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ABSTRACT

Georgakakos, K.P. and Smith, G.F., 1990. On improved hydrologic forecasting — results from a
WMO real-time forecasting experiment. J. Hydrol., 114: 17-45.

A methodology for improved hydrologic forecasting of streamflows in headwater basins has
been developed. The methodology is based on the mathematical modeling of the hydrologic
catchment processes via conceptual hydrologic models. Real-time updating procedures have been
designed for the on-line incorporation of past observed discharges in the forecasts. Updating is
accomplished via a state estimator that exploits a priori knowledge on the statistical characteris-
tics of model input and parameter errors. Hydrologic expertise is the only essential requirement
for routine application. The value of the methodology in real-time hydrologic forecasting is
illustrated for two hydrologically different headwater basins: the Bird Creek basin in Oklahoma,
U.S.A,, and the Orgeval basin in France. Verification of the methodology with data from the
aforementioned basins was performed as part of a World Meteorological Organization (WMO)
workshop held in Vancouver, British Columbia, Canada, during the period: 30 July—8 August, 1987.
Real-time conditions were simulated with verification data made known after forecasts were
issued. The verification results appear encouraging especially in light of the fact that all the
forecasts were obtained in an automatic fashion (without manual intervention). The methodology
developed has been implemented on the National Weather Service River Forecast System forecast
component at the Hydrologic Research Laboratory, National Weather Service (NWS), and is
currently undergoing testing in a true real-time environment.

OPERATIONAL FORECASTING OF STREAMFLOWS

Operational streamflow forecasting has been the subject of extensive
research in recent years. The use of mathematical models that simulate the
dynamics of the terrestrial runoff process and the utilization of improved
monitoring systems have increased our capability to reliably predict floods and
flash floods. Along these lines of research, conceptual mathematical models for
soil moisture accounting and flood routing have been devised and used (Peck,
1976) in real-time flood forecasting. State estimators that process the observa-
tions of discharge and automatically update the model states (model variables
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that summarize past inputs) have been designed based on concepts borrowed
from modern estimation theory (Kitanidis and Bras, 1980a,b; Georgakakos,
1986a,b). The estimators use information on the magnitude of the uncertainty
that enters the mathematical model (because of inaccurate specification of
input, model parameters and model structure) and produce forecasts of the
expected flood discharges and associated estimation-error variances. They also
utilize observations of discharge and associated observation error statistics,
and they produce improved initial conditions for the state variables in a
sequential manner (i.e. real-time updating) for improved forecasts.

Most of the past work has been based on recursive state estimation
algorithms of the type of the linear Kalman Filter (Gelb, 1974). Since the
nonlinearity of the natural process is represented in the conceptual mathemat-
ical models, and the Kalman Filter algorithm requires linear models, lineariza-
tion techniques of various types have been used to generate linear approxima-
tions to nonlinear models (Georgakakos and Bras, 1982).

Denote by f(x,u;0) the nonlinear function that signifies the derivative of the
state vector x with respect to time ¢. It is assumed that dependence of fon ¢ is
through the state vector x, the vector of input variables u, and the vector of
parameters 6. The mathematical expression for the derivative vector function
f will be referred to as the conceptual model in the following. If the model errors
(in input, model parameters and structure) can be represented as an additive
sequence of random vector disturbances w(t), then

dx(t)/dt = f£(x(), u(t); 0) + w(2) 1)

Consider an observation z(t,) of the natural process of streamflow at time
instant ¢,, and an expression A(x, u; #) that models the relationship between the
model state vector x(¢,) and the input vector u(¢,) at time ¢,, and the observa-
tion at the same time. If v(¢,) signifies the observation error at time ¢,, then

2(t) = hx(G), at); 0) + v(t) @

where it has been assumed that the drainage basin of interest is a headwater
one with available observations of streamflow at the outlet of the basin (a
realistic assumption in the operational environment).

The set of eqns. (1) and (2) represents a state-space mathematical formula-
tion of the terrestrial streamflow process. Conceptualization of the component
processes, such as overland flow, groundwater flow and flood-wave propaga-
tion, gives expressions for the functions f and h.

The Kalman Filter applied to the nonlinear system (1)-(2) (the algorithm is
called Extended Kalman Filter in this case) results in the following set of
recursive differential and algebraic equations for step [¢,_;, t,]:

dx@))/I(d) = £EEO, u@®); 08, <t < ®3)
dP®7)/A) = FOP@®)™ + PO F®' + Q@) o St <ty 4)
Kt) = P®)” He)'[HG)P®)™ He)" + R ®)
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k()" = R(@t) + K@)zt — hE@E) ™, u); 0)] (6)
Pt = [1 - K@)H@G)IP) 1 — Ke)HE) + K¢)REGKE)" (1)

where

[F®OL; = [0f&@®, u®);0)]/[0x;(1)] ®
[H®; = [0h&@®), u®);0)]/[0x;(H)] ©)
and with the following symbol definitions

f; the ith element of vector function f

x; the jth element of the state vector x

%(¢)~ the unbiased minimum variance estimate of x(t) given all observations
before time ¢t

()" the unbiased minimum variance estimate of x(t) given all observations
up to and including time ¢

P(t)~ the covariance matrix of the state estimation error vector given all
observations before time ¢

P(t)* the covariance matrix of the state estimation error vector given all
observations up to and including time ¢

Q(t) the covariance parameter matrix of the model error process w(f)

R(t,) the variance function of the random sequence v(t;).

It is noted that the derivatives in eqns. (8) and (9) are functions of the state
vectors evaluated at the best estimate of the state vector before the observation
at time ¢, 2(f), becomes available.

The set of eqns. (3)—(7) can be utilized recursively to (a) process the observa-
tions 2(t,)(k = 1,2,..., M) as they become available in real time, and (b)
produce forecasts of the state vector x(¢,)(x(f)”) and associated estimation-
error covariance matrix P (t,)(P(t,) ). (Initial conditions x, and P, are required
for the initiation of the algorithm.) Given these forecasts, forecasts of
streamflow 2(t,) and associated estimation-error variance P,(f,)” can be
produced by

2t) = RhR@O,u)0) (10)
P, ()" = H@WP@t) H)" 1n

If desired, use of a Gaussian assumption can be made for the sequence of
streamflow forecast errors resulting in capability for probabilistic flood
occurrence predictions. Thus, if ¢ denotes the discharge corresponding to a
prespecified flood stage at the outlet of a headwater basin, and the Gaussian
probability density function of the streamflow ((t,) at time ¢, is denoted by
£ (C(t); 2 @), P, (t,)7), then the probability 2% (¢, t,) that the threshold ¢ will
be exceeded at time ¢, is given by

¢
PR, &) = (1 - f #L(&); 2 (), P, (tk)_)dC(tk)) (12)

— 0
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The key assumptions that lead to the numerically convenient form of eqns.
(3)—(7) are that the continuous-time error process w(t) is a Guassian white-noise
stochastic process with mean vector equal to the zero vector and covariance
parameter matrix equal to @ (f), and that the discrete-time error sequence uv(t,)
is a Gaussian independent sequence with mean equal to zero and variance
equal to R(t,). The initial vector x(f,) is also assumed Gaussian with mean
vector x, and covariance matrix F,.

Prior to implementation of the estimation algorithm for a particular
conceptual model it is required that values for the model parameters, 8, and for
the estimator parameters, @(t) and R (t,) (for all ¢ and &), be identified from
available morphometric and hydrologic historical data from the site of interest.
Thus, before the application of algorithm in real-time streamflow forecasting,
a parameter identification study is required.

A detailed survey of parameter estimation techniques and applications in
the area of real-time flow forecasting has recently been presented by Rajaram
and Georgakakos (1987) and will not be attempted here. Some conclusions of
that review relevant to the present study will be discussed below.

Even though estimation techniques have been extensively studied in the
model parameter estimation context, very few methodologies have been
proposed and tested for the estimation of the estimator parameters € (f) and
R(t,). Of particular importance is the identification of the elements of @ ()
since very little a priori information is available for it. The variance R (¢;) of
the streamflow observation error can be estimated in most cases reliably
(especially in headwater basins with no looped rating curves) since it depends
on the characteristics of the measuring device. The stochastic approximations
technique has been used (Kitanidis and Bras, 1978; Georgakakos, 1984b) as the
basis of a methodology for the determination of selected elements of matrix
Q (t) assumed independent of time ¢. The idea of the methodology is to enforce
consistency at all times between the actual statistics of the one-step-ahead
predicted residuals (residual = observed — predicted streamflow) and those
statistics as they are predicted by the estimator in real time. This methodology
is well suited to low dimensional @ matrices. It fails to perform well in cases
of high dimensional systems and in cases when the model error is highly
nonstationary (the matrix @ depends on time t). Recognizing the deficiency of
existing methods to provide a general solution to the problem of determining
values for the estimator parameters, Rajaram and Georgakakos (1987, 1989)
proposed a conceptual framework that leads to an identification methodology
that does not suffer from the aforementioned deficiencies.

Rajaram and Georgakakos (1987, 1989) proposed the decomposition of the
model error process into two component processes: the model-parameter error
process and the input error process. The conceptual model equations and a
priori estimates of the model-parameter and input estimation errors were used
to parameterize the statistics of the component processes. For model-parameter
calibration by automated techniques, the final parameter error covariance
matrix can be used as an a priori estimate of the model-parameter estimation
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error. For manual calibration of the model parameters by hydrologists, the
hydrologists’ degree-of-belief estimates of the parameter error variances can be
used instead.

The proposed methodology requires the identification of only two free
parameters from historical data. Because of the small number of free
parameters, almost any statistically sound parameter estimation technique can
be used for their identification. Previous application to large-sclae hydrologic-
chemical models that simulate watershed response to acidic deposition has
given encouraging results.

The objectives of this study were two-fold: (1) to apply the Rajaram and
Georgakakos methodology to the real-time forecasting of streamflows using
the National Weather Service River Forecast System (NWSRF'S) soil moisture
accounting scheme and a nonlinear storage routing model; (2) to verify the
predictions of the calibrated model in a World Meteorological Organization
(WMO) experiment that simulated real-time conditions and used data from two
hydrologically dissimilar drainage basins: the Bird Creek basin in Oklahoma,
U.S.A., and the Orgeval basin in France.

The next section develops the pertinent mathematical formulation that
leads to the parameterization of the second moment of the model error process.
It also indicates various approaches for the identification of the two free
parameters of the formulation. Sections on pages 9, 16 and 22 present applica-
tions of the methodology to the two drainage basins of interest, and the
verification results from the WMO experiment. Conclusions and recommenda-
tions for future research work are included in the section on p.25. For the
details of the derivations and a complete mathematical formulation the reader
is referred to Georgakakos et al. (1988).

PHYSICALLY BASED STATISTICAL CHARACTERIZATION OF HYDROLOGIC MODEL
ERRORS

Model errors result from inaccurate specification of the model structure
(e.g. nonlinear processes are represented as linear and spatially distributed
processes are represented as spatially lumped), because of estimation errors in
the values of model parameters, and because of measurement or estimation
errors in the model input (e.g. estimation of mean areal precipitation and
evapotranspiration). Use of the powerful results of linear estimation theory
presented in the previous section requires the characterization of the model
errors as an additive zero-mean white-noise random process (i.e. the process
w(t) in eqn. (1)). The purpose of this section is to parameterize the covariance
parameter matrix @ (¢) of this random process.

Errors in model structure are difficult to quantify because of the absence of
“ground truth” models for the large-scale hydrologic process of runoff. It is
expected, however, that structural errors would lead to a non-zero-mean
random process w(t). The latter is because of the fact that structural errors
would become important during the periods of time when the natural
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component process which is inaccurately represented in the model formulation
becomes significant. During those periods of time, model structure errors are
expected to be biases rather than zero-mean random errors. For the aforemen-
tioned reasons no attempt will be made herein to characterize errors in model
structure. For the following development it is tacitly assumed that model
errors are dominated by errors in the estimation of model parameters from
historical data and by input estimation (or observation) errors. It is noted,
however, that the proposed methodology can be used in a recursive parameter
estimation framework to detect structural errors (Rajaram and Georgakakos,
1987, 1989).

The strategy for the derivation of a formula for the model error covariance
parameter matrix @ (¢) is based on the following steps:

Step 1: Hypothesize models for the model errors because of parameter
estimation and input estimation.

Step 2: Linearize the nonlinear vector function f(x,u; 6) by expanding in a
Taylor series expansion about the best estimates of x, u and 6.

Step 3: Derive the differential equation that governs the propagation of the
state covariance matrix using the linearized form of eqn. (1) obtained in Step
2 and the models of uncertainty hypothesized in Step 1.

Step 4: Obtain an expression for @ (f) by comparing the equation derived in
Step 3 with eqn. (4) and estimate free parameters (if any) from historical data.

It is noted that the methodology is based on a linearization of the process
dynamics, eqn. (1), about the best estimates of the model state, input variables
and model parameters. Thus it is expected to be most successful in cases of
small deviations from these best estimates. Various applications to date
however indicate that it is still satisfactory in cases of large estimation errors
in input variables, state variables and parameters (Rajaram and Georgakakos,
1987, 1989). Also, note that the procedure outlined can use the state estimator-
produced best estimates of the state variables in the linearization (Step 3). The
mathematical development corresponding to each step of the procedure is
given below.

Step 1
Consider the “true” values of the state, input, and parameter vectors as
functions of their best estimates and residual errors. It holds that

x(t) = %@ + e@®) (13)
u(@) = @) + e, (?) (14)
0t) = 0 + e(®) (15)

where the left-hand sides of eqns. (13)—~(15) denote the true values, the first term
of the right-hand side denotes the best estimates and the last term denotes the
residual errors of the state, input and parameter vectors, respectively.

A time invariant estimate of the parameter vector has been assumed. This is
consistent with the limited data bases existing for the calibration of large-scale
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conceptual hydrologic models. It is noted that a time varying model parameter
vector has been assumed as the true parameter vector. This is in an effort to
account for model structure errors that are manifested by requiring a different
parameter set for various regimes of physical system response. The interested
reader is referred to Rajaram and Georgakakos (1987) for an implementation of
the procedure under the hypothesis of a constant true parameter vector.
Estimates of the model state vector can be obtained recursively by the linear
state estimator of eqns. (3)—(7). In particular the predicted estimate %(f)~ should
be used. Estimates of the input vector can be obtained from observations or
estimation procedures external to the model dynamics (e.g. the estimation of
the mean areal precipitation input).

It is hypothesized that the residual error terms in eqns. (14) and (15) are
independent white-noise random processes with zero means and covariance
parameters given by

Ele.®e )"} = U@ ¢t — t) (16)
E{e,(e,(t)"} = W) 8¢ — ') an

where E {-} denotes expectation of a random variable or process, and 6(t — t')
denotes the Kronecker delta function which is zero everywhere else but at the
origin where it becomes infinity. Superscript T denotes transpose of a matrix
or vector quantity.

Step 2

Expanding the nonlinear vector function f in a Taylor series about the best
estimates of the state, input and parameter vectors yields to a first order
approximation:

f(x, w; 0) = f&, 4; 0 + F&a; 0e + MZ, be, + N(&, @ Oe, (18)
where the residual error vectors have been defined in eqns. (13)(15), F(+) has

been defined in eqn. (8), and the (i,j)th elements of the matrices M(+) and N(-)
are defined as follows:

M&, &; 0),; = [9f:&, G 6)1/(0u;) (19)
[NG&, & 0)]; = [0f(% & 8)1/(39)) (20)

The derivatives in eqns. (19) and (20) are evaluated at the best estimate
values of the vectors x, u, and 0; and u; and 6, represent the jth elements of
vectors u and 6, respectively. Also, dependence on time has been omitted for
notational convenience.

Step 3

Given the assumptions in eqns. (16) and (17) regarding the covariance
properties of the vector random processes e, and e, the last two terms in the
right-hand side of eqn. (18) can be replaced by the vector random process w with
covariance parameter matrix @ given by
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Q = MR &;HUM®Z, &; 0)" + N&, &; )WN R, §; )" 21)
The matrices U and W have been defined in egns. (16) and (17), respectively.

Upon the introduction of the process w, the propagation equation for the

state estimator remains as in eqn. (14), with @ (¢) replaced by the expression in
the right-hand side of eqn. (21).

Step 4

Implementation of the algorithm requires specification of the matrix
covariance parameters U and W. Statistical input and model parameter
estimation procedures provide estimates of U and W directly. In lieu of statisti-
cal estimation procedures for estimating u and 0, degree-of-belief estimates of
the errors in input and parameter values can be used to specify the diagonal
elements of these covariance parameter vectors with the off-diagonal elements
set to zero. In order to account for erroneously specified U and W, two free
parameters o, and «, are introduced so that the expression for @ in eqn. (21) is
modified to
Q = o, MR, &; HUMRF, §; 0)" + o, N&, &; O)WN (%, &; 0)" (22)

Estimation of the two free parameters from historical data is necessary
before the proposed state estimator is used in realtime forecasting of
streamflows. A criterion should be set and best estimates of the free parameters
should be obtained by minimizing the estimation criterion. Since the free
parameters under study are estimator parameters rather than model
parameters, it is proposed that they be estimated by forcing consistency
between the estimator-predicted streamflow residual variance and the actual
streamflow residual variance. The stochastic approximations technique can be
utilized for this purpose. Rajaram and Georgakakos (1987) present the relevant
formulation. However, since there are only two free model parameters, one can
also construct contours of various objective functions in the (a,, «,) parameter
space and, then, find the values of the two free parameters that optimize the
objective functions. A suitable objective function in this case would be the
variance of the normalized streamflow prediction residuals. An optimal value
of 1 enforces consistency between the predicted and actual streamflow
residuals.

It is noted that the procedure outlined in Steps 1 to 4 reflects the nonstation-
ary nature of model errors in a physically consistent manner. Even though the
matrices U and W may remain constant at all times, the derivative matrices
M(+) and N(-) are time dependent and modify the strength of the uncertainty
in various input and model-parameter variables in accordance with the
dynamics represented in the conceptual model. This is perhaps the most
important contribution of this novel approach. In addition and for operational
applications of the methodology, hydrologic expertise is utilized for the specifi-
cation of degree of belief estimation of U and W. It is also noted that a plot of
the normalized residuals as a function of time (after the two free estimator
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parameters have been identified) can indicate periods of potential errors in the
model structure. Persistent excursions of the normalized residuals beyond the
interval: [—5, + 5] should be associated with such errors.

HYDROLOGIC MODELS AND DRAINAGE BASINS USED IN THE APPLICATIONS

This section presents the components of a conceptual hydrologic rainfall-
runoff model that was used in the applications of the forecasting methodology
previously described. The hydrologic model is composed of the modified
Sacramento soil-moisture accounting model and a nonlinear reservoir channel
routing model. Data from two different drainage basins, the Bird Creek basin
in Oklahoma, U.S.A., and the Orgeval basin in France, are used in the test
cases. Following is a short description of the hydrologic-model components and
of the drainage basins. For a more detailed description the reader is referred to
Georgakakos et al. (1988).

The time-continuous hydrologic rainfall-runoff model

The rainfall-runoff model used in this work is of the conceptual type. That
is, even though the model equations are not expressions of the differential laws
of conservation of heat, mass and momentum for the water substance, they do
describe large spatial and temporal scale conservation and response laws that
are in accordance with the observed large scale behavior of water in hydrologic
drainage basins. The model is a spatially lumped one in that it treats the
hydrologic basin as one unit with no regard for the spatial distribution of the
modeled physical processes. One of the model features that make it particularly
attractive for real-time prediction applications is its modest requirements in
input data for adequate performance. At the current stage of development, the
hydrologic model has no component for the computation of snowmelt runoff.

The modified Sacramento model

The soil-moisture accounting component of the rainfall-runoff model used in
the tests is the modified Sacramento model, recently documented in Geor-
gakakos (1986a). It is a conceptual spatially-lumped model suitable for applica-
tion to headwater drainage basins. It accepts mean areal precipitation and
mean areal evapotranspiration as input, and produces total channel inflow as
output. The flow components that contribute to the total channel inflow are:
direct runoff from impervious areas, surface runoff in cases of excessive
rainfall rates, interflow through the upper soil layers, and groundwater flow.
The model subdivides the drainage basin into two zones, an upper and a lower
zone. The upper zone simulates water stored in the upper soil layers which is
available for evapotranspiration, percolation, surface runoff and interflow.
The lower zone simulates groundwater storage. Both zones have tension-water
elements and free-water elements. The former simulate water which can be
extracted only via evapotranspiration while the latter simulate water that is
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“free” to move under the action of gravity. The upper soil zone contains one
tension and one free-water element, while the lower zone contains one tension
and two free-water elements. The two free-water elements of the lower zone
were introduced by the originators of the model in order to better approximate
the recession limbs of hydrographs using the linear outflow from the lower zone
free-water elements. An additional impervious area storage element was
introduced in an effort to account for the temporal changes of the saturated soil
area during flooding events and, therefore, to partially account for the spatial
distribution of that area as a function of time.

Several versions of the Sacramento soil-moisture accounting model have
been published in the literature. The original version (Burnash et al., 1973) was
a discrete-time version of the model. Kitanidis and Bras (1978) presented a
simplified state-space form of the discrete-time version. Georgakakos (1986a)
presented a continuous-time state-space form of the model that closely ap-
proximates the original discrete-time model. It is the Georgakakos (1986a)
version of the model that we have used in the applications. We will refer to that
version as the modified Sacramento model. For the details of model formulation
the interested reader is referred to Georgakakos (1986a) and Georgakakos et al.
(1988).

The channel routing model

When it is impossible to collect cross-sectional data and to identify the
spatial distribution of channel inflow along the channel length, conceptual
models of channel routing can be used. A class of such models is based on a
generic element that is a linear or nonlinear reservoir. Thus, cascades or
tree-like patterns of conceptual reservoirs can be used to simulate the water
flow of a natural stream network.

Several channel routing models based on a cascade of reservoirs have
appeared in the literature (Unny and Karmeshu, 1984). For the purposes of this
work and in accordance with the data available, regime of application
(headwater basins with “kinematic” water flow), and soil-moisture accounting
model used (see previous section), a series of n nonlinear reservoirs is used as
the channel routing model. This model is based on the formulation originally
proposed by Mein et al. (1974) and brought to a state-space form by Geor-
gakakos and Bras (1980, 1982).

The channel routing model contains two parameters that define the relation-
ship between the storage and the outflow of each of the conceptual reservoirs.
It is noted that the relationship implies a one-to-one correspondence between
discharge and stage which is a characteristic of kinematic channel routing
methods. Thus, use of this model should be restricted to headwater areas with
relatively steep slopes.

The conservation of mass (or volume) equation applied to each of the
conceptual reservoirs with the assumption that the total channel inflow enters
the cascade at the upstream end (a modeling assumption) provides an
expression for the dynamical equation of the routing component. Estimation of
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the two free routing-model parameters can be achieved with trial and error
procedures or recursive identification methods based on modern estimation
theory (Georgakakos and Bras, 1980). The number »n of reservoirs in the series
can be obtained from the response time of the drainage network (Georgakakos,
1987).

State updating

The state updating procedure described in the introductory section (see
eqns. (3)-(9)) uses the differential equations of the hydrologic rainfall-runoff
model together with descriptors of the input and parameter uncertainty and
produces updated estimates of the model states given observations of discharge
at the drainage basin outlet. Fundamental in the state-update equations is a
linearization of the hydrologic model equations about the current “best”
estimates of the states. Such linearization provides a means by which uncer-
tainty is propagated in time and is updated when observations become
available. It is noted that the linearization does not affect the predictions of the
mean value of the state vector between observations and, thus, those
predictions are identical to the predictions that the deterministic model would
compute if it were using the same input, parameters and initial conditions.

Integration of model differential equations

A variable step-size, fourth-order predictor-corrector method was used to
integrate the coupled state mean and covariance eqns. (3) and (4). The state
mean equations are (6 + n) first-order nonlinear differential equations, where
n is the number of conceptual reservoirs in the channel routing model and 6 is
the number of the states of the modified Sacramento model. The state
covariance equations are (6 + n)® first-order linear time-varying differential
equations that are coupled with the state mean equations through the elements
of F(?) (see eqn. (4)). Since the state covariance matrix is a symmetric matrix,
only (6 + n)6 + n + 1)/2 differential equations were integrated during
each time step.

The integration method is based on Hamming’s modified predictor—corrector
method (Ralston and Wilf, 1960; Ralston, 1962) and it allows for a tolerance
error input and a time-step initial subdivision indicator. If during integration
the error bound is not satisfied by the local truncation error, the time interval
is halved and integration is attempted again for the new discretization. If, on
the other hand, during integration the errors are estimated to be significantly
smaller than the input error bound, the time interval is doubled and integration
continues. A maximum of 10 halvings is allowed.

Integration errors are another type of model errors. Since the nonlinearities
of the hydrologic model differential equations (in particular those of the upper
zone elements of the modified Sacramento model) affect the model predictions
the most when the elements are reaching saturation, integration errors depend
significantly on the magnitude of the rainfall input and on the degree of
saturation of the model elements (conceptual reservoirs). This, of course, is
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particularly true when the duration of the time step is long. Georgakakos et al.
(1988) present results from a sensitivity analysis with respect to the parameters
of the integration procedure. It was evident that for the same accuracy, the
saturated-soil case requires many more initial subdivisions of the 6-h time step
than the unsaturated case. However, the more subdivisions of the time step one
enforces the longer the central processing unit (CPU) time becomes. Since the
case of saturated soil and excessive rainfall is a rare one in the calibration
period and in the interest of completing the calibration and the verification
runs in reasonable time, it was decided to set the number of initial subdivisions
equal to 4. This might lead to inaccuracies in cases of rare events in a saturated
soil. An input and soil-saturation degree dependent integration method for at
least the state mean equations might improve the accuracy without increasing
CPU time.

The Bird Creek hydrologic basin: characteristics and data

The Bird Creek drainage basin is in Oklahoma, located near the northern
state border with Kansas. The outlet of the basin is near Sperry, OK, and it is
located ~10km north of Tulsa, OK (Fig. 1). The area of the drainage basin is
equal to 2344km?®. The terrain is gently rolling hills, and there are no
mountains or large water surfaces that influence its climatic conditions. The
elevation ranges from 175m to 390m above mean sea level. The basin
vegetative cover is mainly grassland with 20% forested area. The soils have
large storing capacities and the entire basin is underlain by groundwater
aquifers (Smith, 1986). '

The climate of the Bird Creek basin area is classified as humid because of
significant rainfall during most years, but the basin also experiences extended
periods with very light rainfall. Spring and summer are the wettest seasons
with rain in the form of showers and thundershowers of convective origin. Hail
accompanying thunderstorms is not uncommon. Snowfall amounts are light
and remain on the ground for a very short time. Sunshine is abundant. Signifi-
cant evapotranspiration losses occur in the basin because of the high air
temperatures (100°F is common) from the latter part of July to September,
accompanied by low relative humidity and a good southerly breeze.

The calibration and verification data for Bird Creek consisted of 6-h values
of mean areal precipitation, daily values of mean areal potential evaporation,
and 6-h and daily values of outflow discharge. The mean areal precipitation
values were computed based on data from stations located both within and
outside the basin boundaries (Fig. 1) and on U.S. National Weather Service
procedures (Larson, 1975; Larson and VanDemark, 1979; Smith, 1986). A total
of 12 precipitation stations were used of which five were hourly recording
stations. The daily potential evaporation values were computed from meteo-
rological data recorded at the Wichita, Kansas, Air Force base, located
~ 112 km northwest of the Bird Creek basin. Computation was based on opera-
tional U.S. National Weather Service procedures (Hydrologic Research
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Fig. 1. The Bird Creek drainage basin in Oklahoma, U.S.A., and its observation stations.

Laboratory, 1972; Day and Farnsworth, 1982). The daily mean areal potential
evaporation values were multiplied by an adjustment factor, determined by
staff of the Hydrologic Research Laboratory, NWS, National Oceanic and
Atmospheric Administration (NOAA), during the calibration phase, to account
for the local basin conditions and transpiration. Six-hourly values of mean
areal potential evapotranspiration were computed by dividing the adjusted

daily mean areal potential evapotranspiration into four equal parts. Six-hourly’
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discharge data were used in this work and they are available for high flow
periods of record. The discharge values were computed from continuous stage
recorder data (U.S. Geol. Surv. St. No. 07177500) and rating tables provided by
the U.S. Geological Survey. Consistency tests were performed on the three data
time series for the period October 1955-December 1974 (Smith, 1986). All three
data sets were found to be consistent for the entire period.

The eight-year calibration period for Bird Creek was from October 1955
September 1963, while the verification events were in the period from
November 1972-November 1974. It is noted that 6-h discharge values were only
available for high flow periods while daily discharge values were available for
the whole period. The discharge at the basin outlet ranged from O0m®s™' to
2540 m®s~! during the calibration period. The highest discharge of the verifica-

tion period was 1506 m?®s*.

The Orgeval hydrologic basin: characteristics and data

The Orgeval basin is located at a distance of ~40km east of Paris. The
Orgeval is a secondary tributary of the Marne River joining the right bank of
the Grand Morin River (Fig. 2). The area of the catchment is approximately
equal to 104 km®. Its average elevation is 148m with a highest elevation of
~182m and a lowest elevation of ~70m. A prominent feature of the basin is
a sharp decrease in elevation below the elevation of 130m (Fig. 2). The
catchment is situated entirely in rural areas, with only 1% of the total surface
area devoted to urban areas and roads. Most of the plant cover consists of crops
— cereals and beetroot, or fenced rangeland. Forests occupy 18% of the total
catchment area. Approximately 50% of the basin’s arable land has been
drained. The groundwater table is very close to the ground surface all over the
basin during humid periods and its form follows the topography to a consider-
able extent. This is a result of low permeability formations causing a build-up
of shallow water during humid periods (Askew, 1986).

The calibration and verification data for the Orgeval drainage basin
consisted of hourly values of mean areal precipitation, daily values of mean
areal potential evaporation, and values of hourly averaged outflow discharge.
The mean areal precipitation was computed by the staff of Centre National du
Machinisme Agricole, du Genie Rural, des Eaux et des Forets, Hydrologic-
Hydraulic Division, based on the data from three rainfall recording stations
located at elevations of 130m, 146 m, and 174 m (Fig. 2). The daily mean areal
potential evaporation data was based on the readings of a C-type evaporation
pan located at the Biossy-le-Chatel climate station near the catchment
boundary (Fig. 2). Monthly adjustment factors for Orgeval were computed by
staff of the Hydrologic Research Laboratory, NWS, NOAA, during the calibra-
tion phase. The procedure followed for the determination of 6-h mean areal
potential evapotranspiration values in the case of Bird Creek was also followed
in the case of Orgeval to determine the hourly mean areal potential evapotrans-
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Fig. 2. The Orgeval drainage basin in France and its observation stations.

piration values. In the Orgeval case, the daily values of mean areal potential
evapotranspiration were divided by 24 in order to generate hourly values.

The six-year calibration period for Orgeval spanned the interval from
October 1972 to September 1978, while the verification events were in the
period from December 1978 to July 1980. During the calibration period of record
the hourly averaged discharge at the basin outlet ranged from 0 m®s ' to about
21 m®s™!. The highest hourly averaged discharge of the verification period was
about 29m®s~!.
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ESTIMATION OF THE PARAMETERS OF THE STOCHASTIC-DYNAMICAL HYDROLOGIC
MODEL

This section presents a summary of the procedures used for the calibration
of the parameters of the hydrologic model and for the estimation of the two free
parameters of the state estimator (namely, o, and o).

The modified Sacramento model and the channel routing model described
previously contain several free-model parameters whose values should be
identified based on historical time-series and drainage basin data. The
procedure followed for the determination of estimates for the model parameters
that are consistent with the observed data will be referred to as calibration in
the following. Actual observations of the model input variables were used as
input data for the calibration and verification periods of record, instead of
forecasted values of input variables as the case would be in true real-time
operation. This “perfect foresight” scenario was used in an effort to examine
the performance of the hydrologic model free from the dominating inconsist-
encies between model forecasts and observations of streamflow caused by
forecast-input errors (espcially in forecasting precipitation in real time with a
forecast lead time of several hours). In that respect the case studies presented
in this work indicate upper bounds of performance rather than typical perform-
ance of the model under real-time conditions. Georgakakos and Hudlow (1984)
present operationally available quantitative precipitation forecast techniques
suitable for use in hydrologic forecasting. Georgakakos (1986b) presents an
analysis of the hydrologic model forecast errors as a result of erroneous input
forecasts for the Bird Creek drainage basin.

The calibration procedures and results for both the modified Sacramento
and the channel routing models are presented below.

Estimation of the modified Sacramento model parameters

Recently, Georgakakos and Brazil (1987) described the calibration strategy
followed routinely by the Hydrologic Research Laboratory, NWS, NOAA, for
the calibration of the modified Sacramento model. It is a combination of
manual (trial and error guided by hydrologic experience) and automatic op-
timization procedures. Such procedures were used to determine values for the
parameters of the modified Sacramento model for the two drainage basins.
Calibration of the model for the Bird Creek basin was performed in the early
1970s by R.J.C. Burnash, an experienced hydrologist at the Sacramento River
Forecast Center, for the first World Meteorological Organization rainfall-
runoff modeling intercomparison project. The discrete-time version of the
model was used with a layered coefficient routing model. Degree-of-belief
estimates for the standard deviation of the estimation errors were determined
by the staff of the Hydrologic Research Laboratory, NWS, NOAA. E.A.
Anderson, an experienced senior research hydrologist at the Hydrologic
Research Laboratory, calibrated the discrete-time modified Sacramento model
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coupled to a Lag and K channel routing model for the Orgeval basin following
a combination of manual and automatic optimization methods. A total of seven
manual calibration runs were performed to establish good initial estimates for
the parameters. An automatic gradient search procedure was used to improve
on the estimation of a few parameters such as the interflow recession coeffi-
cient. Several comments (by E.A. Anderson) regarding the Orgeval calibration
procedure and results follow.

Based on an air-temperature time series for the climatic station near
Orgeval it was determined that during the calibration period there were a few
cases of snowmelt runoff. Thus, runoff was delayed during these periods
because of melting of presumably solid precipitation. An appropriate time shift
was applied to the discharge data during these periods so that calibration runs
for the entire calibration period could be made without the use of a snowmelt
model. Since these periods were very few, no significant effects of the
adjustment procedure on the quality of the parameter estimation results are
expected.

The upper zone free-water element never filled during the October 1972—
September 1978 period. The interflow recession coefficient was found to be
dependent on the contents of the upper zone free-water element and it is
questionable if a surface runoff threshold exists for this element. Since the
modified Sacramento model assumes a linear recession of the element, a value
for the recession coefficient was selected that was representative of the values
it took for the range of values of the upper zone free-water element obtained
during the calibration runs. This is a potential structural error of the model
and it may have significant effects on the model predictions during periods of
flows dominated by interflow (e.g. winter months for the Orgeval basin). A
nonlinear interflow recession is needed. Because of these considerations an
inflated standard deviation was assigned to the estimate of the saturation value
of the upper zone free-water element.

Estimation of the channel routing model parameters

Two methods are possible for the estimation of the routing model parameters
depending on the data available for calibration. The first method uses hydro-
morphological data collected from the particular basin of interest. The second
method uses historical time series data of channel inflow and channel outflow.
Mein et al. (1974) and Georgakakos and Bras (1980) describe the first method
of parameter estimation. It is based on the subdivision of the channel network
into reaches of homogeneous hydrological properties, and use of the equations
for kinematic routing in wide rectangular channels for the flow computation
in each reach. The main shortcoming of the method is that it is usually difficult
to identify a few such homogeneous reaches in natural headwater-basin
channel networks. The second method uses (a) the channel network response
time to identify the number of conceptual reservoirs in the series that defines
the routing model, and (b) parameter estimation methods based on modern
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estimation theory applied to historical time series input and output data, in
order to find estimates for the parameters of the storage-discharge relation-
ship. Because of the available data for the two catchments of interest we used
the second method of parameter estimation for the test cases examined.

Determination of the parameters of the conceptual reservoir routing model
for the two hydrologic drainage basins was based on a systematic search
procedure. The calibrated deterministic modified Sacramento model was used
with data from the calibration period to produce a time series of total channel
inflow values for the two basins under study. Using the total channel inflow as
an input time series, several runs of the dterministic channel routing model
were performed with various combinations of parameter values and the set of
parameters that reproduced the “best” performance in terms of predicted
discharge hydrographs was selected as the “optimal” set. Hydrologic perform-
ance criteria were used to quantify performance. In particluar, hydrograph
peak time and peak-magnitude errors were minimized over the set of parameter
values considered during the search.

Georgakakos et al. (1988) presents the values of the best estimates of the
hydrologic model parameters. Examples of predictions of the calibrated
hydrologic model for the two basins are given in Figs. 3 and 4 for the Bird Creek
basin, and in Figs. 5 and 6 for the Orgeval basin. Those figures present
predictions of discharge by the calibrated deterministic model (dashed lines)
together with the corresponding observations for selected historical flood
events (solid lines). The corresponding values of the mean p and standard
deviation ¢ of the one-step-ahead predicted residuals are shown on the figures.
Also shown are the coefficient C; of efficiency and the coefficient C, of persis-
tence. The former coefficient is a measure of the variance explained by the
model and it takes the value of one (1) for perfect performance. The latter
coefficient compares the least-squares performance of the model with the per-
formance of a naive model that predicts the current observation at each time
step. Positive values of the coeflicient of persistence are desirable. Negative
coefficient values indicate that the performance of the hydrologic model is
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worse (in a least-squares sense) than the performance of the naive model. Both
coefficients are defined below in terms of model predictions and observations of
discharge. C; is defined by

C = 1— §%82 (23)
with

N
S = Z [ZQ(t) 2Zprep ()] (24)
and

N
St = T lzqt) — 2l (25)

where N is the number of observations in the period under study, z,(t;) is the
observed discharge at time ¢,, zpggp (£;) is the model predicted discharge at time
t; and z, is the time average of the observed discharges during the period from
t, to ty. Using the same notation, C, is defined by:

G = 1- 8IS (26)
with

N
Sy = Z [2o(t) — 2zot:_ D 27

Estimation of model error parameters

The methodology proposed in the section on p.5 was followed for the deter-
mination of the model error covariance parameter @. The two free parameters
o, and a, of the proposed formulation (see eqn. (22)) were estimated via a
systematic search in the two-dimensional parameter space for the optimal
value of several objective functions that reflected both least-squares and
hydrologic criteria. Only one-step-ahead predictions were utilized in the com-
putation of performance criteria.

The least-squares criteria used were the absolute value of the time-average
of the normalized residuals E,, and the difference from 1 of the time-standard-
deviation of the normalized residuals E,. The hydrologic criteria used were the
average errors in the hydrograph peak timing and magnitude for the signifi-
cant floods of the calibration record. The first two criteria represent time-
averaged statistics for the calibration period without special consideration for
flooding periods or low-flow periods. The last two quantify errors in hydrologic-
ally significant features of the flood hydrographs.

Optimal values of criteria E, and E, ensure that the state estimator perform-
ance is as predicted by the optimal linear theory results. E, takes a value of zero
(0) for optimal performance. E, also has an optimal value of zero (0).
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Optimal regions in the space of the two state-estimator parameters were
determined rather than optimal values of parameters. Use of an optimal region
rather than an optimal set of values of «, and «, is necessitated because of: (a)
the fact that only a finite calibration period (4 months duration) was used in the
determination of parameter values, and (b) expected numerical errors in the
integration of model equations and in the filter computations that prevent very
precise computation of performance criteria values.

Degree-of-belief estimates of the standard deviation of the errors in the
model input variables: mean areal precipitation and mean areal potential
evapotranspiration, were used. The standard deviation of the errors at observa-
tion time t;, 6,(t;), was given by

o-u(ti) = cuzu(ti) + c/u (28)

with u representing any of the two input variables, z,(¢;) representing the
observed value of u at time ¢; and c,, ¢/, are positive constants which were
defined for each case of input variable and drainage basin (see Georgakakos et
al., 1988). It is noted that the assumed input errors are modeled as nonstation-
ary random sequences and that the errors increase as the magnitude of the
observations increases. The cross-correlation between the errors in mean areal
precipitation and in mean areal potential evapotranspiration was assumed
equal to zero. It is important to note that given the perfect foresight scenario
adapted in this work, the errors whose statistics are given by eqn. (28) are only
because of the on-site observation errors of the instruments and the spatial
interpolation procedure used to obtain mean areal values from point estimates.
No input forecast error exists.

A similar model was assumed for the standard deviation of the errors in the
observations of discharge at the outlet of the drainage basins studied. That is:

oot) = cozo(t) + ¢ (29)

where o4(t;) is the standard deviation of the error in the observation of
discharge z4(t;) at time ¢;, and ¢ and ¢, are constants defined for each drainage
basin (see Georgakakos et al., 1988). It is noted that this too is a nonstationary
model with the magnitude of errors increasing as the discharge observation
increases. The values indicate that the observed discharge time series for both
basins was of high quality. The variance of the observation errors R(t;) (see
eqn. (5)) is given by the square of the right-hand side of eqn. (29). The Fortran
Program TSFP (Georgakakos, 1984a) was used for the parameter search to
generate contours of the performance criteria in the two dimensional
parameter space of a, and «,.

A general comment on the 2-D parameter search runs is that they are CPU
time intensive. This is especially true for the run corresponding to the Orgeval
basin with hourly observations. Thus, the selection of the time period of the
search run and the preliminary runs that define the parameter space to be
searched become important factors in the successful identification of the
optimal regions.
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Fig. 7. Bird Creek 6-h predictions of discharge (dashed line) in m®s~! by the stochastic-dynamic
hydrologic model with &, = 0.5 and a, = 2.0, May 1957. Observations are shown as a solid line.

Fig. 8. Bird Creek 6-h predictions of discharge (dashed line) in m®s™! by the stochastic-dynamic
hydrologic model with &, = 0.5 and «, = 2.0, September 1961. Observations are shown as a solid
line.

Several runs simulating real-time conditions were made with o, and «, values
that were selected from within the optimal regions and for various time
intervals within the calibration record of each basin (see Georgakakos et al.,
1988). These runs were made in an effort to also take into account performance
with respect to hydrologic criteria (timing and magnitude of peak flows) in the
final selection of estimates for the two parameters.

Comparison of the predictions of the calibrated stochastic runs of Figs. 7 and
8 with the corresponding predictions of the deterministic runs of Figs. 3 and 4
for the Bird Creek basin shows significant improvement of the one-step-ahead
predictions as a result of the use of the state estimator for real time state
updating. A similar comment can be made after a comparison of Figs. 9 and 10
with Figs. 5 and 6 corresponding to the Orgeval basin. In Figs. 7, 8, 9 and 10,
o, represents the standard deviation of the one-step-ahead predicted residuals
which have been normalized by the filter-predicted innovations variance
(Kitanidis and Bras, 1978). Both statistical indices and predictions of
hydrograph characteristics are better in the stochastic-dynamic runs.

WMO TESTS SIMULATING REAL-TIME CONDITIONS

The World Meteorological Organization has sponsored several model inter-
comparison projects and most recently began in 1984 a project on the intercom-
parison of hydrologic models under simulated real-time conditions. The major
event of this project was a workshop held in Vancouver, at the University of
British Columbia in July and August of 1987. Modelers from throughout the
world participated and compared their models and updating techniques for 10
days at the workshop.
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The stochastic dynamic model and updating procedure described above
participated in this model intercomparison workshop as the Hydrometorologi-
cal Forecasting System (HFS). It will subsequently be referred to as the HFS
model. Data for selected events on several river basins were available to the
modelers. Each modeler was free to choose which basin or basins they wanted to
model. The HFS model was run on the Bird Creek and Orgeval basins.

Under the simulated real-time conditions, data for each of six events were
made available to the workshop participants as it would be for real-time
forecasting. Seven forecasts were made for each event. The real-time nature of
the forecasts was simulated by providing precipitation and observed discharge
data up to the start of a forecast period, and then providing only precipitation
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data for the period to be forecast. When the forecast was turned in to the
workshop moderator, new observed discharge and precipitation data were
given to make the next forecast. In this way the WMO moderators were able
to simulate the sequence in which data become available in real-time forecast-
ing but greatly reduce the time needed to run the experiments.

Results for the HFS model for one of the six events for the Orgeval Basin are
presented in Fig. 11. The solid line shows observed discharge data and the line
marked with solid diamonds represents the deterministic simulation (i.e. no
updating based on observed discharge). Each of the shorter lines indicates the
results for a forecast with the HFS model at a specific time during the event.
For example, the line with the open squares is the fourth forecast made by the
HFS model for this event. It is a forecast for hours 11-20. The last observed
discharge value for this forecast was for hour 10 and precipitation data were
available to hour 20. Notice that as more observed discharge data become
available the HFS model better simulates the peak of the event. See Geor-
gakakos et al. (1988) for a similar presentation of results for each of the six
events on the Bird Creek and Orgeval basins as simulated by the HFS model.

Figure 12 shows one set of summary data over all events for the Orgeval
basin. Each of the vertical columns of points represents data for one event.
Notice that the no-update results (open squares) lie farthest from the 45 degree
line for every peak discharge forecast. For subsequent predictions (i.e. as more
observed discharge data become available) the peak discharge prediction
improves in each case.

Figure 13 presents the prediction error for various forecast lead times
averaged over all forecasts for all of the six events used with the Bird Creek
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Fig. 11. Observed and forecast discharges for Orgeval, Event No. 2.
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Fig. 13. Mean of prediction errors in m®s ™’ for various forecast lead times. Data from all six events
of the Bird Creek basin were used.

basin. The deterministic prediction error is also averaged over the six events.
The HFS model consistently produces a smaller prediction error than the
deterministic model. The trend of the mean prediction error increases with the
forecast lead time for the HFS model.

Additional information on the WMO Intercomparison Project including
descriptions of all the participating models and their update procedures, as
well as a compilation of comparative graphical and numerical verification
criteria are given in the Technical Report to the Commission for Hydrology No.
23 (WMO, 1988). The complete set of HFS results corresponding to the
simulated real-time tests is presented in Georgakakos et al. (1988).

CONCLUSIONS AND RECOMMENDATIONS

Improvements in real-time streamflow forecasting were realized when
conceptual hydrologic models were coupled with state estimators (to form
stochastic—dynamic hydrologic models) for state updating from observed
streamflow. A physically based methodology for the estimation of the state
estimator parameters was implemented for the case of the modified Sacramento
model complemented by a nonlinear reservoir routing model. The estimation
methodology utilizes hydrologists’ degree-of-belief estimates of expected errors
in model input variables and in model parameter estimates. It involves two free
parameters and it is suitable for use with conceptual models containing large
state vectors. It was exemplified for the Bird Creek basin in Oklahoma, U.S.A.,
and for the Orgeval basin in France. Verification consisted of running the
stochastic-dynamic hydrologic model for several historical events, unavail-
able during the calibration phase, simulating real-time forecast conditions.
Mean areal rainfall estimates obtained from actual observed raingauge rainfall
were used as input during the verification tests in a “‘perfect foresight”
scenario. Both statistical least-squares criteria and hydrologic criteria were
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used in both calibration and verification phases to quantify model perfor-
mance.

Several conclusions follow:

(1) Use of stochastic-dynamic models in an operational environment for
real-time flood prediction is feasible and requires minimal knowledge of
estimation theory for realization of the advantages offered by a state estimator.
The present study simplified the problem of state estimator calibration, so that
the estimation framework is based on hydrologists’ degree-of-belief estimates.

(2) Under the conditions of the present study, state estimation generally
improves the deterministic model predictions not only from a least-squares
point of view (coefficient of efficiency at the 0.9 level) but also with respect to
hydrologic criteria such as errors in the timing and magnitude of the
hydrograph peak. In correcting for timing errors, however, underestimation of
excessively high flows can result in cases of fast rising hydrographs with a few
observed discharges on the rising limb of the hydrograph. Such underestima-
tion is attributed to lack of mass conservation during the state updating step
of the predict-update sequence for nonlinear models.

(3) The stochastic-dynamic model predictions were quite sensitive to the
parameters of the numerical integration scheme used to solve the state mean-
covariance differential equations. Underestimation of the flows can result in
cases of excessive rainfall and saturated model compartments for relatively
long time discretization intervals.

(4) Both statistical performance criteria and hydrologic performance
criteria should be used in assessing performance during calibration and verifi-
cation of stochastic-dynamic hydrologic models. Optimality regions corre-
sponding to each type criteria may not overlap.

(5) Application of the conceptual hydrologic model to the Orgeval basin
surfaced the possibility of a structural error in simulating interflow via a linear
function for basins with very little surface runoff.

Recommendations for future research

Perhaps the most important next step along the lines of research reported
herein is the implementation of the stochastic—-dynamic model developed in a
true operational environment and its use by field hydrologists. Experience
gained by such an effort can be utilized for the improvement of the stochastic—
dynamic model formulation so that it is more robust to low quality real time
data, and it can be easily used by field hydrologists with a minimal training in
modern estimation theory. HFS has been implemented on the National
Weather Service River Forecast System forecast component and it is currently
undergoing testing in a true real-time environment.

Regarding the state estimator, research is needed to design constrained
estimators that conserve water volume during state updating. Study of the
effects of state updating to the long forecast-lead-time errors of nonlinear
hydrologic models should be undertaken. In addition, efficient but accurate
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numerical schemes should be designed and tested, sutiable for use with large
nonlinear stochastic-dynamic models. Input and state dependent time discreti-
zation of the coupled state mean and covariance differential equations should
be utilized.

The formulation of the interflow production component of the modified
Sacramento model should be re-examined in light of the Orgeval results. A
nonlinear interflow function may be more suitable for basins with little or no
surface runoff. The recursive parameter estimation methodology in Rajaram
and Georgakakos (1987, 1989) and the formulation in this report can be utilized
to examine the structural errors for the Orgeval basin.

The WMO Vancouver Workshop was a learning experience for modelers in
that it simulated real-time conditions not available during the times devoted to
the research and development of models. It is imperative however that a
follow-up Workshop be planned during which forecasts of rainfall are utilized
instead of actual future rainfall observations. It is the rainfall input component
of the input uncertainty that contributes the most to prediction uncertainty
(Georgakakos, 1986b).
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