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Sampling Properties of Parameter Estimators
for a Storm Field Rainfall Model
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A statistical model of rainfali fields has been developed. The model parameters can be estimated
from radar and rain gage data. The radar data are used only to estimate the spatial features of the
model. The rain gage data are used to estimate the magnitude of rainfall. The parameter estimators are
based on the method of moments and are shown to be consistent and asymptotically normal. To
investigate the small sample properties of the estimators a Monte Carlo simulation experiment has
been conducted. The resuits indicate that for certain combinations of the true rainfall field parameters
the estimation procedure leads to biased results. The model has an attractive feature in that a simple
statistic can be precomputed which indicates the feasibility of the model to represent a given rainfall
data set. In case the statistic indicates infeasibility of the model it is difficult to distinguish whether the
proposed model is not appropnate or the data sample is too small.

1. INTRODUCTION

Recent progress in statistical modeling of space-time rain-
fall brings to the forefront the problem of parameter estima-
tion. The practical value of models can be utilized only if
there is a coordinated and balanced treatment of modeling
and parameter estimation. In recent years, research toward
model development has significantly outpaced research on
parameter estimation (for discussion, see American Geo-
physical Union Committee on Precipitation [1984], Rod-
riguez-Iturbe et al. [1986], and Georgakakos and Kavvas
[1987)).

Traditionally, rainfall analyses have been based on rain
gage data. These point measurements are generally adequate
for temporal models of rainfall, but even then the situation is
often complicated by the lack of scale compatibility between
models and data [Rodriguez-Iturbe et al.. 1984; Valdes et al.,
1985]. Rain gage networks provide limited spatial informa-
tion resulting in identifiability problems in space-time rainfall
modeling [Smith and Karr, 1985). To resolve spatial struc-
ture of rainfall fields, information from remote sensors such
as meteorological radars or satellites is necessary. Few
attempts to use radar information in conjunction with stas-
tical models of rainfall are described in the literature; exam-
ples include the works by Kavvas and Herd (1985} and Smith
and Krajewski [1987].

This paper is a continuation of the model development
initiated by Smith and Krajewski [1987]. They have devel-
oped a statistical model of space-time rainfall for which
parameter estimation is based on time-integrated radar rain-
fall observations from a single radar and time-integrated rain
gage observations from a network of rain gages. The reason
for using both types of rainfall observations stems from the
fact that raingage measurements of time-integrated rainfall
are more accurate than radar estimates. while radar obser-
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vations are better in delineating areas receiving rainfall (for a
discussion of radar rainfall estimation methods see, Battan
[1973] and Doviak and Zrnic [1984]). Smith and Krajewski
[1987] show that the parameter estimation procedure for
their model, which is based on the method of moments,
possesses some attractive features. Notably, a simple statis-
tic can be precomputed from the radar and raingage data to
indicate the existence of a solution to the parameter estima-
tion problem. The estimation procedure is applied to daily
rainfall fields in the tropical Atlantic region covered by the
GATE experiment. It is shown that physically realistic
parameter estimates are obtained using the estimation pro-
cedure.

However, the capability of the model to represent actual
rainfall fields cannot be properly assessed without address-
ing the issue of model data requirements. Since the model
parameters should be estimated from observations of a
particular rainfall regime, it is important to recognize the
data requirements of the model and the limitations of the
proposed parameter estimators. The accuracy of the param-
eter estimators is affected by the estimation procedure, data
measurement errors, and data sample size. Without studying
all of these effects one cannot positively determine the
ability of the model to represent actual rainfall fields.

The main objective of this paper is to investigate sampling
properties of the parameter estimators. To facilitate the
study the original model of Smith and Krajewski [1987] has
been slightly simplified. The original anisotropic model has
been modified to an isotropic version. This simplification is
Justified in the light of the results presented in the original
paper [Smith and Krajewski, 1987], where the full model was
applied to GATE data [Hudlow and Patterson, 1979} and
estimated parameters suggested isotropy. Also, Bell [1987}
used an isotropic model for GATE data. Of course, for
rainfall regimes where spatial anisotropy is significant the
full version of the model should be used. The simplified
model is described in section 2. In section 3 the parameter
estimation procedure is presented and “large sample” prop-
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erties of parameter estimators are derived. It is shown that
the estimators are : onsistent and asymptotically normal.
“Small sample” properties of parameter estimators are as-
sessed through a Monte Carlo experiment. Design of the
experiment and its results are the topics of section 4. A
summary and conclusions are presented in section 5.

2. RAINFALL MODEL

In this section a model for storm fields {¥(x); x € R} is
presented. The storm field is modeled as a nonnegative
random field [see Bras and Rodriguez-Iturbe, 1985] over the
region R. The random variable ¥(x) represents rainfall rate
(or accumulated rainfall) at spatial location x. The region R
will typically represent the area covered by a singie sensor or
group of sensors. Before presenting the model, some defini-
tions are needed.

A nonnegative random field {¥(x)} is “intermittent” if

P{Y(x) =0}>0 )

where P stands for probability. An intermittent random field
is one that can be decomposed into a region of zero values
(nonraining) and positive values. The distinction is important
in this work both from a modeling perspective and in the
context of parameter estimation. Radar can perform quite
well in delineating regions of rainfall from regions of no
rainfall.

A random field {¥(x)} is homogeneous (or stationary) if the
finite dimensional distributions of Y(x, + x), ===, Y(x; + x)
are the same as those of Y(x;), -*-, Y(x;) forall &, xy, ==+, xg,
and x. The following distributional descriptors for intermit-
tent, homogeneous random fields are used for parameter
estimation:

Vx € R

u = E{Y(x)}
o = Var {¥Y(x)}

(2)
(3)
4
(5)

The “index of variability,” I, of a homogeneous. intermittent
random field is defined by

p=P{¥(x) =0}

q(s) = P{¥(x;) = 0, Y(x;) = 0} ol =

(6)

where C, = o/u is the coefficient of vanation. The index of
variability can be viewed as a scaled coetficient of variation.

Circular “rain cells” of radius r are the basic buiiding
blocks of the rainfall model. The rainfall field { ¥(x)} can be
represented in terms of the locations of veil centers {L;} and
cell rainfall intensities {U},.as follows:

I= ~log (p)o/p)? = —log ( p)C}

Y(X) = 2 l([ILJ‘ xlt < U (7)

j=1

where 1(|L; - x|| < 7) equals 1 if the jth cell s located within
distance r of x, and 0, otherwise. Computational tractability
of the model follows froin the fact that Yt 111y represented as
arandom sum of independent and identically distributed (iid)
exponential random variab'es

N(x)
Y(x)= 2 Uy,

i=1

®
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Fig. 1 Schematic representation of the model structure.

where

Nx) =2 WL« <p

Jj=1

)

is the number of cells within distance r of the point x and T;
is the index of the jth cell which is within distance r of the
point x.

The locations L; of cell centers are restricted to lie within
circular rain bands of radius a (with units in kilometers; see
Figure 1). Within a rain band, locations of rain cell centers L;
constitute a spatial Poisson process with rate y (with units in
cells per square kilometer). The assumption that rain bands
are randomly located in the plane means that centers of rain
bands constitute a spatial Poisson process with rate A (with
units in rain bands per square kilometer). Storm depths U;
for rain cells are assumed to be independent and identically
exponentially distributed with parameter g.

The following distributional properties (see the appendix
and Smith and Krajewski [1987]) can be obtained from the
model representation of (7):

w=AB 'mriyma’ (10)
ol = E(Y(x)}2 + ymr})/B (11)
p=exp{-Ama¥l —exp (—ymri]} (12)

q(s) = exp { - A[2ma® — A(s)[[1 — exp (- ywrO)]}
13)

where
A(s) = ma* - s{a® — 0.25s%) 12
s<2a (14)

is the area of overlap of two circles of radius a, whose
centers are separated by distance s.
The index of variability for the model is given by

I=f(y)

- 2a? arcsin (0.5sa™")

(15)
I=[Q+ ywr)lymr¥[l —exp (- yar?)]

It is straightforward to show that fis monotonically decreas-
ing and that
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1<I<?2 (16)

The index of variability provides a measure of spatial
variability of storm fields that accounts for the spatial
intermittency of rainfall. For a “completely random” model
of storm fields the index of variability takes the value 2. A
completely random model has rain cells of radius r which are
distributed throughout the region according to a spatial
Poisson process. The rainfall intensity of a rain cell is
exponentially distributed. The index of variability takes the
value 2, regardless of the spatial rate of occurrence of rain
cells or the exponential parameter of rain cell intensity. For
the “cluster” model of (8) the index of variability is always
less than the value for the completely random model. The
index of variability depends only on the spatial rate of
occurrence of rain cells within rain bands, y. If v is very
small the index of variability is close to 2, the value for the
completely random model. For large values of vy the index of
variability can drop to half the value of the completely
random model.

3. PARAMETER ESTIMATION

Parameter estimation for the rainfall model will be based
on observations from a single radar and observations from &
rain gages with locations x,, - - -, x, relative to the location of
the radar. The radar field observations for the ith storm will
be denoted {Z,(x)}.

It is assumed that radar can accurately distinguish regions
receiving rainfall from regions receiving none, that is,

Y{x)=0 ifand only if Z(x)=0 an

The above assumption is quite accurate given proper
processing of the radar data and elimination of ground clutter
and anomalous propagation regions. Parameters of the rain-
fall model are estimated from raingage data and “0-1 mosa-
ics” of the radar field

Z{x) = 1(Z{x) > 0) (18)
We will denote by H, the data set consisting of rain gage
observations and 0-1 mosaics of radar fields for n storm fields

Hy={Z(x), Y{x);isn, j=1,--- kigy€R (19
The rain gage observation for the gage at spatial location x;
and storm i is Yi(x;). The total number of rain gages is k.
Several assumptions are implicit in the data model of (19).
Observations from radar and raingages are time-integrated
values covering identical time intervals. Radar observations
are continuous in space. It is also assumed that time-
integrated rain gage observations are error-free.

Estimation is based on the method of moments (or substi-
tution) principle. The sample moments used in the estima-
tion procedure are the following:

n k
A=n"'Y |k Y Yix,)

j=i

(20)

n k
= 3 [k 2 vt -at=0t-a2 Q@
i=] i=1
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p=nt> [lRI"f [l—Z',{x)]dx} (22)
i=1 R

i)=n"ty

i=1

[ IRITH | [ = Z{0)1 = Z(x + y)] dx}
Rl

(23)

where R, is the set of points x such that (x + Y E€ERandy
is a vector of length s. The statistic q(s) provides an
estimator of the joint probability of zero rainfall at two points
separated by distance s. In (21) the estimator is expressed as
the difference between 2, the estimator of the uncentered
second moment, and 2.
Based on (20)-(22) an estimator for the index of variability
is
1= -10g (p)(&/4)? 4

If I € (1, 2) it follows from (15) and (16) that the parameter
7y can be estimated as

y=f") 25

where the function fis defined in (15). From (12) and (13) we
can devise an estimator of the rain band radius by noting that

2 - log gq(s)log p = A(s)/(wa®) = h(a) (26)

where the distance s is specified in (23). It is straightforward
to show that

0<h(a)<1
h(a) =0

(v2)

a<s/2 (28)
For a > s5/2 the function h(a) is monotonically increasing.
The estimator of 4 is chosen to be

a=h""'(2 - log 4(s)/log p) 29)

The estimators for 8 and A can now be obtained from (10)
and (11) as follows:

B = (62 + ymr) ™! (30)

A= —log p(mad)(1 — e~¥77) G1)

The following proposition establishes asymptotic normality
and mean square error consistency of our estimators.
Proposition: If 1 < I < 2 and s < 2a then there is a
covariance matrix T such that
O 0
n'Ya, ¥, B, ) = Na, v, B, 1,), 3) (32)
where 2> denotes convergence in distribution and N((a, v,
B, A), %) denotes a multivariate normal distribution with
mean (g, vy, B, A) and covariance matrix 3. We sketch the
proof below. :

The sample moments 4, 92, p, § of (20)<23) can be
represented in the form

n .
.n—IZXi

i=1

(33)



where the X; are iid random variables. It follows from the
central limit theorem that
D
n'2(a, 9%, 9,9 — N((u,v%p,q),2) (34

for some covariance matrix X’. From (25), (29), (30), and
(31) we have

a=g\g, 9% p, Q) 39)
= gaia, ¥4, 5, @) (36)
B =gxa, % 5, 9 37
=g, 9% 5,9 (38)
Let
D =[0gidx))x = (u, v2,p, g) i=1,---,4 j=1,--+,4
(39)

If g = (g, 82, &3, &4) has a unique inverse in a neighborhood
of (u, v%, p, q) then it follows from theorem 3.3.A in the
work by Serfling {1980] that
n'%@, %, B, A) 2> N(a, v, B, A), DE'DT)  (40)

The condition I € (1, 2) above and the functional form of
estimators (35)-(38) ensure that g is invertible in a neighbor-
hood of (1, v, p, q). It follows from the proposition that our
estimators are asymptotically unbiased and that variances of
the estimators converge to zero. Thus mean square error
consistency follows directly from the proposition.

The condition s < 2 a in the proposition can be removed if
the estimator of (29) for rain band radius is replaced by the
following estimator. Choose @ to minimize the function

1 [log g(s) 2ma? - A(s)]?
h(a) = f °[ - , ds
0 log p mwa-

(41)

where ¢, is constrained by the sampling domain of the radar.
Asymptotic normality can be established for the estimator
based on (41). The derivation, however, is considerably
more complex than for the estimator specified by (29).

The practical utility of the asymptotic properties of param-
eter estimators is small if similar properties do not hold for
realistic sample sizes. This is especially important, since
radar records are relatively short compared to rain gage
records. Therefore it may be impossible to realize the
benefits of multiple sensor rainfall modeling if the parameter
estimators do not behave well for small samples. To estab-
lish small sample properties of parameter estimators a Mon-
te-Carlo experiment was conducted. This study is described
in the following sections.

4. MONTE CARLO EXPERIMENT

Smith and Krajewski [1987] point out that if the estimated
index of variability is outside of the range (1. 2) for a given
data set it is impossible to determine whether this is due to
inadequate structure of the model or insutficient sample size.
A numerical simulation experiment can be helpful to deter-
mine the sample size requirements assuming that the latter is
the case. In the experiment we generate rainfall fields from
our model, then “observe” them by simulating performance
of the two sensors: rain gages and radar, and use the
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sensor-observed data to infer the initial parameters of the
underlying rainfall fields.

The selection of parameter values is clearly related to the
feasibility issue for the modei. The model parameters are
unrestricted in the positive space (R.). The condition im-
posed on the index of variability, however, constrains the
mean, variance. and zero rain probability. Figure 2 presents
the feasibility region of our rainfall model in terms of zero
rain probability and coefficient of variation. The upper curve
corresponds to / = 1 and the lower one to I = 2. Since both
coefficient of variation and zero rain probability are simple
statistics with intuitive physical meaning, it is relatively
simple to establish the expected range of these parameters
for a given geographical location. Zero rain probability is
strongly related to the climatology of a region. Similarly, the
coefficient of variation characterizes local climate variabil-
ity. From Figure 2 we can also see that for low probability of
rain (high zero rain probability > 0.9) relatively small
sampling errors in computations of p can put the statistic /
out of the feasible range.

In order to run our model for any point in the p-I domain
we had to determine the corresponding parameters r, a, A,
v, and B. The parameter vy can be determined from (25) for
an assumed radius of a rain cell. In our study we investigated
r in the range of 1-2 km?. Similarly, if one assumes the
radius of a rain band one can determine A from (12).
Parameter B8 can be most conveniently specified from (10),
which links the mean rainfall with its average intensity over
a cell. Since the concept of a cell is, to a certain degree, a
conceptual product it is better to specify the required level of
the mean rainfall and adjust parameter 8 accordingly.

As is clear from the above discussion, a systematic
analysis over the range of parameters would lead to a large
number of simulation runs. For example, considering 12
pairs of p and I, 2 values for r, 3 for a, and 4 for x would
result in 288 possible combinations. Full analysis of one
combination, which includes generation of one thousand
storm fields, takes about 6 hours of CPU time on the
computer systems available to the authors (Apollo DN3000
and Prime 750). This translates into 72 days of CPU time, a
number clearly unmanageable. Therefore only selected runs
were performed. The results of these preliminary runs indi-
cated bias in the estimation of the parameters a and I. These
biases were fairly independent of the sampling size in the
range 25-100.

To further investigate this issue, it was observed that the
simulation study could be performed in a ‘*“‘decoupled”
manner. There are two types of parameters. One group
includes parameters responsible for point characteristics of
rainfall, the mean u, and the variance o*. The controlling
parameters are  and A. The second group includes spatial
characteristics of the model such as p and is controlled by
parameters a, A, and ¥ (in the original formulation of Smith
and Krajewski [1987] these are a|, a;, 6, A and y). Due to the
fact that our model is statistically homogeneous we can
compute certain statistics at a point representing a single rain
gage. The statistics of interest at a single point must be
related to the spatial structure of the model. This condition is
met by the average number of cells affecting a single point in
space and its associated variance. In addition, the mean i
and the variance &> can be computed. Derivations of the
theoretical moments of the number of cells at a point and the
corresponding rainfall intensity are given in the Appendix.
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Fig. 2. Feasibility domain of the rainfall model in terms of zero rain probability and coefficient of variation.

The sampling properties of the model at a point were
investigated using a simple cell generator. Since the mean
number of rainbands at any given point is Ama® and the
number of cells at any point within a band is ymr? one can
easily generate the cells. An experiment was performed for
eight different sample sizes ranging from 25 all the way to
10,000. For each sample size 1000 independent realizations
were generated and the mean, the variance. the zero rain
probability, the variability index, the average number of
cells, and the variance of the average number of cells were
computed and compared statistically against the theoretical
values. Figure 3 presents typical results of the experiment
which was conducted for 72 combinations of the parameters.
It is evident that all the statistics. except the variance,
display unbiased behavior even for small sample sizes.
However, the sampling variability is quite significant. Even for
the case with I = 1.5 the sampling variability is so high for the
sample size of 25, that rejection of the model based on the
estimated value of [ is quite likely. For those cases where the
true value of / lies near the bounds of the feasibility region a
sample size of the order of 1000 would be required to ensure
high confidence in the adequacy (or inadequacy) of the model.
The practical implication of this conclusion depends on the
temporal scale of integration of the data Since the analyzed
rainfall fields should be statistically independent. it is estimated
that for the daily time scale a record of about 10 years would be
required. For the scale of hourly rainfall and 4 tropical climate
probably 3 years of data would be sufficient

Since the inference of point rainfall characteristics is
based on rain gage data, which often are in error, we
investigated the influence of the measurement error on the
parameter estimates. The error was assumed Gaussian with
zero mean and standard deviation of percent of the mean.
The case of ¢ = 10% was investigated. It was found that the
error of 10%, which seems to be a widely accepted error
magnitude for rain gage data, has little effect on the mean

values of the model parameter estimates. The variances of
the estimators are somewhat increased.

With respect to the spatial parameters of the model, their
estimation is based on the function h( ) given by (41).
Computation of the logarithmic function log g¢(s) is the most
time consuming component of the parameter estimation
algorithm. Since §(s) depends on several parameters such as
A, 7. r, and a, a comprehensive evaluation of the sampling
properties of the spatial parameters was not feasible. How-
ever, a simplified scenario was analyzed in detail. Due to the
fact that our main concern is the “ability” of the two-point
zero rain probability function to reveal the size of the rain
bands we performed a one-dimensional experiment address-
ing this question.

Consider an arbitrary cross section of the radar domain

" passing through the center. If we wanted to estimate the

band radius based on the two-point zero rain probability
function computed along such a line we would face a
problem resulting from the fact that, in general, our line does
not pass through the centers of all the bands that it is
crossing. However, the one-dimensional equivalent of the
model investigated in this work requires that the line seg-
ments corresponding to the bands be of the same length.
Similarly, the line segments corresponding to rain cells are
also of fixed length. The line analogy of the spatial model is
presented in Figure 4. To investigate the ability of § to
estimate the rainbands radius we performed a Monte-Carlo
simulation over a range of sampling conditions. The length of
the line was taken as 100. The intensity parameter A; controls
the number of “bands” within the line. Parameter v controls
the number of “cells” within a band. “Cell” radius is r; and
band radius is a,. It can be easily shown that

R _ 2
hia) = f ! ,:log aus) _ da A'@] s @)
0

log p, 2q
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Fig. 3. Results of simulations of a point cell generator. The true values of the statistics are indicated to be the
dashed lines. The resuits are for A = 0.005, y=12,B=27,a =50, and r = 1.0. The horizontal bars indicate one
standard deviation range.
where the bands will all merge together making estimation of their
size impossible. This is illustrated in Figure 5. Similarl
Afs)=2q;-s s=2a mpo .. g Y,
@3) even if A is under the critical value but vy is low, the bands
may appear smaller than they really are. Figure 6 presents
Afs)=0  otherwise the results of our simulations illustrating such a situation. It

and s is, as before, the distance between the centers of two
bands.

Since the magnitude of rainfall is of no concern in estimat-
ing the band radius, the line process can be conveniently
generated as a 0-1 process. The two-pint zero rain proba-
bility function can be rapidly computed for such processes.

The first question that we would like to address concerns
the limit of A for which we can expect to be able to estimate
the spatial features of rainfall. It is intuitively clear that
distinct bands (relatively low A and high y) should be the
easiest to identify. For values larger than a -ritical value Acr

is evident that for A > A, the estimation results are
becoming erratic and unreliable. As far as the effect of v is
concerned, we can see that severe underestimation occurs
until y reaches about 2. It is also clear that y can reach a
saturation level y;. For y > vy, there is no effect on
estimation of ;. But, of course, A and ¥y jointly determine
the properties of the estimators of interest. We have also
investigated the effect of sample size. Over a wide range of
parameters the behavior of the estimator &, is remarkably
stable in the mean. The variance also is quite small even for
samples of the order of 100 (Figure 7).
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Fig. 4. Schematic representation of line analogy.

5. CONCLUSIONS

We have presented investigations of the parameter esti-
mation procedure for a statistical spacz-time model of rain-
fall based on raingage and radar observations. In the model,
the radar data are used as an indicator of rainy versus dry
areas. Therefore only the spatial characteristics of the mod-
eled rainfall fields are inferred from radar data. The param-
eter estimators for the model possess attractive characteris-
tics; in section 3 we have shown that the estimators are
asymptotically normal. the central question of this paper was
to establish data requirements for parameter estimation. To
accomplish this goal we need to asses the small sample
properties of parameter estimates. The approach undertaken
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Fig. 5. Results of simulations of a Iine generator. Shown is
influence of band intensity A (with y = 30) on band radius
estimation. The true band radius was fixed at 5.0 .nd cell radius was
1.0. The horizontal bars indicate one standard ueviation range.

BAND RADIUS

Fig. 6. Results of simulations of a line generator. Shown is
influence of cell intensity y(with A = 0.1) on band radius estimation.
The true band radius was fixed at 5.0 and cell radius was 1.0. The
horizontal bars indicate one standard deviation range.

was that of a Monte-Carlo study. We generated data records,
for both radar and rain gages, from our model and then tried
to estimate back the parameters of the model. Due to the
number of parameters of the model, a comprehensive eval-
uation of the behavior of the model parameters throughout
the whole parameter space was not feasible and we had to
decompose the model into blocks which could be investi-
gated independently. There were two major blocks: first, we
evaluated the ability of the model to infer point rainfall
magnitude from rain gage data; second, we evaluated the
model’s ability to estimate the spatial features of the model.
The first issue was resolved positively by means of our
experiment. For small samples, say, less than 100 indepen-
dent events, bias is a clear problem. For samples on the
order of 5001000 the estimators are effectively unbiased and
characterized by small variances. The second issue was
answered less than satisfactorily. The parameter space
which is useful in terms of the model’s ability to estimate the
spatial characteristics of rainfall patterns is restricted. Pa-
rameters being outside of this space result in biased results.
On a positive note, the sample size required to estimate the
spatial characteristics is smaller than that required to esti-
mate the magnitude of point rainfall. Now, a very important
reminder is due. The above conclusions are based on the
assumption that the model is correct in the sense that the
rainfall fields are organized in exactly the way which was
proposed in the model. Of course, within our Monte Carlo
experiment this assumption was met, however, in reality
parametric model assumptions are seldom perfectly satis-
fied.

From a practical point of view, if the variability index says
that the model cannot be used, it is really immaterial whether
the reason is small sample size or inadequate model struc-
ture. In both cases one has to look for alternative ap-
proaches. However, the results of our simulations tend to
indicate that with about 500 statistica'ly independent rainfall
fields one should be able to avoid most of the sampling
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problems. In order to translate this number into an actual
sample size one needs to consider time correlation length
and climatology of a particular location. Whether the anisot-
ropy assumption violates these findings is another issue not
addressed here.

APPENDIX

In this appendix we present derivations of the moment
equations for the model presented in section 2. The repre-
sentation

N(x)
Y =2 U (A1)
i=1
is used to obtain (10)~(11):
N(x)
E{Y(x)} = E{ E{ 2, UiN(x) (Wald’s lemma)
i=1
= E{N(x)E{U}}
= B 'E{N(x)} (A2)

because U; has an exponential distribution with parameter
B. Similarly,

Var {¥(x)} = E{N(x)} Var {U} + Var {N(x)}E{U}?
= BHE{N(x)} + Var {N(x)}] (A3)

The number of cells N(x) can be represented as follows. If M
rain bands cover the point x, the number of cells N(x) has a
Poisson distribution with mean Mywr® (y is spatial rate of
occurrence of cells; r is cell radius). The number of rain
bands M covering x has a Poisson distribution with mean
Ama? (A is spatial rate of occurrence of bands; a is radius of
a band. Therefore

E{N(x)} = E{E{N(x) M}
= E{Mynr?)
= )urazynrz
=2y (A9
with X = Ama? and = ymr?.

Also,
E{N*(x)} = E{E{N*(x)| M}}

(AS)
Thus the variance
Var {N(x)} = X(¥ + ¥
= Ama¥ymr® + (ynr)?3 (A6)
Now
E{Y(x)} = B "'E{N(x)}
=p~'Ay
=B 'Awalynr? (A7)
Var {V(x)} = B [A¥ + A(¥ + ¥)]
=(B7ANB'2+7)
=ENB~'Q+ ymrd)

Derivations of (12)-(13) are straightforward based on the
assumption that the number of cells at a point x, N(x), is
Poisson distributed.

(A8)
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