflow simulation.
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Chapter 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

A methodology has been presented for updating the states of a
conceptual snow model using observations of point snow-water-
equivalent. An extended Kalman filter was used to combine estimates of
model states from a nonlinear snow model simulation with estimates from
observations based on their relative uncertainties. The filter is able
to propagate reasonable estimates of the state error covariance matrix
for five model states: frozen-water-equivalent, liquid-water-
equivalent, negative heat storage, temperature index, and areal extent
of snow cover. Two approaches were presented for relating the
observations to the model water-equivalent states. Both approaches rely
on estimates of the optimal model states, which were derived by
conditioning the model water-equivalent states on historical seasonal
streamflow. The first approach is based on regression, whereas the
second approach uses optimal interpolation to estimate the snow-water-
equivalent field. Updating with either approach produced significant
improvements in streamflow simulation. The regression approach produced
slightly better results, but the interpolation approach offers important
advantages.

Conclusions

A nonlinear conceptual snow model was successfully put into state-
space form. State-space equations were written for the frozen-water-
equivalent, liquid-water-equivalent, negative heat storage, temperature
index, and areal extent of snow cover states. When an extended Kalman
filter was applied to the model, it propagated reasonable estimates of
the state error covariance matrix. More importantly, when the filter
was used to update the model states using estimates of the states from
point snow-water-equivalent observations, significant improvements in
streamflow simulation were realized.

A technique was developed for making estimates of the true model
states, which are unobservable. The technique is based on estimating
pseudo-observed model states by conditioning them on seasonal streamflow
volume, which is observable. These estimates were then used to relate
the observations to the model states and to estimate the model system
error. The results from the Animas Basin indicated that the technique
led to reasonable estimates for Q and R. The updating improved the
Seasonal streamflow statisties, but not at the expense of the shorter
time interval simulation.

Two approaches were demonstrated for relating the observations to
the model states. The first approach was based strictly on
regression. Good relationships were developed between the pseudo-
observed model state estimates and the snow course observations for each
month, February through May. Updating with observations derived from
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these relationships produced significant improvements in streamflow
simulation. The RMS error in April through September streamflow was
reduced 21 percent by updating only on February 1. The streamflow
simulation improved éach month as additional observations were used to
update the model states. Although a good relationship was obtained
between the May 1 pseudo-observed values and the snow course
observations, the incremental improvements achieved by updating with May
1 observations were small. Updating only on April 1 produced results
almost as good as those produced when updates were made for February 1,
March 1, and April 1. This is not surprising, however, since the April
1 observation contains most of the information from earlier snow-water-
equivalent observations.

The second approach to developing a relationship between the
pseudo-observed values and the snow course observations used spatial
interpolation. Both the regression approach and the spatial
interpolation approach estimate the pseudo-observed value as a linear
combination of the observations. Although the regression approach is
based on estimating the coefficients by minimizing the sum of the
squared error, the interpolation approach outperformed the regression
approach in the verification test based on the same criterion. If a
shorter period of record had been used, the sample error would have been
larger and this effect could have been even more dramatic. The
interpolation approach results were slightly better than the regression
approach results when the model was only updated April 1, but the
spatial interpolation results with monthly updates are slightly inferior
to the results obtained with the regression approach, despite the fact
that the spatial interpolation provided better estimates of the pseudo-
observed values. The fact that the results using the spatial
interpolation are only slightly inferior is an important result. The
advantages to the interpolation approach are that it is conceptually
appealing, provides estimates of the entire snow-water-equivalent field,
does not necessarily require a long historical record for all of the
observations, and is adaptable to a changing network. In addition, the
interpolation approach provides a framework that might be useful in
network design.

The spatial interpolation approach did not work as well for May 1
as it did for other months. Although the stations used in the
interpolation were highly correlated with one another, they are
apparently not entirely representative of the rest of the basin. After
April 1, significant melt occurs in many parts of the basin. Six of the
snow courses had observations of zero snow-water-equivalent for May 1 in
eight or more of the years. By May 1, snowmelt has significantly
complicated the snow-water-equivalent field, and apparently, the use of
standardized deviates was not as successful in removing the resulting
heterogeneity in May 1 snow-water-equivalent.

Application of the spatial interpolation approach requires an
estimate of the mean snow-water-equivalent field. The snow model was
applied to zones containing grid points with similar snowmelt
characteristics. Monthly snow-water-equivalent accounting was performed
at each grid point and averaged over the historical record to provide
estimates of the monthly mean snow-water-equivalent field. Limited
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verification indicated that the spatial melt results were reasonable.
Some of the differences in the results between the lumped model and the
spatial model may be due to the areal depletion curve used in the lumped
model. On a lumped basis, the areal depletion curve can adjust for
errors in the melt rates.

Tests of the updating methodology on the Animas Basin showed
dramatic improvements in daily, monthly, and seasonal streamflow
simulation. The improvements in the seasonal statistics were
particularly noteworthy, because of their magnitude and the importance
of seasonal forecasts to water management. Updating with April 1 snow-
water-equivalent data reduced the maximum error, the average error, and
the RMS error in seasonal volume simulation for the Animas Basin by 35
to 45 percent. Once the methodology has been incorporated into an
operational forecasting system, it should produce significant
improvements in streamflow forecast accuracy. Enormous benefits would
be realized from improved forecasts that allow for more efficient use of
scarce water resources.

Recommendations for Future Research

A methodology has been presented for updating the states of a
conceptual snow model using point observations of snow-water-
equivalent. The structure of the methodology will allow other data to
be incorporated, such as line observations of snow-water-equivalent
which are available for the upper midwest and parts of the west.
Further research is required, however, to extend the interpolation
approach to handle additional sample geometries.

The extended Kalman filter, developed as part of this research, can
accept data types other than snow-water-equivalent, provided these data
can be related to the model states through the measurement equation.
Areal extent of snow cover from satellite observations is one such data
type. Areal extent of snow cover does not provide information early in
the forecast season, since basins are usually completely covered with
snow. Once bare ground appears, however, areal extent of snow cover
observations provide information about the rate of snowmelt production
from a basin, as well as information about the amount of water-
equivalent remaining. Updating with areal extent of snow cover should
improve the volume and timing of streamflow simulation. Some work will
be required, however, to relate the areal extent of snow cover
observations to the areal extent of snow cover state, since the model
state takes other factors into account, such as the changing average
basin melt rate.

Discharge observations are another source of information about the
snow model states, once melt begins. State-space versions of the
Sacramento soil-moisture accounting model are available. Kalman filters
have been used with the Sacramento model for updating states and for
parameter estimation. It may be possible to develop one filter that
contains both models, or it may be more efficient to connect separate
filters through a feedback loop. The snow model filter also provides
~uncertainty information about the snow model states, which could be
important in estimating the uncertainty of streamflow forecasts.
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Several areas of research could improve the spatial interpolation
approach. The correlation plots showed considerable scatter around the
correlation functions. Some of the scatter is due to sampling error,
but much more needs to be learned about the spatial correlation of snow-
water-equivalent in the mountains. If more of this variability could be
explained, it would improve the performance of the interpolation
procedure. The spatial snowmelt analysis was successful, but much could
be done to fine tune its performance. It may be feasible to apply the
snow model in a distributed manner in real-time to provide a simulated
water-equivalent field that could be merged with observations.

Several filter issues should also be addressed. One of the filter
assumptions is that the observations are independent. Successive
observations of snow-water-equivalent are probably not independent,
especially when it is necessary to update at a shorter time interval
than the monthly interval used here. A procedure for dealing with
correlated observations would probably be needed in such cases. There
are also operational issues, such as efficiency, that might be
considered. Several of the states did not seem sensitive to changes in
filter parameters. Could they be excluded from the filter without
adversely affecting the water-equivalent states? Could the frozen-
water-equivalent and liquid-water-equivalent states be combined, so that
only one variance needed to be propagated?

The updating procedure was tested on the Animas Basin, and
significant improvements in streamflow simulation were demonstrated.
The procedure should be tested on additional basins to see if similar
improvements can be obtained in areas where the quality of the data
network and model calibration may be different.
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APPENDIX

State-Space Equation Derivatives

This appendix contains the derivatives of the state-space
equations defined in Chapter 4. These derivatives are the elements
of the A and B matrices used in Equation (4.13). The derivatives of
the snowmelt, free water, and heat exchange equations are defined
separately in order to simplify the derivatives of the state-space
equations. This appendix uses the notation and symbols introduced in
Chapter 4.

Snowmelt

During Non-rain Period --

3M/ax1 = Lol (A01)

aM/aX2 = Oo (A.2)
aM/3x, = 0. (A.3)
oM/3x, = 0. (A.4)
oM/ 9dx5 = [Mf (-Ta - Ps) Mg, + .0125 P (1 - FS) T,
- (1 - Kol)] (1 - Loy) - Lo, Gm (4.5)
oM/9u, = ,0125 (1 - Fs) Ta (1 - Koy) x5 (1 = Lg,)
+ Lo, FS P2 (A.6)
oM/du, = [Mf Mo, + .0125 Px (1 - Fs) (1 - Koy 1]
(A.T)

* Xg (1 - L'OI)
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During Rain Period --

aM/3x, = L,, (A.8)
IM/3x, = 0. (A.9)
aM/3x, = O. (A.10)
aM/3x, = O. (A.11)

y
oM/3xs = [0 ([.O1 (Ta + 273)] - 55.55)
+ py, (2.10291 « 10 =« e - 51.935)
+ ,004845 Pa P Ta + ,0125 Px (1 - Fs) Ta (1 - Ko1)]

* (1= Ley) = Loy G (A.12)

3M/du, "= L0125 (1 = F)) T, (1 = Kgy) xg (1 = Lg,)

+ Lo, FS P2 (A.13)

2

: 3 1
oM/3u,) = [.04 o [.O1 (Ta + 273)] + 8.9977574 - 10

-4278.63 / (Ta+ 242,792)

. £ 5 + .004845 P_ p,
(T, + 242.792) p,

+ .0125 Px (1 - Fs) (1 = Koy)] x5 (1 = Lgy) (A.14)



Free Water

Heat

IW/3x,

OW/3x,

oW/ 93X,

oW/ ax,

oW/ 3xs

aW/3u,

AW/ du,

Exchange

oH/3x,

oH/93x,

dH/3x,

oH/3x,

oH/9x,

gH/3du,

117

aM/3x,
aM/3x,
oM/ 3x,
aM/3x,,
IM/dxg + P (1 - FS)
8M/_3u1 + xg (1 - Fs)

oM/3u,

Ps Xs (1 = Ng;) (1 - Hoy)

bl
'—ps—'ps [xo (1 = Hgy) + Ta (Hoy = Ko,)1

. (1 - Nox)
FS P2 Ta Ko,
160.

(A.15)
(A.16)
(A.17)
(A.18)
(A.19)
(A.20)

(A.21)

(A.22)
(A.23)

(A.2W)

(A.25)

(A.26)

(A.27)
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M
f
8H/3u2 = —.PT Pe X3 (1 - NOI) (H01 = Kol)

Px FS P2 Ko,
160.

Frozen Water-Equivalent --

af,/3x, = -3M/3x, + (1 = J,,) 3W/dx, + J,, OH/dx,
9F,/3%, = =3M/3x, + (1 = J,,) BW/3x, + J,, OH/3x, + J4,
of /9%y = =0M/x, + (1 = J,,) OW/3x, + J,, OH/OX,

of,/9x, = -3M/3x, + (1 = J,,) OW/3x, + J,, 9H/3x,
3F,/9%s = -G = M/3xs + (1 = Jy,) BW/dxy + Jg, OH/3x,
9f,/8u, = F_ P, = aM/Ju, + (1 = J,,) BW/3u, + J,, 9H/du,

3f1/3u2 = -3M/BU2 + (1 - JOI) BW/GU2 + J°1 aH/auZ

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)
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Negative Heat Storage --

af ,/3x,

af,/3x,

of ,/9x,

of ,/9x,

af ,/9x,

af ,/3u,

of,/3u,

(3H/3x1 - 3W/3X1) (1 = JOI) (1 = Fo1)

+0.33 Fo, (1. + 3f,/9x,)

[(aH/axZ - BW/BX2) (1 = Jol) - J°1]'

« (1 = Fo,) + Foy (0.33 3£,/3x%, - 1.)

(3H/3X3 - 3W/3X3) (1 J°1) (1 FOI)

+ 0.33 F,, af,/3x,

(3H/3X“ = BW/Bx“) (1 JOI) (1 - Fo))

+ 0.33 Fo, of,/3x,

(BH/BX - BW/BXS) (1 Jo;) (1 Fo))

5

+ 0.33 Fy, of,/03xg

(3H/du, = AW/3u,) (1 = Joy) (1 = Fo,)

+ 0.33 F,, 8f,/3u,

(3H/3u, = 3W/3u,) (1 = Jo,) (1 = Foy)

+ 0.33 Fo, 3f,/3u,

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)
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Liquid Water-Equivalent --

af 4/ 3x,

of,/93x,

of 3/ 9%,

of,/93x,

9f3/09X%s

of3/3u,

3fs/3u,

Io: X, Gm Xs
2 + (aW/aXI - aH/aXt) Jox I°l
X,

+ (1 - IQI) Pio (1. + afl/ax‘)

Jor Lo, (3W/3X, - 1. = 3H/3x,)

+ (1 - I,) Pyo 9f,/3x,

I,, Gm Xg

-__—x—-—_'_ + J°l Io[ (BW/SX3 - aH/aX3)
1

+ (1 - IOI) (p‘o 3f1/3X3 - 1.)

Joy I, (3W/3x, - 3H/Bx.)
+ (1 = Is,) p1o 0f,/03x,

Io; X3 Gm

S Jo1 I, (9W/3xs - B3H/3xg)
s

+ (1 - IOl) Pio af‘l/axs

Jor Loy (3W/du, - dH/3u,)

+ (1 - I,,) pio 9f,/3y,

Jo1 Ie, (3W/3u, - 3H/3u,)

+ (1 - Io1) Pio 3f,/8u2

(A.43)

(A. L)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)



121

Temperature Index --

af,/9x,

of,/9x,

af, /3%,

of,/9x,

9f,/9x ¢

af,/du,

af,/9du,

0.

o.

O.

(-Ho, + D, (Ho,= 11 (1 - Go,) Go,

0.

0.

(Ho, Koy - Py (Ho, = 1)1 (1 - Go,)

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)



Areal Extent of Snow Cover --

122

Case 1 (Tw Z.AI) sSnow cover is above the areal depletion curve ~-

afs/9x%,

3fs/ 3%,

af s/ 9x,

af /0%,

9fs/3x¢

afs/3u,

3fs/du,

O‘

Case 2 (Tw'i Sb) SNow

curve ==
af s/9x,
ofs/9x,
ofs/9x,
afs/3x,
af,/ax;
9fs/du,

afg/3u,

C, (8f,/9x,
C, (3f,/3x,
C, (9f,/3x,
C, (8f,/8x,

C, (3f,/3xs

(A.57)

(A.58)

(A.59)

(A.60)

(A.61)

(A.62)

(A.63)

cover is following the areal depletion

+

+

+

+

+

af3/93x,)

af,/9%,)

af3/98%x,)

of3/3x,)

af,/9x,)

C,(3f,/0u, + 3f,/3u,)

C,(3f,/3u, + 3f,/3u,)

(A.64)

(A.65)

(A.66)

(A.6T)

(A.68)

(A.69)

(A.70)
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where, C1 = average rate of change over the time period in areal

extent of snow cover with respect to total water-
equivalent.

Case 3 (Tw > Sb) and (Tw.l Sw) Snow cover is 100% because of new

Snow --
3fs/3x, = C, (3f,/3x, + 3f,/3x,) (A.71)
afs/9x, = C, (of,/3x, + 3f,/3%x,) (R.72)
9fs/0x, = C; (3f,/3x, + 3f,/3x,) (A.73)
ofs/9x, = C, (9f,/9x, + 3f,;/3x,) (A7)
ofs/3xs = C, (3f,/3xs + 3f,/9x,) (A.75)
oafs/0u, = C, (of,/3u, + 3f,/3u,) (A.76)
afs/du, = C, (3f,/du, + 3f,/du,) (A.TT)

where, C1 = average rate of change over the time period in areal

extent of snow cover with respect to total water-
equivalent,

Case 4 (Tw > Sb) and (Tw < Sw) 8Snow cover is on the new snow

line --

9fs/3x,

ofs/3x,

9fs /9%,

of s/3x,

= C, (3f,/3x, + 3f,/3x,) (A.78)
= C, (3F,/3x, + 3f,/3x%,) (A.79)
= C, (df,/3%, + 3F,/9%,) ' (A.80)
= C, (3f,/93x, + 3f,/3x,) (A.81)
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9fs/3%s = C, (3F,/9xs + 3L5/3Xs) ' (A.82)
9fs/3u, = C, (3f,/3u, + 3f,/3u,) (A.83)
afs/0u, = C, (3f,/3u, + 3f,/3u,) (A.84)
where, C1 = average rate of change over the time period in areal

extent of snow cover with respect to total water-
equivalent.
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The National Oceanic and Atmospheric Administration was established as part of the
Department of Commerce on October 3, 1970. The Mission ge:i)onsibilities of NOAA are
c

to assess the socioeconomic impact of natural and technolo
ment and to monitor and predict the state of the solid Eart

changes in the environ-
, the oceans and their living

resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly [{roduce various types of scientific and techni-
cal information in the following kinds of publications:

PROFESSIONAL PAPERS - Important defini-
tive research results, major techniques, and spe-
cial investigations.

CONTRACT AND GRANT REPORTS - Reports
erepared by contractors or grantees under
OAA sponsorship.

ATLAS - Presentation of analyzed data generally
in the form of maps showing distribution of rain-
fall, chemical and physical conditions of oceans
and atmosphere, distribution of fishes and
marine mammais, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS -
Reports containing data, observations, in-
structions, etc. A paptiaf listing includes
data seriais; prediction and outlook peri-
odicals; technical manuals, training papers,
planning reports, and information serials;
and miscellaneous technical publications.

TECHNICAL REPORTS - Journal quali
with extensive details, mathematical develop-
ments, or data listings.

TECHNICAL MEMORANDUMS - Reports
of preliminary, partial, or negative research
or technology results, interim instructions,
and the like.




