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ABSTRACT: The Washington D. C. Metropolitan Area (WMA) has
experienced rapid population growth in the 1980‘s. Water supply
yield analysis techniques are developed in this paper to assess
adequacy of the current WMA water supply system to meet
escalating future demands for water. In the statistical model
developed for analyzing water supply yield, "annual yield" is a
random variable representing the maximum yield the water supply
system can provide in a given year. Randomness in annuel yield
may be attributed solely to randomness in supply or to
randomness in both supply and demand. Annual yield random
variables are dependent on the operating rules used for the two
upstream reservoirs that serve the WMA. The dependence is
simple because the operating rules are completely specified by
past streamflow and two "operating parameters". The operating
parameters are chosen to maximize specified attributes of the
annual yield distribution, represented by the "weighted yield".
The sum of the historic yield values of the individual
components of the WMA water supply system is 482 mgd, a value
dangerously close to current mean water use. Historic yield
values for the joint system yield models exceed 700 mgd,
indicating that the current water supply system is quite
reliable.

SUMMARY: Water supply yield analysis techniques are developed
to assess adequacy of the current water supply system for the
Washington D.C. Metropolitan Area to meet escelating future
demands for water.
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1. INTRODUCTION

The Washington Metropolitan Area (WMA), consisting of the
District of Columbia, the Maryland suburbs of D.C., and the
Virgina suburbs of D.C., has experienced rapid growth in the
1980’s. Associated with population growth is a sharp increase
in water use (see Figure 1). In this paper yield analysis
techniques are developed to assess adequacy of the current WMA
water supply system to meet escalating future demands.

Three major water utilities (one for each of the principal
geographic subregions) provide drinking water for the WMA.
Water supplies for the three utilities are operated jointly to
minimize the risk of water supply shortage (institutional
arrangements that made joint operation possible are described in
Metzger and Doerman [1987] and Sheer and Flynn [1985]). The
direct link among the three water utilities is reliance on the

Potomac River. Natural flow of the Potomac River can be
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~augmented by water supply releases from two upstream reservoirs;
a large reservoir located far from the WMA, and a smaller
reservoir located in the northwest corner of the WMA.

The statistical model that is developed to analyze water
supply yield is nonparametric. The annual yield for year i, Yi'
is a nonnegative random variable representing the maximum yield
that the water supply system can provide in year i. Randomness
in Y, may be attributed solely to randomness in supply in year i
(as in the yield model of Section 3) or to randomness in both
supply and demand (as in the yield model of Section 4). Annual
yield random variables are dependent on reservoir operating
rules. The dependence is simple because operating rules are
completely specified by past streamflow, that is streamflow
prior to the release time, and two "operating parameters". The
operating parameters are chosen to maximize specified attributes
of the annual yield distribution, represented by the "weighted
yield".

Techniques developed in this paper borrow from several
sources. The work of Palmer et al. [1982], in which a
statistical treatment of water supply yield is developed, is a
direct antecedent of this paper (see also Vogel and Stedinger
[1987]). The search for increased water supply yield from joint
reservoir operation is motivated by synergystic gain concepts
introduced by Hirsch et al. [1977]. The emphasis on water use
variability in the yield model of Section 4 builds upon
developments in short-term water use modeling (see, for example,

Maidment and Parzen [1984a] and [1984b] and Smith [1988]):



Contents of the sections are as follows. Section 2 contains
definitions, notation, and development of the statistical model
used for yield analysis. Yield analysis models for the WMA are
developed in Section 3. 1In Section 4 the yield analysis
techniques are extended to account for variability in water use.

A summary and conclusions are presented in Section 5.

'2. DEFINITIONS AND NOTATION

Storage in Jennings Randolph reservoir (the large, upstream
reservoir) on day t of year i is denoted Sli(t); the capacity of

water supply storage for Jennings Randolph is denoted C., and

1
equals 13.4 billion gallons (SI conversion table is provided in
Appendix I.). Storage in Little Seneca reservoir (the smaller,
downstream reservoir) is denoted SZi(t); the capacity of Little
Seneca is denoted C2 and equals 4.0 billion gallons. The
release rules are denoted Rli(t) and R2i(t), reservoir inflow
Zli(t) and Zzi(t). Natural flow of the unregulated portion of
the Potomac River is X;(t). The Potomac Rivef above Washington
D.C. has a drainage area of approximately 12,000 square miles.
Less than 400 square miles of the basin are controlled by
reservoirs. Mean daily flow of the Potomac River is
approximately 9,000 million gallons per day (mgd). During the

period 1930 - 1981 flow in the Potomac River at Washington D.C.

ranged from a minimum of 400 mgd to a maximum of 360,000 mgd.



A "water supply year" begins on June 1 and consists of T =
365 days. It is assumed that reservoir storage is at capacity

at the beginning of each year, that is, Sli(O) equals C, and

1
SZi(O) equals C2. Storage in two local water supply reservoirs
(one of which drains to the Chesapeake Bay, the other to the
tidal Potomac River below Washington D.C.) is not explicitly
considered in our yield models. Operation of these reservoirs
for water supply is highly constrained. Their combined yield
balances an environmental flowby requirement for the Potomac
estuary.

We introduce in Sections 3 and 4 two definitions of "annual
yield." The following examples illustrate the form annual yield
random variables may take in special cases. The annual yield
definitions used in Sections 3 and 4 are straightforward
extensions of the definitions in Examples 1 - 3 below (we

suppress dependence on the reservoir index in the storage,

inflow and release notation in the examples).

EXAMPLE 1-
The yield of a single reservoir for year i, Y., is the

solution to the math programming problem,



maximize y

(1)
such that R, (t)

i
<

S;(t) = min {S,(t-1) + 2,(t) - R,(t),C}
S;(t) >0
fort=1,...,T

The reservoir yield Y, is the largest constant release that can
be maintained in year i without at any time completely depleting
storage, given that the reservoir begins the year with storage

at capacity.

EXAMPLE 2-
The yield of an unregulated river for year i is simply the

minimum daily flow, that is,

Y, = min {X;(t), t=1,...,T}. (2)
EXAMPLE 3-
The combined yield of a river and upstream reservoir can be

defined as the solution to



maximize y
such that Ri(t)= max {y - X,(t),0}

S, (t)= min{Si(t-l)-Ri(t)+Z(t),C}

Releases from the reservoir are made only if natural flow of the
river falls below the yield value y we wish to maintain.
Implicit in equation (3) is the assumption that reservoir
releases are immediately available at the demand point. This
model would not be appropriate for examining combined yield of
Jennings Randolph reservoir and the Potomac River. Releases
from Jennings Randolph reservoir require approximately 5 days to
reach Washington, D.C. (Trombley [1982]).

Yield random variables developed in Sections 3 and 4 are
defined implicitly by representations like equations (1) - (3).
We assume that yield random variables Yl,...,Yn are independent
and identically distributed (i.i.d.). Their common distribution

is denoted by

F(y) = P{Y; <y} (4)



Parametric assumptions on yield distributions are not made.
The independence assumption rests on critical periods (or
minimum annual flow) being separated from year to year by
sufficiently long non-drawdown periods (see Loaiciga and Marino
[1988] for detailed discussion; see also Matalas [1963]). For
reservoir yield samples, the identically distributed assumption
is valid and useful only if reservoirs refill annually (we
return to this issue in Section 3).

For water supply yield analysis, interest focuses on the
lower tail of the distribution F. A useful tool for describing

the lower tail of F is the quantile function

Q(p) = inf {y : F(y) > p} p e [0,1). (5)

The quantile function evaluated at p gives the yield that can be
maintained in a given year with probability l-p. Of particular
interest is the "safe yield" Ypr which is the lower bound of F,

that is

Yp = Q(0) . (6)

In analyzing yield data it is useful to convert the sample
Yl,...,Yn to their "order statistics" Y(1)<"'<Y(n)' We term
the minimum value Y(l) the "historic yield" (following Palmer et
al. [1982]). The "interior" portion of the distribution F can

be estimated from order statistics using standard procedures

(see, for example, David [1970]). Smith and Weissman [1985] and



Loaiciga and Marino [1988] develop techniques that can be used
to estimate "exterior" characteristics of the yieid

distribution, including the safe yield Yp-

3. YIELD ANALYSIS - CONSTANT DEMAND

The traditional method for assessing yield of a water supply
system is “o combine the historic yield values for each of the
system components. The historic yield values for Jennings
Randolph and Little Seneca reservoir, obtained from equation
(1), are 63 mgd and 13 mgd, respectively. The historic yield
for the Potomac River, obtained from equation (2) is 406 mgd.
Combining the historic yield values, we obtain a "system yield"
of 482 mgd. Hirsch et al. [1977] show that if components of a
water supply system are operated jointly the system yield may be
substantially larger than the sum of the individual historic
yields. They term the increased yield due to joint operation
the synergistic gain. In this section a yield model is
formulated for assessing the joint yield of the Potomac River,
Jennings Randolph reservoir, and Little Seneca reservoir.

To obtain an analysis of system yield relevant to
operational conditions we must explicitly incorporate reservoir
operating rules. The basic guidelines for operation of Jennings
Randolph and Little Seneca are straightforward. Releases are
not made when demand can be met from natural flow of the Potomac

River (which is likely to be the case for the period November -



June of any year). When reservoir releases are needed, Jennings
Randolph provides the "average" shortfall between demand and
natural flow of the Potomac. Little Seneca fills in holes
created by "extreme" shortfalls between demand and Potomac flow
(releases from Little Seneca reservcir reach the WMA within the
day of release). These operating guidelines are based on the
different reservoir capacities and travel times of reservoir
releases to the WMA.

- The operating rules that are used for Jennings Randolph and
Little Seneca are of the following form. To meet a constant

demand of y for the WMA, the Jennings Randolph release rule is

RL; (t) = max {a,(y - X;(t)) + a,, 0} (7)

where a, is a nonnegative constant and a, is a real constant.

The release rule for Little Seneca is

R2; (t) = max {y - X;(t), 0} (8)
where
X;(t) = X;(t) + RIL,(t-5) (9)

is natural flow of the Potomac plus the routed releases from
Jennings Randolph (recall from Section 2 that releases from

Jennings Randolph reservoir require 5 days to reach the WMA).
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With the preceding operating rules, the system yield for

year i is defined by

maximize vy

(10)
such that
RL;(t) = min { max {a;(y-X;(t))+a,,0} , S1;(t-1)+21,(t)}
RZi(t) = max {y - Xi(t),O}
S1;(t) = min {S1;(t-1) + Z1,(t) - R1,(t),C;}
S2; (t) = min {82, (t-1) + 22,(t) - R2,(t),C,}
Szi(t) >0

fort=1,...,T .

If the Jennings Randolph release rule specified by equation (7)
is greater than the available storage, Sli(t-l) + Zli(t), the
actual release, Rli(t), is reduced to the available storage. 1In
this case, storage in Jennings Randolph is completely depleted;
the system does not, however, necessarily fail. The system
fails when Little Seneca runs out of water.

The optimization problem defined by equation (10) is solved
n times, where n is the pumber of years of historical streamflow

‘observations. The solution for year i gives the value of system
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yield for year i, which is denoted Yi‘ The yield distribution

of random variables Y e obtained from equation (10) is

17 -
dependent on reservoir operating rules. The dependence is
simple because the operating rules are completely specified by
streamflow observations and the two parameters a; and a,. We
will denote by Qa(p) the quantile function of the yield
distribution indexed by the parameters a = (21,85). In other
words, Qa(p) is the quantile function of yield random variables
Yy, Yy obtained from equation (10), given that the operating
parameters of equation (7) are (al,az).

The parameters a; and a, are chosen to optimize specific
characteristics of the yield distribution. The optimization

problem can be formulated as follows: choose the parameters

(a;,a,) to maximize the "weighted yield"

1
I(a) = [ w(p)Q,(p)dp (11)
0

where w(p) is a nonnegative weight function satisfying

1
J w(p)dp = 1
0
The weight function w(p) determines attributes of the yield

distribution that are to be optimized. The following examples

illustrate flexibility of (11).
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EXAMPLE 4. 1If the weight function is the Dirac delta function

5 (12)

wip) = 6y

then

I(a) = Q,(py) (13)

In particular if Py equals 0, the objective is to maximize the

safe yield Yg-

EXAMPLE 5. If the weight function is constant and equal to 1,
I(a) = E_[Y,] (14)

The objective in this case is to maximize the expected yield.

EXAMPLE 6. If

w(p) 10 pe [0,.1]

]
(]

w(p) otherwise, (15)

then the objective is to maximize the "average yield" over the

lower 10% of the yield distribution, that is,
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1

10-f Q, (p)dp
0

I(a) =

(16)

Because the yield distribution is treated in a nonparametric

framework, there is little hope of evaluating the weighted yield
I(a) analytically.

The weighted yield can, however, be
estimated by

n
&(a) = 3 in(i) (17)
i=
where
. =1
i'n
w; = [ w(p)dp (18)
(i-l)n'1

and Y(i) is the ith order statistic obtained from equation (10).

EXAMPLE 4a. If

I(a) = Q,(py)

(19)
then
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. -1 . =1
w, = 1 Py € ((i=1)n ~,i-n 7] (20)
w, = 0 otherwise
EXAMPLE 5a. If
I(a) = E (Y] (21)
then
-1 .
w, =1 v 1 (22)
EXAMPLE 6a. If
.1
I(a) = 10-f Q_(p)dp (23)
0
then
w, = 10n7! i< 1on7?t (24)
w, =0 i > 10n7t

Table 1 contains parameter estimates and weighted yield
values for four choices of weight function, given in terms of
the discretized weights (Wl""'wh)' The total number of years,

n, is 50. To maximize the historic yield we take Wy equal to 1
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and all other weights equal to 0. The optimal parameters are:
a,; = .4, a, = 70. The optimal historic yield is 719 mgd, an
increase of 237 mgd above the sum of the component historic
yields!

By placing all weight on the historic yield year, operations
are closely tied to a particular sequence of hydrologic events.
The optimal operating parameters change markedly (from (.4,70.)
to (1.1,0.)) if the weight function is changed to
(-7,.3,0.,...,0.). Note, however, that the historic yield for
the parameters (1.1,0) drops only 9 mgd from the optimal value
of 719 mgd. The operating parameters are clearly very sensitive
to this relatively small change in the weight function. The
optimal yield, however, is not. For the weight function
(-7,.3,0.,...,0.), the two years that receive positive weight
are 1930 and 1966. Minimum flow in 1930 (the historic yield
year) was 480 mgd, approximately 60 mgd more than in 1966. In
1930, however, Potomac flow remained below 700 mgd until the end
of November. In 1966 the Potomac reached (and remained above)
1000 mgd by the end of September. The two years pose sharp
contrasts between severity and duration of drought.

Figure 2, which shows the reservoir drawdown and refill
cycle for Jennings Randolph during the historic yield year using
(1.1,0.) as operating parameters, supports the refill assumption
that underlies the modeling framework developed in Section 2.
Drawdown lasts until the end of November. By early Spring the
reservoir has filled to capacity. Even in the most severe of

‘years, refill will be achieved prior to June 1.
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4. YIELD ANALYSIS - VARIABLE DEMAND

The yield results of the preceding section are not directly
comparable to the information available concerning long-term
trend in water use (see Figure 1). In this section annual yield
random variables will be represented in terms cf mean daily
water use so that yield and demand are directly comparable. A
simple model of daily water use, termed a conditional
autoregressive process (see Smith [1988]), is used to assess the
role of water use variability in determining water supply yield.

Water use for day t of year i is denoted Di(t). If mean
daily water use for year i is y, the conditional autoregressive
model is specified by

D;(t) = m(t)-y + b-[D (t-1)-m(t-1)-y] + y*/2a (¢) (25)

where b is a real-valued parameter, m(t) is the "unit demand

function"

E[D, (t)]

M(t) = —cmmmmmmmmmo o (26)

T
5 E[D;(3)]
1

.
]

and {Ai(t)} is an i.i.d. sequence of Gaussian random variables

. . 2
with mean 0 and variance s“.
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The unit demand function on day t, m(t), is the ratio of
average water use on day t of the year to average daily water
use over the course of the year. The unit demand does not vary
from year to year even if long-term trend in mean water use is
present. This assumption implies that, although mean water use
may exhibit long-term trends over time, seasonal and day-of-week
structure of water use do not.

The reservoir operating rules of equations (7) and (8) are
easily modified to account for daily variability in water use.
If mean daily water use for the year is y, the Jennings Randolph

release is

R1l;(t) = max {a,[m(t+5)-'y - X;(t)] + a,, O} (27)
The Little Seneca release is
R2;(t) = max {D,(t) - X,(t), O} (28)

The system yield for year i, Yi’ is the solution to,
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maximize y - ‘ (29)

such that

D,(t) = y'm(t) + b[D, (t-1)-y'm(t-1)] + yl/zAi(t)

R1;(t) = min { max {a)[m(t)y-X;(t)]+a,,0} , Sl (t-1)+21, (t)}
R2;(t) = max {D,(t) - ;i(t), 0}

S1;(t) = min {S1;(t-1) + Z1,(t) - R1,(t),C,}

$2;(t) = min {SZi(t-l).+ 22, (t) - R2,(t),C,}

$2,(t) > 0

fort=1,...,T

The annual yield Y. in this formulation is the largest mean
daily water use that the water supply system can provide in year
i.

In previous formulations (Section 3), randomness in annual
yield is attributed solely to randomness in streamflow. In the
current formulation randomness is additionally attributed to
random fluctuations in daily water use. Because water use
exhibits marked trend over time, it is not possible to use water
use observations directly. Instead we use historical water use

data to estimate parameters of the water use model (see Smith
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[1988]). A "data set" of error variables
{Ai(t);t=l,...,T;i=1,...,n} for use in equation (29) is then
obtained by simulation. The parameters that must be estimated
are the unit demand function m(t), the autoregressive parameter
b, and the standard error coefficient s.

Figure 3 shows weekly-averaged values cf the estimated unit
demand function. The estimate of the autoregressive parameter,
b, obtained in Smith [1988] is .76; the estimate of the standard
error coefficient, s, is .89.

Table 2 shows optimal operating parameters for the set of
weights used in Table 1. Surprisingly, the optimal weighted
yield for the weights (1.,0.,...,0.) is unchanged from the
previous formulation despite the additional variability
introduced in daily water use (and despite the different
interpretation of annual yield random variables). Note,
however, that the optimal weighted yield for other sets of
weights are less than the comparable values in Table 1. The
estimated unit demand function m(t) (Figure 3) provides an
explanation. Mean water use peaks in July. During the extended
reservoir drawdown period in fall and early winter, mean water
use is at its minimum. Operations for the historic yield year
(1930) extend into the period of decreasing water use in late
fall and early winter. For other years (and especially 1966,
the second drought of record) water supply operations are
critical during the period of peak water use and terminate
before the trough in water use. The results of Table 2 show how

seasonality in mean daily water use affects water supply yield.
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The effect of variability in mean daily water use is that
operation of Jennings Randolph shifts toward a more constant
release pattern. For each set of weights the optimal parameter
a; in Table 2 is less than the corresponding value in Table 1
and the optimal value of a, is greater than the value in Table
1. Clearly, the operating parameters of Table 1 are not optimal
if variability in water use is taken into account. The
paramters used for actual WMA water supply operations are

(1.0,10.).

5. CONCLUSIONS

In this paper water supply yield models have been developed
to assess adequacy of the current WMA water supply system to
meet escalating water demands. The following features of the

yield models are noteworthy.

1) In each of the models the fundamental concept is "annual
yield". Annual yield for a given year is a nonnegative random
variable which represents the maximum yield that the water
supply system can provide in that year. Randomness in annual
yield may be attributed solely to randomness in supply (as in
the yield model of Section 3) or to randomness in both supply
and demand (as in the yield model of Section 4).

2) The statistical model that is used to analyze yield random

variables is nonparametric. It is assumed that annual yield
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random variables are i.i.d. It is noted in Section 2 that
justification for the yield model rests in part on the fact that
reservoirs refill annually. For application to water supply
systems with multi-year reservoir drawdown (as in much of the
western U.S.), the yield models would require modification.

3) Annual yield random variables are dependent on reservoir
operating rules. For the WMA water supply system, dependence is
simple because operating rules are completely specified by
streamflow observations and two real-valued parameters (al,az).
The form of reservoir operating rules for the WMA water supply
system is dictated by reservoir size and travel time. The large
reservoir, which is located far from the WMA, provides "average"
shortfalls between demand and natural flow of the Potomac River.
The small reservoir, located close to the WMA, covers shortfalls
arising from extreme demands. The operating parameters (al,az)
determine the boundary between "average" and "extreme".

4) Operating parameters‘(al,az) are chosen to optimize a
specified attribute of the yield distribution. The "weighted
yield", 1I(a), is introduced as the criterion for selecting the
operating parameters. It is shown that the sample estimator
f(a) can be used to obtain solutions to the optimization
problem.

5) The statistical approach used for developing reservoir
operating rules contrasts sharply with stochastic dynamic
programming. In stochastic dynamic programming, structure of

operating rules is general and strict parametric assumptions are
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made on the random component of the problem. We take the
opposite approach. We severely restrict the structure of
operating rules and treat the random component of the problem in
a nonparametric framework.

6) The yield model is extended in Section 4 to accomodate
variability in water use. In the yield model of Section 4,
annual yield is interpreted as the largest mean daily water use
that the system can provide without experiencing supply
shortfalls on any day. This formulation allows direct
comparison of water supply yield with trends in mean water use.
7) The historic yield values of Jennings Randolph reservoir,
Little Seneca reservoir, and the Potomac River, are,
respectively, 63 mgd, 13 mgd, and 406 mgd. Combining the yield
values of the three components of the WMA water supply system
produces a yield of 482 mgd. The historic yield values for
joint system yield models of both Sections 4 and 5 exceed 700
mgd. The synergistic gain attributed to the system operating
rules is in excess of 200 mgd. Most importantly, synergistic
gain places water supply yield well above the current mean water
use.

The yield analysis results are encouraging. For the
present, the WMA water supply system is clearly quite reliable.
If water use continues to grow at the rate of the past 5 years,
mean daily water use will equal the historic yield of the water
supply system in approximately 30 years. Additional water
supply will ultimately be needed for the WMA. The techniques

used in this paper have relevance to future design problems. If



water supply storage is to be added to the WMA é§stem, it should
be added, as Little Seneca reservoir was, to functionally

augment the current water supply system.
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APPENDIX I. CONVERSION TO SI UNITS
To Convert To Multiply by

million gallons cubic meters 3785.

square miles sqare kilometers 2.592



24
APPENDIX II.-REFERENCES
David, H. A. (1970). Order Statistics, Wiley, New York.

Hirsch, R. M., J. L. Cohon, and C. S. ReVelle (1977). Gains from
joint operations of multiple reservoir systems, Water Resources

Research, 13(2), 239-245.

Loaiciga, H. A. and M. A. Marino (1988). Fitting minima of flows
via maximum likelihood, ASCE J. Water Resour. Plann. and

Management, vol. 114, No. 1, 78-90.

Maidment, D. R. and E. Parzen (1984a). Time patterns of water
use in six Texas cities, Journal of Water Resources Planning and

Management, ASCE, 110(1), 90-106.

Maidment, D. R. and E. Parzen (1984b). Cascade model of monthly

municipal water use, Water Resources Research, 20(1l), 15-23.

Matalas, N. (1963). Autocorrelation of rainfall and streamflow

minimums, U. S. Geological Survey Professional Paper 434-B.

Metzger, P. and J. Doerman, The Re-invention of Water

Management, Conservation Foundation, to appear.

Palmer, R. N., J. A. Smith, J. L. Cohon, and C. S. ReVelle
(1982). Reservoir management in the Potomac River basin, J.

Water Resources Planning and Management, ASCE, 108, WR1l, 47-66.



25

Sheer, D. P. and K. Flynn (1983). Water Supply, Civil

Engineering, ASCE, 53(6), 50-53.

Smith, J. A. (1988). A model of daily municipal water use for

short-term forecasting, Water Resources Research, 24(2),

201-206.

Smith, R. L. and I. Weissman (1985). Maximum likelihood
estimation of the lower tail of a probability distribution, J.

R. Statist. Soc. B, 47(2), 285-298.

Trombley, T. J. (1982). Downstream effects of reservoir releases
to the Potomac River from Luke, Maryland, to Washington, D.C.,

U.S. Geological Survey Investigations Report, 82-4062.



APPENDIX III. NOTATION

a = (al,az) reservoir operating parameters

b

conditonal autoregressive parameter in water use model

S1;(t) storage in Jennings Randolph on day t of year i
Szi(t) = storage in Little Seneca on day t of year i
Rli(t) = release rule for Jennings Randolph

Rzi(t) = release rule for Litlle Seneca

Z21,(t) = inflow to Jennings Randolph

Zzi(t) = inflow to Little Seneca

X, () = natural flow of the Potomac River

%;(t) = X;(t) plus routed Jennings Randolph releases
Di(t) = WMA water use

Ai(t) = error sequence in water use model

Y, = annual yield for year i

Y(i) = ith order statistic of annual yield

F(y) = annual yield distribution functin

Q(p) = annual yield quantile function

Yp = safe yield

I(a) = weighted yield using operating parameter a
f(a) = sample estimator of I(a)

Ea = Expectation given operating parameter a
w(p) = weight function

m(t) = unit demand function



Cl

C2

capacity of Jennings Randolph water supply storage
capacity of Little Seneca
number of days in a "water supply" year

number of years of historical data.

27



List of Figures

Figure 1. Mean Daily Water Use for the Washington

Metrolpolitan Area, 1974 - 1986.

Figure 2. Drawdown Refill Cycle for Jennings Randolph

Reservoir, 1930.

Figure 3. Water Use Demand Factors (June - May)



(MGD)

WATER USE

FIGURE 1.

m Ho q'!.\..\.li s ca S e e i o ——— ——— s ———r >+ - nn et o e e o e
500 —

490

|
480 +—

470+
460 —

450 —

{ .
440 L
430 - A

420 ;

® 2 \
410+ e &

e e

»*

’

L 1 L [V P

Ao@ USRS PRSI USSR SN RS JISSRN NN S | A
13973 1974 1975 1976 1977 1978 41979 1880 1981 1982

YEAR

1983 1984 1985 1986 41987



(MILLION GALLONS)

STORAGE

130001
|

.
12000 }—

11000+
10000
9000+
8000 —
7000
6000+
5000 —
4000+
3000+
2000+

1000

.0

30.0

60.0

80.0

FIGURE 2.

%l.l‘ SNy PUSEDIP I ISR IEUTIS SRV DS SO

120.0 150.0

DAY OF YEAR

S —

l A |

|

180.0 210.

(JUNE 1

S | —_—
0 240.0 270.0 300.0 330.0 36

= DAY 1)

0.0



DEMAND FACTOR

(%N
-

o

1

o
o
e T .__T._._ e

x

-
Q
&)}

o
fa)
(8}

0.90!

0.85+

0.80+

FIGURE 3

R R X ER

0. wmo_l\!! e NSRS NSRRI NS R SR NS B ..

4 8 12 16 20 24 28 32

* ¥

XM N KX %
L —d 1
36 40 44

e e e

...... e

4

52



WEIGHTS OPTIMAL PARAMETERS WEIGHTED YIELD

ay a, I(a)
(1.,0,c0ccccnen... /0) .4 70. 719 (719)
(¢7,.3,0,000ccv... :0) 1.1 0. 755 (710)
(.6,.3,.1,0,...... :0) .9 40. 786 (707)
(+5,.2,.2,.1,0,...,0) .8 70. 820 (700)

Table 1. Optimal operating parameters and weighted yield values
(in mgd) for four sets of weight functions. Under "Weighted
Yield", historic yield values for the optimal parameters are
given in parenthesis.



WEIGHTS OPTIMAL PARAMETERS WEIGHTED YIELD

al a, I(a)
(1.,0,ccceeeacan.. :0) .3 90. 719 (719)
(«7/:3,0,0000cu.n.. /0) 1.0 10. 733 (705)
(.6,.3,.1,0,...... :0) .7 90. 765 (699)
(5,.2,.2,.1,0,...,0) .7 90. 805 (699)

Table 2. Optimal operating parameters and weighted yield values
(in mgd) for four sets of weight functions with variable demand.
Under "Weighted Yield", historic yield values for the optimal
parameters are given in parenthesis.



