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ABSTRACT

MULTILEVEL CALIBRATION STRATEGY
FOR COMPLEX HYDROLOGIC SIMULATION MODELS

Larry E. Brazil

Office of Hydrology, National Weather Service, NOAA
Silver Spring, Md.

hydrologic simulation models. A multilevel strategy which should be
applicable to any complex simulation model was used to reduce the
problem of model parameter estimation to a number of subproblems which
could be solved using several different optimization techniques. The
National Weather Service Sacramento Soil Moisture Accounting Model was
chosen for implementation of the methodology. A state-space version of
the model was formulated for use in some components of the study.

|
|
A systematic methodology was developed for calibrating conceptual

Three levels of optimization were used in the application of the
strategy. Level I work consisted of the development of a guided
interactive initial parameter estimator. The program uses computer
generated graphics along with interactive input to lead an inexperienced
user through some of the steps of initial data quality control and
estimation of the model parameters. Two random search techniques were
developed for use in the Level II analysis. The first procedure, a
uniform random search technique, randomly selects parameter values and
generates an output data set of various statisties which can be
evaluated with a multi-objective post simulation analysis program. The
second random search procedure converges as the simulation statistics
improve. A recursive parameter estimation procedure was developed for
Level III and tested against a direct search algorithm. The recursive
technique uses the state-space model with a state augmentation form of
the Kalman filter. The filter was tested for sensitivity to inputs.

All of the procedures were tested and verified with synthetic data and a
case study was performed for the Leaf River watershed near Collins, |

Mississippi. The study showed that the multilevel strategy provided a
satisfactory calibration for the basin in far less time than using
previous methods.

xvii






Chapter 1
INTRODUCTION

Calibration of computer simulation models is a topic of growing
concern as sophisticated models continue to be developed to aid in the
understanding and analysis of complex systems. Simulation models are
used for a variety of purposes. Applications range from simulation of
flight to the prediction of earthquakes to preparation of financial
outlooks. One item many of the models have in common is that they must
be calibrated in some form in order to be effective, Calibration in
this study refers to the selection of coefficients or parameters which
optimize some measure of performance. The focus of this research is to
develop and test a systematic approach to calibration of a conceptual
hydrologic simulation model.

Hydrologic models, or more specifically, rainfall-runoff models,
are widely used in engineering analyses and scientific studies.
Hydrologic forecasting for the purpose of issuing flood forecasts and
warnings is one important use of the models. 1In addition, information
obtained from forecast models is used as input to decisions concerning
water supply, irrigation, power production, reservoir operation,
navigation, recreation, and water quality.

Problem Definition

Hydrologic simulation models serve various purposes, such as
augmentation of runoff data, extension of runoff predictions to ungaged
areas, simulation of extreme hydrologic phenonema and forecasting of
real-time events. Models must be calibrated for the specific area for
which they are to be used. Accuracy of a particular model usually is
dependent on the accuracy of the calibration. Improvements in
procedures which enhance users' abilities to calibrate hydrologic models
should provide improved hydrologic simulation capabilities, potentially
resulting in considerable savings in lives and reduction in property
damage.

The calibration process generally consists of estimating the
values for parameters which will minimize the differences between
observed historical streamflows and streamflow values computed by the
model. Parameters are the coefficients in model equations which allow
models to be adapted to long-term geographic or hydrologic conditions.
Most conceptual hydrologic simulation models have several parameters.
The calibration problem is one of selecting the set of parameters from
among the many combinations which will produce the best simulation. A
model with 12 parameters, for instance, each evaluated at only 10
intervals, would require 10 iterations of the model. At one iteration
per second, the time required to evaluate all the combinations would be
approximately 32,000 years. Obviously, exhaustive enumeration is not
feasible for most conceptual models. Although one combination of
parameters may provide the best fit based on one or more statistics,
most calibration problems have nonunique solutions. Several
combinations of parameter values usually will provide acceptable



results. The real problem, then, is to find a suitable methodology for
determining a set of parameters which produce a reasonable simulation.

The actual procedures used in calibrating conceptual rainfall-~
runoff models vary considerably, depending on the form of the model
being calibrated. Most currently available calibration procedures are
time-consuming and often result in suboptimal estimates of model
parameters. 1In fact, the calibration process usually becomes a trade-
off between time spent calibrating the model and model simulation
accuracy. Calibration results are normally a function of the user's
knowledge of the concepts in the model. Conceptual soil moisture models
are usually quite complex and generally highly nonlinear, making it
difficulft to obtain a thorough understanding of the model.

Parameter estimation in hydrologic modeling is a topic which has
been dealt with extensively in the literature; however, a considerable
amount of research remains to be performed in this area. As of this
time, no conceptual hydrologic forecast model has been shown to possess
the characteristics necessary to provide accurate, continuous river
forecasts and have the capability of being easily and accurately
calibrated by a user not thoroughly familiar with the model
components, Development of procedures which enable users of a proven
forecast model to produce better or more efficient calibrations should
be a valuable contribution to the hydrologic modeling field.

Study Objectives

The purpose of this research is to develop a methodology for
systematically estimating the parameter values of a conceptual
hydrologic forecast model and apply the methodology to an existing
model. Specific objectives include:

1. Review current approaches to rainfall-runoff model calibration.

2. Analyze the structure of a conceptual hydrologic forecast model
and decompose the model into components.

3. Develop a multilevel model calibraftion methodology which
combines user experience, mathematical programming, and
systematic search techniques based on stochastic estimation
theory.

4, Demonstrate the use of the developed methodology on an actual
watershed.

Thesis Organization

The thesis is divided into seven chapters. Chapter 2 presents a
general description of calibration procedures and an outline of the
proposed solutlon approach. A review of related research in rainfall-
runoff modeling and optimization techniques is described in Chapter 3.
Chapter U4 discusses the selection of the model for application of the
methodology and presents the development of a state-space version of the
model. Chapter 5 describes the development of the technical details of



the multilevel calibration system. The system consists of three levels
of optimization: an initial parameter estimator, a random search
procedure and a recursive estimation technique. The recursive technique
is an application of the augmented Kalman filter to the state-space
model developed in Chapter 4., A case study is presented in Chapter 6 to
demonstrate the utility of the developed methodology for an actual
watershed. Chapter 7 provides a summary of the work along with
conclusions and recommendations for future research.






Chapter 2
CALIBRATION METHODOLOGY

Introduction

The purpose of this chapter is to present a methodology for
systematic hydrologic model calibration., The approach was designed to
combine the best aspects of existing optimization tools and newly
developed techniques into a systematic procedure for estimating
parameters. The approach incorporates the experience of hydrologists,
mathematical programming, and systematic search techniques using optimal
stochastic estimation theory concepts into a workable solution to many
existing calibration problems.

The optimization techniques presented in this thesis represent a
sample of tools which could be incorporated into an interactive
calibration system. The methodology is the framework within which the
tools are applied. The work presented in this study 1s part of a larger
research project designed to dgvelop an enhanced interactive modeling
environment, Within the environment, a user will have the capability to
perform interactive processing, analyze computer generated graphical
displays with dynamic animation, converse with the system through
interactive input devices, and submit background jobs to an efficient
processor of mathematical instructions. Unlike many previous
calibration research projects designed to develop enhanced fine-tuning
techniques, the purpose of this study is to examine and improve the
overall calibration process, beginning with initial parameter
estimation.

The framework is patterned after procedures typically used by
experienced hydrologists to perform model calibration. The overall goal
of the process 1s to optimize the evaluation criteria, also called
objective functions, which measure the difference between the observed
and simulated flows. In most calibration studies, the most readily
identifiable parameters are estimated first from soil or vegetation data
or computed by analyzing hydrologic records. In many cases, specific
parameters can be estimated by analyzing observed flows for isolated
events where the parameters are known to have the greatesf influence on
simulated flows. When all parameters have been initially estimated or
assigned nominal values, the user proceeds to make trial-and-error runs.
Trial-and=-error runs produce information concerning the sensitivity of
output £o changes in various parameters. The information is used to
decide what adjustments should be made to parameters to begin to improve
the model fit. Trial-and-error runs generally continue until the user
has exhausted his patience or his ability to improve the simulation.
Automatic calibration is used to further adjust parameter values
according to programmed algorithms. Calibration typically ends with
fine~tuning runs to try to eliminate any remaining biases. In addition,
verification runs often are made for a period of data not in the
original calibration analyses to check for biases in the simulation.

The underlying objective in current calibration procedures is to
isolate and identify some of the components of the model in the initial



phase and then begin reducing the dimension of the calibration problem
by systematically estimating the remaining parameters. The methodology
presented in this thesis is designed to reduce the problem dimension in
several levels as shown in Figure 2.1 and automate many of steps
performed previously by hand. Projection is a concept which also can be
incorporated into the multilevel strategy by iteratively fixing some
parameters at specified levels and optimizing others. The following
paragraphs describe the three levels of the strategy and the associated
tools developed in this study. Guidance is given in later chapters
concerning the appropriate parameters to be estimated in each level,

Multilevel Strategy

The first level of the calibration strategy was designed in an
attempt to fix as many parameters as possible at reasonable values by
performing computations similar to those currently used in manual
calibration. The strategy is to decompose the specified model into some
of its components so that some of the parameters can be estimated
independently. An interactive program would provide the user with
graphical displays that could be analyzed with the aid of computational
algorithms. The program basically guides the user through initial
‘parameter estimation.

The second level in the strategy is designed to be a global search
procedure so that the full range of parameters not estimated in the
Level I analysis can be examined. Since exhaustive enumeration is not
possible; other techniques which analyze only portions of the response
surface must be considered. A response surface is composed of the
Intersections of the various sets of parameter values and their
corresponding evaluation criteria. A model with N parameters, for
instance when evaluated with one objective function, will have a
response surface of N+1 dimensions. Although they do not cover the
entire response surface, random search procedures have been shown to be
effective tools for optimizing response surfaces with several
dimensions. The output from the Level II work should be a reasonable
starting point for a fine-tuning analysis.

The objective of the third level is to perform a local search using
a technique most applicable to the modeling situation. When the
enhanced interactive environment is completed, several fine-tuning tools
should be available. Some of the attractive candidates for a search of
this type are existing gradient or hill-climbing procedures and
recursive estimation techniques based on the concepts of linear and
nonlinear filtering. Kalman filtering may be particularly suited for
estimating some model parameters and provides an alternative to
traditional response surface search procedures.

The final product from the multilevel research should be a workable
procedure for systematically estimating the hydrologic model parameters
without requiring a detailed knowledge of the models or years of
calibration experience.
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Chapter 3
RELATED RESEARCH

Introduction

The purpose of this research is to develop a generalized
methodology for effectively estimating hydrologic simulation model
parameters and demonstrate it using an existing conceptual rainfall-
runoff model. The research work concerns several areas which have been
dealt with extensively in published literature. The areas of rainfall-
runoff modeling and model analysis have been the topic of numerous
studies. Optimization, and more specifically, model calibration, is a
subject of considerable interest in a wide range of scientific areas.
As the review of literature will show, the field of hydrologic modeling
has benefitted greatly from the application of results from several
research disciplines.

This chapter provides an overview of numerous studies which are
related to the research described in this thesis. Much of this work is
built on the results of the previous projects. Applicable details of
the most pertinent studies are given in appropriate sections throughout
the thesis.

Rainfall-Runoff Modeling

Descriptions of conceptual rainfall-runoff models have been
abundant in recent years in water resources publications. Many of the
currently used models were developed in the 1960's and early 1970's as
the use of computers for simulation modeling became common. One of the
earliest and most widely publicized models was the Stanford Watershed
Model (Crawford and Linsley, 1966). Other models include the Dawdy-
0'Donnell model (Dawdy and O'Donnell, 1965), the Dawdy-Bergman U.S.
Geological Survey Model (Dawdy, et al., 1972), the Haan model (Haan,
1972), and the Boughton model (Boughton, 1965). Burnash (1973)
published a document describing the Sacramento soil moisture accounting
model which is used by the National Weather Service (NWS) for hydrologic
forecasting. Manley (1975) described a model which uses physically
realistic parameters such as catchment shape and soil type in addition
to hydrometeorological data. Many of the models are similar in that
they conceptually represent the watershed as consisting of one or more
soil moisture zones. Water generally is passed through the zones by
means of infiltration and percolation algorithms. Soil moisture zones
are depleted by evapotranspiration and lateral outflow which often 1is
represented as outflow from a linear reservoir.

Several papers have been published reviewing various rainfall-
runoff models. Clarke (1973) presented a thorough review of the use of
mathematical models in hydrology and provided a classification system
for the models. Probably the most thorough review of models was made by
Fleming (1975). 1In this book, nineteen models are described in
considerable detail. Weeks and Hebber (1980) published a comparison of
five rainfall~-runoff models, including the Boughton, Stanford and
Sacramento models. The Sacramento model was selected as the
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sophisticated conceptual model giving the best results, partly because
of its "straightforward structure" (Weeks and Hebber, 1980, p. 23). The
Boughton model was deemed inadequate.

Two more recent studies have investigated the components in the
Sacramento model and the effect of model structure on parameter
identifiability. Gupta and Sorooshian (1983) analyzed the percolation
function in the model and demonstrated the difficultlies in obtaining
unique parameter values due to structural configuration. Sorooshian and
Gupta (1985) later introduced an index for measuring parameter
interaction and proposed procedures for reparameterizing model functions
with identifiability problems.

In the 1970's researchers began to realize that developments in the
field of control theory could provide hydrologic models with new
capabiities. The use of mathematical filtering concepts became
widespread. The Kalman filter was shown to be extremely useful in
updating model state variables, separating model and measurement errors
and estimating parameters in simplified models. The conference
proceedings of Chiu (1978) and 0'Connell (1977) give a thorough
background on the use of the Kalman filter in parameter estimation.
O'Connell and Clarke (1981) also have published a review of the use of
filtering in adaptive hydrological forecasting. A more recent general
description of the use of Kalman filtering in real-time forecasting is
given by Wood and 0'Connell (1985). Kitanidis and Bras (1980) reported
on the development of the first state-space form of the Sacramento
model. The model was coupled with the Kalman filter for automatic state
updating. The Analytic Sciences Corporation (TASC, 1979 and TASC, 1980)
also developed a state-space version of the model and routed the
simulated flows using a state-space unit hydrograph model. Georgakakos
(1986) coupled a state-space meteorological forecast model with a state-
space version of the Sacramento model to form a stochastic
hydrometeorological model for flood forecasting. Aboitiz (1986) used
the Kalman filter with a daily water balance model to estimate and
forecast soil water depletion and crop evaporation for irrigated
fields. 1Investigation of the use of various forms of filtering in
hydrologic forecasting was made by Puente and Bras (1987). Results
showed that the extended Kalman filter was as effective as more
complicated nonlinear filters.

Model Calibration

Most conceptual hydrologic forecast models are calibrated using a
combination of trial-and-error and automatic parameter estimation
procedures. Numerous studies have been performed to improve manual and
automatic optimization techniques and determine better evaluation
criteria. Some of the more recent projects have focused on applying
research results from other fields to the parameter estimation
problem. These include more extensive use of the Kalman filter and
utilization of advances in computer science in the areas of hardware
design and artificial intelligence.

Most of the recent papers have dealt with automatic fitting
procedures, however, some authors have discussed first stage manual
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calibration efforts. Manley (1978) described the three stages of the
calibration procedure used on his own model (Manley, 1975). The first
two stages consisted of manually assigning parameter values based on
watershed characteristics and hydrograph analysis. Mein and Brown
(1978) presented a parameter sensitivity analysis procedure based on the
computation of the variance of each fitted parameter. Brazil and Hudlow
(1980) described the trial-and-error calibration procedures used with
the Sacramento model. Armstrong (1978) presented a method for deriving
initial estimates of many of the Sacramento model parameters based on
reported watershed soil properties. Abbi (1980) described his
experience with trial-and-error calibration of the Sacramento model
through a water balance study.

Automatic parameter estimation routines generally consist of -
gradient methods where first and second derivatives of the objective
function are obtained or search methods where parameter changes are
based on previous successful adjustments. Many of the basic
optimization techniques currently in use today were developed in the
1960's. Examples include the methods presented by Hooke and Jeeves
(1961), Rosenbrock (1960), Powell (1965), Fletcher and Powell (1963),
Nelder and Mead (1965), Goldfeld, et al. (1966), and Beard (1967). One
of the first comprehensive sources of FORTRAN optimization codes was the
book by Kuester and Mize (1973) which includes coding for 26
optimization techniques. One of the most complete early reviews of
automatic parameter estimation techniques in conceptual rainfall-runoff
modeling was made by Ibbitt (1970), which considers a number of models
and problems often encountered in model calibration. Ibbitt tested nine
optimization techniques on the O'Donnell model (Dawdy and O'Donnell,
1965), including those by Beard (1967), Rosenbrock (1960), Powell (1964
and 1965), and Fletcher and Powell (1963). Four lesser known procedures
also were used. Rosenbrock's hill climbing method was determined to be
the most effective. Sorooshian (1980) made a comparison of Rosenbrock's
search technique and Nelder and Mead's simplex algorithm concluding that
each method showed different degrees of effectiveness depending on the
objective function.

Numerous papers have been written on specific applications of
automatic parameter optimization to hydrologic models. Only a
representative sample will be described here. One of the first papers
on this topic was written by Dawdy and O'Donnell (1965). They applied
Rosenbrock's procedure to their model and showed favorable results.
Liou (1970) reported on the application of automatic optimization
techniques to the Stanford watershed model. James (1972) reported a
favorable experience with Liou's program. He pointed out, however, that
considerable research was still required in this area. Monro (1971)
applied Hooke and Jeeves' direct search method to the Stanford model
with reasonable success. The same program also has been applied to the
Sacramento model and unfortunately often tends to converge on local
optima. The simplex method of Nelder and Mead was applied to the
Boughton model by Johnston and Pilgrim (1976). They reported many of
the same difficulties described by other researchers: interdependence
among parameters, local optima, and indifference locations in the
response surface. An attempt also was made to develop a form of the
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Boughton model which could be optimized explicitly from the model
equations; however, a complete set of algebraic solutions was never
obtained.

Derivative based search procedures have never been popular for use
with conceptual soil moisture accounting models because no effective
technique was available for computing the derivatives other than
numerical evaluation. Gupta and Sorooshian (1985) developed a procedure
for calculating analytical derivatives of conceptual rainfall-runoff
models with thresholds. The method is based on an analysis of the
modality of behavior present in the model. Henderson (1987) applied the
explicit derivative computation procedure with a gradient optimization
algorithm to the Sacramento model. Problems were shown to exist in the
technique due to discontinuities in the response surface. Another test
of optimization algorithms was performed by Pickup (1977). He found
that the techniques of Powell, Nelder and Mead, and Rosenbrock all
performed reasonably well with the Boughton model. Pickup also
concluded that the development of an optimization strategy which
optimizes one select group of parameters at a time can improve the
results. g

Many of the studies of optimization techniques also have included
analyses of objective functions and the effect of errors in the data.
One of the most notable objective function investigations was made by
Diskin and Simon (1977). They presented a procedure for selecting the
appropriate objective function for a model. A study of general response
surface analysis procedures was made by Sorooshian and Arfi (1982). The
study provided two sensitivity measures, one for concentricity and one
for interaction. Other studies by Sorooshian (Sorooshian, 1983 and
Sorooshian, et al., 1983) have resulted in two objective functions: one
which accounts for the presence of autocorrelated errors in streamflow
and one which accounts for heteroscedastic streamflow errors. The
objective functions have been shown to improve the reliability of models
which simulate flows where the error conditions are known to exist.
Other papers have since discussed the utility of the functions (Yeh,
1982 and Ibbitt and Hutchinson, 1984). Studies by Kuczera (1983) and
Troutman (1985) have also addressed the importance of considering
streamflow errors in estimating parameters. Troutman showed how bias in
input error may contribute to bias in parameter estimation.

Numerous studies have shown the local convergence problems that
exist with automatic search techniques (Brazil and Hudlow, 1980). A
recent report by Croley and Hartman (1986) showed how the parameter set
for the Large Basin Runoff Model converged to different optima based on
the initial parameter values. Random search procedures tend to be
independent of starting values, and can overcome many of the starting
value problems associated with systematic searches. Advances in
computer hardware capabilities have opened the door to the application
of optimization procedures that are more computationally intensive. A
project designed to produce a general purpose global optimizer resulted
in the Adaptive Random Search (ARS) procedure (Pronzato, et al.,

1984). Studies have shown that it can be an effective hydrologic model
calibration tool (Brazil and Krajewski, 1987).
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Use of the Kalman filter in parameter estimation has gained
popularity in recent years. Groups from the Massachusetts Institute of
Technology (MIT) (Restrepo-~Posada, 1982) and the Analytic Sciences Corp.
(TASC) (1981) performed studies incorporating a Kalman filter algorithm
into a state~-space version of the NWS model. The programs were designed
to compute objective functions based on the residuals resulting from a
run of the filtering form of the model through the data. The TASC and
MIT programs optimized parameter values based on the Goldfeld, et al.
(1966) and Fletcher-Powell (1963) procedures, respectively. In addition
to state updating, filters have been used in some cases to estimate
model parameters. Labadie, et al. (1980) used the Kalman filter in a
state augmentation form to estimate transmissivities in a groundwater
model. Bras and Restrepo-Posada (1980) used state augmentation and
stochastic approximation to estimate three of the parameters of a
simplified version of the Sacramento model. Georgakakos and Brazil
(1987) reported on what appears to be the first application of state
augmentation with the Kalman filter to a complex conceptual soil
moisture accounting model, the Sacramento model. Since then, Rajaram
and Georgakakos (1987) also have successfully presented a procedure for
recursively estimating states and parameters for a conceptual watershed
model, the Enhanced Trickle Down model.

In addition to the traditional parameter optimization procedures
such as search algorithms and Kalman filter approaches, research in the
field of water resources has produced a number of special application
optimization techniques. The proposed research for this project
includes an analysis of a technique called projection. Projection
basically consists of holding certain complicating parameters constant
while optimizing the remaining parameters, and then varying the
complicating parameters to examine the resulting response surface. In
other words, the simplifying parameters in the model are projected onto
the complicating parameters. More details of the method are given by
Geoffrion (1972). Labadie and Helweg (1975) reported success with
projection in an application to the solution of a water well step-
drawdown test equation. A highly nonconvex curve fitting problem with
many nonunique local optima was transformed into a convex problem with a
unique global optimum. An application of projection also was made to
the estimation of parameters for a Muskingum river routing model
(Gavilan and Houck, 1985).

Although most of the literature on model calibration has focused on
the development of new optimization techniques, some studies have been
made to address the issues of calibration strategy. Wildermuth and Yeh
(1979), for instance, presented a "unified approach" to calibrating the
Los Angeles County Flood Control District rainfall-runoff model. James
and Burges (1982) described a systematic approach to model calibration
and addressed the issues of handling data errors. Basically, they
presented a methodology for performing stages of calibration designated
as preliminary and refined. Willgoose (1987) performed a study in which
a stochastic parameter estimation strategy was developed for the
Sacramento model. He found that calibration of small groups of
parameters overcame many problems associated with parameter
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interaction. Carrera-Ramirez (1984) found while estimating parameters
for a groundwater model that using a combination of search techniques
can give good results. These strategies are consistent with the
methodology presented in this thesis.

Recent advances in artificial intelligence, especially expert
systems, are beginning to make their way into the field of hydrologic
modeling. Expert systems are computer programs designed to perform
computations or make decisions in a manner similar to an expert in the
field. Studies were performed at the Stanford Research Institute to
develop an expert system for estimating initial parameter values for the
Stanford model (Reboh, et al., 1982). The values were computed based on
a user's responses to questions concerning the watershed
characteristics. Work also has been performed to develop an expert
system for snowmelt modeling (Engman, et al., 1986). The system assists
a user in preparing data, selecting parameters, and evaluating results.

Summary

This review of the literature covers only a small portion of the
publications in this field. Obviously, a great deal of work has been
performed in this area. The extensive interest of so many professionals
in this field demonstrates the importance of improving the techniques
used to calibrate hydrologic models.



Chapter U
MODEL DEVELOPMENT

Introduction

The multilevel calibration scheme described in the previous
chapters could be applied to a variety of hydrologic models. 1In fact,
the methodology should be applicable to almost any type of simulation
modeling system. Although model complexity is not a requirement for
implementation of the strategy, users of a model which is characterized
as being difficult to calibrate because of its large number of
parameters and nonuniqueness of solution, stand to benefit most from the
procedures. This chapter discusses the selection of the model for
application of the methodology and describes development work performed
to put the model into state-space form.

System Selection

Several existing models and modeling systems are potential
candidates for application of the calibration methodology. Examples
include any of the conceptual rainfall-runoff models discussed in
Chapter 3 or systems of models such as SSARR (U.S. Army Engineer
Division, 1975) or HSPF (Imhoff, 1981). For the reasons described
below, a decision was made early in the research project to apply the
methodology to the National Weather Service River Forecast System
(NWSRFS) being implemented in various parts of the United States. The
NWS is responsible for accurate and timely hydrologic forecasts for
rivers and watersheds throughout the country. Most of the forecasting
is performed with the aid of computer simulation models. One of the
models used in NWSRFS is the Sacramento Soil Moisture Accounting (SAC-
SMA) Model (Burnash, et al., 1973). As with any forecast system,
forecast accuracy is significantly dependent on the accuracy of the
calibration of the models. A major problem faced by the NWS is the
large number of basins that need to be calibrated as new basins are
added to the forecast network and others need to be recalibrated to
reflect changing watershed conditions., Considerable effort will be put
into calibrating NWS models within the next few years, making model
calibration an area in which promising techniques will be given a high
priority for testing and implementation. The potential payoff for
improvements in this area in terms of saved lives and reduction in
property damage is considerable, Various types of research work have
been performed in recent years on the NWS calibration procedures which
can be combined with new techniques to produce a systematic approach to
NWS model calibration. These reasons combined with the fact that the
conceptual rainfall-runoff model used by the NWS has been tested
extensively and applied throughout the world make the NWSRFS an ideal
system for testing a new calibration methodology.
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NWSRFS

The NWSRFS is a set of interrelated computer programs developed to
provide continuous hydrologic forecasting capabilities for NWS River
Forecast Centers (RFC's). The system consists of an assortment of
software components for hydrologic, hydraulic and data processing
functions. A schematic diagram of the system is shown in Figure 4.1.
The Operational Forecast System and the Extended Streamflow Prediction
System have been described in various publications (Anderson, 1986;
Brazil and Smith, 1981; and Day, 1985). The component of interest for
this research is the Calibration System. The system is composed of the
historical data access programs, the calibration data files, the data
preprocessor and utility programs and the hydrologic simulation
programs. The simulation programs currently consist of the Manual
Calibration Program (MCP) and the Automatic Optimization Program
(OPT). These programs will be discussed in more detail in Chapter 5.

The hydrologic simulation portion of the calibration system
consists of three basic computational elements (Brazil and Hudlow,
1980): a snow accumulation and ablation model, a collection of
rainfall-runoff models and a set of channel routing routines. Each
model within the system is called an operation. An operation can be any
computational algorithm which produces or modifies a time series of data
or displays results. Appropriate operations are selected and sequenced
into the proper computational order to simulate a watershed. A typical
nonsnow headwater basin calibration setup is shown in Table 4.1. For
this example, the watershed is modeled using the SAC-SMA operation to
convert rainfall into runoff. The runoff is distributed in time using a
unit hydrograph. Instantaneous discharges (QIN) are converted into mean
daily flows using the MEAN-Q operation so that simulated flows can be
compared statistically with the observed mean daily discharges (QME).
Various routing models are available for routing the headwater flows to
downstream points and combining local inflows. Input to the headwater
models consists of mean areal precipitation (MAP) and estimates of
potential evapotranspiration (PE) and, in the case of a snow basin, mean
areal temperature (MAT). Programs are available within the calibration
aystem to compute the mean areal estimates from the recorded point
values,

Model Formulation

The work presented in this research deals primarily with
application of the developed calibration methodology to the SAC-SMA and
unit hydrograph models. For purposes of testing the methodology,
several factors must be considered in selecting the form of the models
to be used:

1. The purpose of the Level I work is to analyze the SAC-SMA model
by components and estimate initial parameters based on the model
decomposition. Any form of the model which facilitates analysis by
components is desirable.
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Table 4.1

Sequence of Operations for Non-snow Headwater Basin

Operation

SAC-SMA
UNIT-HG

MEAN-Q

INSQPLOT

WY-PLOT

STAT-QME

Description
Sacramento soil moisture accounting model
Unit hydrograph

Computation of mean discharge from
instantaneous discharges

Instantaneous discharge plot (if
observations are available)

Water year mean daily flow plot

Statistical summary - mean daily discharge



19

2. The Level II analysis requires a form of the model which is }
efficient for use in a search program where many iterations of the model
will be run.

3. The Level III design includes several types of fine-tuning
tools. One of the techniques is recursive parameter estimation using
the Kalman filter. Application of the filter requires a state-space
form of the model so that function derivatlives can be computed for each
of the model states.

‘4, Any form of the model which deviates from the original model
must have parameters and functional components which are consistent with
the original model.

5. Implementation of a state-~space SAC-SMA model in NWS programs
will enhance the NWS capabilities to update hydrologic forecasts.

In light of these issues, a decision was made to develop and implement a
state~-space form of the SAC-SMA and unit hydrograph models by building
on the work of other research projects. The state-space model should
provide a suitable mechanism for testing some of the levels of the
calibration strategy. The original model also can be used for some of
the analysis. The following sections describe both the original and
state~space SAC-SMA and unit hydrograph models.

Currently Used SAC-SMA and Unit Hydrograph

The SAC-SMA model is conceptual in design in that the authors have
attempted to parameterize soil moisture characteristics. Numerous
papers have been published about the model (Burnash, et al, 1973; Peck,
1976; Brazil and Hudlow, 1980), so only a brief description will be
given here.

The SAC-SMA model is complex and has a number of nonlinear
components. The model is deterministic and has lumped input and
parameters within a soil moisture accounting area. A watershed may be
subdivided into several soil moisture accounting areas to simulate a
distributed system. The model was conceptualized as simulating a block
of the soil mantle., Functions in the model account for the wetting and
drying of the block of soil and the associated transfer of water from
one layer to another within the soil. Drainage of water from the block
also is simulated. The model vertically divides the soil into two main
soill moisture zones. The upper zone represents interception and upper
soil storage, while the lower zone represents most of the soil moisture
and groundwater storage. Figure 4,2 (from Lawson and Shian, 1977) shows
a schematic diagram of the model. A list of the parameters and state
variables in the model is given in Table 4.2,

The upper and lower zones store both "tension" and "free" water.
Tension water is assumed to be tightly bound to soil particles and can
be moved only by evapotranspiration., Free water, however, can move both
horizontally and vertically through the soil profile. The tension water
requirements must be met in the upper zone before water can be
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Table 4,2

Parameters and State Variables Included in the

Parameter

State

PXADJ
PEADJ
UZTWM
UZFWM
UZK

PCTIM
ADIMP

RIVA
ZPERC
REXP
LZTwWM
LZFSM

LZFPM
LZSK

LZPK

PFREE

RSERV

SIDE

Variables

UZTWC
UZFWC
LZTwWC
LZFSC
LZFPC
ADIMC

Soil Moisture Accounting Model

Description

Precipitation adjustment factor

ET-demand adjustment factor

Upper zone tension water capacity (mm)

Upper zone free water capacity (mm)

Fractional daily upper zone free water
withdrawal rate

Minimum impervious area (decimal fraction)

Additional impervious area (decimal
fraction)

Riparian vegetation area (decimal fraction)

Maximum percolation rate coefficient

Percolation equation exponent

Lower zone tension water capacity (mm)

Lower zone supplemental free water
capacity (mm)

Lower zone primary free water capacity (mm)

Fractional daily supplemental withdrawal
rate

Fractional daily primary withdrawal rate

Decimal fraction of percolated water going
directly to lower zone free water storage

Decimal fraction of lower zone free water
not transferrable to lower zone tension
water

Ratio of deep recharge to channel baseflow

Description

Upper zone tension water contents (mm)
Upper zone free water contents (mm)
Lower zone tension water contents (mm)
Lower zone free supplemental contents (mm)
Lower zone free primary contents (mm)
Tension water contents of the ADIMP

area (mm)
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transferred to wper zone free water. The free water in the upper zone
can be moved through percolation (to the lower zone), evapotranspira-
tion, interflow, and tension water replacement.

During a time step (generally 6 hours), the model attempts to meet
evapotranspiration demands before water is transferred by percolation or
interflow. 1In the upper zone of the model, evapotranspiration occurs at
the potential rate times the ratio of the contents of upper zone tension
water (UZTW) to its maximum capacity . In the lower zone, the remaining
evapotranspiration demand is attempted to be met by water from lower
zone tension water (LZTW). If the demand exceeds the capacity of lower
zone tension water to meet the demand, water from the lower zone free
water storages is transferred to lower zone tension water.

Water moves from the upper zone to the lower zone by means of a
percolation function. The function relates the capacities and contents
of the upper and lower zones and is the key element in the transfer of
water within the model. In general, water is transferred from upper zone
free water (UZFW) to LZTW, however, the model has a feature which allows
a fraction of the transferred water to be placed directly into the lower
zone free water storage (LZFW) without fulfilling LZTW requirements.
This allows a realistic simulation of basins where lower zone drainage
is significant and total basin tension water requirements have not been
met. Water also is transferred to LZFW by an overflow of LZTW.

The model has a feature which allows the impervious portion of the
watershed to vary. This simulates basin response characteristics which
are created by changes in the sizes of saturated areas along stream
channels. The percentage of the area represented as being impervious is
a function of the contents of the tension water 2zones.

The SAC-SMA model typically is used in conjunction with the unit
hydrograph operation (UNIT-HG). UNIT-HG converts runoff generated from
the SAC-SMA model into instantaneous discharges. The algorithm within
the operation is based on the concepts presented by Linsley, Kohler, and
Paulhus (1975). It is a simple, yet effective mechanism for temporally
distributing simulated runoff (OH, 1987). Being a linear and time
invariant system, it is particularly adaptable to updating techniques
which are based on assumptions of linearity.

State-Space Model Development

Considerable resources have been expended in recent years to
develop state-space forms of the SAC-SMA model (Kitanidis and Bras,
1980; TASC,1980; and Georgakakos, 1986). In this form the states are
expressed through individual equations as functions of the model
parameters, inputs and other states. The formulation facilitates the
transformation of the model into a structure which easily can be coupled
with a linear filter for updating. Similar modifications have been made
to the UNIT-HG operation in order to produce a reduced order state-space
unit hydrograph algorithm (TASC, 1980).

Kitanidis was first to develop the state-space equations for the
SAC-SMA model (Kitanidis and Bras, 1978). The purpose of the research
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was to reformulate the SAC-SMA model into a framework amenable to linear
estimation theory, so that the Kalman filter could be used to update the
states of the system. The work involved development of procedures to
account for the nonlinear properties in the model. 1In the original
model the conceptual reservoirs behave as discontinuous functions.
Tension water reservoirs, for example, produce no outflow until the
contents exceed capacity. When this occurs outflow is equal to

inflow. This nonlinear behavior is inconsistent with basic assumptions
in the estimation theory concepts. Kitanidis' approach was to use the
"describing function technique" discussed by Gelb (1974) for the most
strongly nonlinear responses and Taylor expansion for the rest. Two
states were added to the original model to account for linear channel
routing. The research produced a discrete state-space version of SAC-SMA
and demonstrated how the states of the model could be updated
automatically using observations of instantaneous discharges and an
extended Kalman filter.

The Analytic Sciences Corporation (TASC) developed a set of state
equations to produce a continuous version of the SAC~-SMA model at
approximately the same time as Kitanidis (TASC, 1981). Although minor
differences existed between the two models, mostly due to differences
between discrete and continuous formulations, both models seemed to
represent the primary simulation capabilities of the original Sacramento
model. In addition to the SAC-SMA state equations, TASC developed a
state-space model to approximate the impulse response of a unit
hydrograph. Details of the unit hydrograph model formulation are given
later in this section.

Georgakakos developed a real-time hydrometeorological forecast
model by coupling the Kitanidis formulation of SAC-SMA with a
meteorological model (Georgakakos, 1986). Runoff was distributed in
time using a nonlinear channel routing model developed previously by
Georgakakos and Bras (1980) and automatic state updating was performed
through the use of the extended Kalman filter. Several modifications
were made to the original Kitanidis state equations as a result of
further model testing. In order to simplify the computations,
Georgakakos replaced Kitanidis' describing function techniques with a
nonlinear reservoir response. The procedure allows reservoirs to
produce outflow as a function of saturation and prior to reaching
capacity. Because of the spatially lumped nature of the model, this form
probably is more consistent with soil inhomogeneity found in natural
watersheds than the original model. Modifications also were made to the
Kitanidis formulation to improve the allocation of percolating water
between the lower zone free water reservoirs and to include surface
runoff from the additional impervious area (Georgakakos, 1986).

Considerable progress has been made toward the development of a
state-space Sacramento model for use with NWSRFS. Any of the described
forms of the model could be formulated into an operation. It should be
kept in mind that the purpose of the development of each of the previous
state-space formulations was to facilitate updating. The purpose of
selecting a model formulation for this research is to enhance
calibration through updating techniques and other procedures.
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Therefore, it is important to select a form of the model which
accurately mimics the original SAC~SMA model in both update and non-
update modes.

The Kalman filter algorithm consists of a forecast step and an
update step. 1In the Kitanidis formulation, the forecast step used an
enhanced version of the SAC-SMA model code which accounted for the
modified thresholds. The Georgakakos formulation used the state
equations with a variable time step integration scheme to produce
forecasts. When rigid integration tolerances are imposed, this
implementation essentially becomes a continuous model. Several test
runs were made to compare the Kitanidis and Georgakakos models in a non-
update mode. Only slight differences were found to exist between the
channel inflows generated by the two models. Because of the
enhancements the Georgakakos model offered over the Kitanidis model and
the more simplified approach to threshold linearization, a decision was
made to use the Georgakakos equations for the simulation step for this
research.

Model Equations
The model equation symbols are described in Table 4.3. Most of the

symbols were introduced by TASC (1981). Also, to simplify notation the
following expressions are used:

e, = dlxﬁ + dlxg (4.1)
1
dzxﬂ
Cz = T " (4.2)
%ﬁ~+dﬁ5
X3 * X, + X5
y = 1 - (u03)
x$ + x2 + x?

The model equations are:

Upper zone tension water(f1) -

Xm X] ml xl
s =[1- (=) Jex -u — (4.8)

e
x? P Xy
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Upper zone free water(fz) -

dX2 X, m, X, My 0 X,
dt = (_] pr[‘l = (—) ] - duX2 - C1(1 + €y ) —_—
X3 x93 X3
Lower zone tension water(f3) -
dx, X, X3 Mg
s, + ey — -1 - (=)
dt 0 £ 0
Xz x3
X, X3
-u (1 - =) -
x¢" x$ + x3
Lower zone primary free water(fu) -
dx,, ' X, X3 M,
= -d, x, +¢,(1 + eye) — [ --pr)[1 - (=)
dt 2: ) f [\]
X2 xS
Xs xh
[(e; — = 1) — +1]
x? x?Q
Lower zone secondary free water(fs) --
de " xz x3 m3
e mmdixs te (1 ey —[1 - -1 - (=) 1]
dt A ° f 0
Xz x3
Xg X,
(1 - 02 — -

(4.5)

(4.6)

(4.7)

(4.8)
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Additional impervious area water(f6) -

de Xs - Xl 2 X1 ml Xl XG - X1
- - O O™ Jex - (- -
x$ x? X9y X3 + x{
X, Xg = Xy 2_ XM, X, m
“u,— - [1-( — (—)  ex (4.9)
X9 x3 X3 X7

The output TCI from the soil moisture accounting model,

referred to as total channel inflow per unit time is given by --

1 "

d2 X, + d2 Xs

TCI = (dux2+ J(1 - 8, - 8,)
1 + yu
(xs = X3 2 X, m
+ (I)X 82 = @X — Bl
P x§ P x?
X, m, X, My
+ ox_(— (— (1 - B, = Bj,)

+ [1 = (—) (=) (=) ox_8, (4.10)

The state variables are constrained by:

(1]
0 ﬁ xi < xi

Computational Algorithm

Implementation of the state equations in a forecast mode can be
done in several different ways. As mentioned previously, Georgakakos
used an integration scheme which resulted in very small time steps. The
issue is to determine a suitable implementation algorithm for solving
the differential equations which will adequately emulate the original
Sacramento model and will be an appropriate forecast step for
propagating the system states in an updating scheme.

The left side of Figure 4.3 shows the various levels of complexity
that can be used to calculate the forecast step. The original SAC-SMA
model computes the new states for each time step by executing the
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Table 4.3

State-space Model Equation Variables

State-space Notation Original SAC-SMA
States:
X, UZTWC (mm)
X, UZFWC (mm)
X, LZTWC (mm)
Xy LZFPC (mm)
Xs LZFSC (mm)
X ADIMC (mm)
Inputs:
b Mean areal precipitation (mm/At)
ug Potential evapotranspiration demand (mm/At)
Parameters:
x? UZTWM (mm)
x93 UZFWM (mm)
X3 LZTWM (mm)
Xg LZFPM (mm)
x? LZFSM (mm)
d 1.- (1.- uzk) At
u
]
dy 1.- (1.- LzpK) A°
"
dg 1.- (1.- LzsK) At
€ ZPERC
6 REXP
Pf PFREE
M SIDE
B1 ADIMP
B2 PCTIM
m, UZTW nonlinear reservoir exponent
m, UZFW nonlinear reservoir exponent

m, LZTW nonlinear reservoir exponent
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recast Ste date

1. Original SAC-SMA

2 MITLAND Nonlinear filter
3 dx_
dt
Xy = X +4X Kalman filter

4. x,,=¢x, + Gu

Figure 4,3. Complexity Levels of Forecast and Update Steps
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nonlinear FORTRAN algorithms. As shown in Figure 4.3, this solution is
the most complex and nonlinear of the possible forecast steps. The
Kitanidis version of the model with its threshold approximations was
called MITLAND. The simulation step in the Kalman filter algorithm is a
linear translation and is shown as Step No. U4 in Figure 4.3, Details of
the filter equations are presented in Chapter 5. The linear translation
forecast model does not preserve the nonlinear features of the original
model. Simulation runs were made with each form of the forecast step.
Results showed that the models lost some capability to reproduce the
original SAC-SMA results with each step towards the filter state
equation form. In general, the models tend to overrespond to
precipitation because of the nonlinear reservoirs.

The right side of Figure 4.3 represents the spectrum of updating
procedures. They range from the purely linear form of the Kalman filter
to complex nonlinear filtering, such as iterated or second-order
filters. In this application, complex nonlinear filtering probably is
not warranted because of the large number of assumptions in the model
and the many errors in the areally averaged inputs. The conclusions are
that the choice of updating for this application should be the extended
Kalman filter (the Kalman filter extended to a linear approximation of a
nonlinear problem). Forecast Step No. 3 is the chosen form for the
forecast step. This form of the model serves as a compromise, as it
preserves some of the nonlinear features of the original model, yet
computes the states from the same equations used in the updating step.

A new procedure was developed for solving the differential
equations. Instead of the 6-hour integration scheme, an algorithm which
more closely resembles the discretization interval within the original
SAC-SMA model was used. The original SAC-SMA model has a provision
which limits the amount of water to be processed at any one time step to
5 mm. This allows the algorithms in the model to function in a more
continuous mode which is closer to natural conditions. When large
amounts of precipitation are input, the model can operate at extremely
small time steps and when little or no precipitation is experienced, the
model can resume computations at the original time interval.

This variable time step algorithm was included in the newly
formulated model. Three elements in the model are functions of time.
These are the three recession coefficients: UZK, LZSK, and LZPK. The
functional relationship between the daily recession coefficlents and the
incremental time step coefficients is:

d =1.0 - (1.0 - zk)PINC (4.11)

where d=Recession coefficient for the specified time step;
ZK=Daily recession coefficient;
DINC=Time step length (day)
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DINC is computed as:
DINC=(1./NINC) DT (4.12)

where NINC= 1, + .2+(UZFWC + Px);
DT= user specified time step (day);
Px= precipitation input for the time step.

This variable time step solution of the model differential
equations more closely approximates the computations of the original
Sacramento model than some of the earlier state-space models.

The differential state equations are of the form:

dx
ol f(x,p,u) (4.13)
where x= states,
p= parameters,
u= inputs,
t= time step.

In each computational loop of length DINC, the incremental state
changes are computed and accumulated:

dxt+1

#

f(xt,p,u) . dt (4.14)

dx + X (4.15)

Xi+1 £+1 t

The state-space SAC-SMA was coupled with the unit hydrograph and
tested for several years of data. The state-space simulation seems to
approximate the original SAC-SMA output under a variety of conditions.
Verification results are discussed following the description of the
state-space unit hydrograph.

Unit Hydrograph

Output from the state-space soil moisture model is in the form of
total channel inflow (TCI). TCI typically is distributed in time using
the UNIT-HG operation. TASC developed the reduced order unit hydrograph
(REDO-UHG) operation so that the time distribution algorithm would be
consistent with the state-space SAC-SMA model. The formulation of REDO-
UHG was based on the concept of canonical variate decomposition
(TASC,1981). A relationship between a past (input) and future (output)
vector of random variables is modeled by a Markov process of a specified
order of states (k). This leads to a model which can predict the best
statistical estimate of the output from k linear combinations of the
input. The REDO-UHG operation produces a measurement matrix based on
the input unit hydrograph ordinates which can be multiplied by TCI to
produce simulated instantaneous discharges. Details of the computations
are described in Chapter 5 in relation to the use of the models with the
Kalman filter.

Although the focus of the application of this research is on
estimation of parameters for the SAC-SMA model, determination of the
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proper unit hydrograph ordinates for a basin is a major part of the
overall calibration process. Part of this research project was devoted
to the development of an efficient mechanism for parameterizing unit
hydrographs. The concept originally was proposed (Sittner and Krouse,
1979) as a means of updating a simulated hydrograph to more closely
match discharge observations. The algorithms developed in this study
provide a way to adjust unit hydrograph ordinates vertically and
horizontally using two adjustment factors UGV and UGH, respectively.
Vertical adjustment is performed by computing a discharge, above which
ordinates are adjusted proportional to the ratio of UGV to 1.0 and below
which they are moved in inverse proportion, all while maintaining the
original hydrograph volume. Horizontal adjustment is made by moving the
unit hydrograph curve in direct proportion to the ratio of UGH to 1.0
and inversely proportional to the distance from the time of peak. Thus,
points close to the peak move farther, so that the shape is actually
distorted rather than the base shifted. The advantage of this
parameterization is that the shape of the unit hydrograph can be
optimized by adjusting only 2 parameters in an optimization algorithm.
Although the algorithms were tested and verified, the studies performed
for the purpose of this thesis assumed the unit hydrograph ordinates had
been previously optimized and were not included in the analysis. The
algorithms have already become a part of NWS calibration procedures.

Model Verification

The new state-space SAC-SMA was coupled with the REDO-UHG
measurement matrix to form a state-space watershed model which uses
estimates of precipitation and potential evapotranspiration to generate
instantaneous discharges. Test runs were made to compare the output of
the new model with results from the original SAC-SMA and UNIT-HG
operations. Both systems were used to generate instantaneous discharges
for the Bird Creek watershed in Oklahoma. The watershed is primarily
semi-arid grassland with some forested areas. The drainage area is
approximately 2340 square kilometers. The parameter values and unit
hydrograph ordinates used in the models were those determined by manual
and automatic calibrations of the basin in previous studles. The
discharges were routed to a gaging point using the same lag and K
channel routing procedure. The resulting mean daily simulated
discharges for both systems were compared with observed records.
Statistical results are shown in Table 4,4, The statistics are similar
for the two models, with the state-space model actually statistically
outperforming the original model in some areas. An examination of plots
of the three time series (2 simulated and 1 observed) showed that the
two models have similar simulations for most events. The correlation
coefficient relating the two time series of simulated discharges was
0.9972.

Summary

NWSRFS was selected as the system to be used for implementation of
the calibration methodology. The SAC-SMA and unit hydrograph models are
used to simulate and forecast hydrologic conditions. 1Issues were
discussed concerning the appropriate forms of the models to be used in
the research project. The current SAC-SMA model was described and
details were given on the development of the state-space version of the
model.
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Table 4.4

Statistical Comparison of State-space and Original Sacramento Models
versus Bird Creek Mean Daily Flow Observations

Period of Record: Water years 1956 - 1962
Observed monthly mean (CMSD) : 16.32

Statistic Original Model State-space Model
Monthly mean (CMSD) 15.32 16.019
Percent bias -6.12 -1.84
Daily RMS error (CMSD) 18.61 18.82

Daily average absolute
error {CMSD) 5.99 6.37

Average absolute monthly
volume error (mm) 2.98 3.1

Monthly volume RMS
error (mm) 5.36 5.85

Correlation Coefficient . 9659 .9662



Chapter 5
TECHNICAL DEVELOPMENT QF METHODOLOGY COMPONENTS

Introduction

This chapter describes the current SAC-SMA model calibration
procedures and the development of the technical details related to the
implementation of the calibration methodology. The purpose of the
multilevel approach is to reduce the parameter estimation problem into
several subproblems which can be dealt with individually. The
procedures described in this chapter are the tools which seem
appropriate for solving each of the subproblems.

Current SAC-SMA Calibration Procedures

Techniques currently used for calibrating a typical headwater basin
with the NWSRFS conceptual model (SAC-SMA Model and corresponding unit
hydrograph operation) are time consuming and often result in sub-optimal
estimates of model parameters. Calibration results are normally a
function of the user's knowledge of the concepts in the model. A
typical calibration for a watershed consists of three stages. 1In the
first stage, initial parameter values are estimated from nearby basins
or manually derived through an analysis of the hydrograph and other
available information. 1In the second stage trial and error simulation
runs are made using MCP so that the parameters can be adjusted
manually. MCP allows a user to perform one simulation run with the
model and print the observed and simulated hydrographs plus a variety of
statistics describing the model fit. The third stage consists of a
series of automatic optimization runs using OPT where the parameters are
varied by a nonlinear search scheme. In the current version of OPT, the
optimization algorithm is the direct search routine of Hooke and Jeeves
(1961). Daily root mean square error is the most commonly used
objective function. More details of OPT are provided later in this
chapter.

Because the soil moisture model is complex, few users have a
thorough understanding of all the model components. In many cases, this
results in trial and error runs which give unreasonable parameter
values. Poor second stage results also can affect the results of the
third stage. Numerous problems have been encountered with the automatic
optimization procedures converging to unrealistic parameter values when
inconsistent initial parameter values were specified. The final result
can be a poorly calibrated model. Details of the currently available
calibration procedures are provided in several publications (Peck, 1976;
Armstrong, 1978; Brazil and Hudlow, 1980).

Level I Development

Although years of developmental effort have been spent by numerous
contractors in improving and automating calibration procedures, the most
effective calibration technique for the NWS hydrologic models has always
been the manual procedure performed by an experienced hydrologist. In
fact, some experienced hydrologists believe that this may always be the
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way to obtain the best calibrations. This theory is evidenced somewhat
in this field and others by the amount of effort being put into the
development of expert systems which attempt to mimic the decision
process of experts (Reboh, et al., 1982, and Engman, et al., 1986). The
Level I phase of this research is a first attempt at automating some of
the procedures used by NWS experts to estimate initial parameter values
for the SAC-SMA model. By estimating those parameters which are readily
identifiable from the hydrometeorological data, the calibration problem
dimension is reduced to a level that may be solvable using mathematical
optimization tools.

The purpose of the Level I strategy is to provide an interactive
environment for the calibrator to analyze the available data such as
mean areal precipitation (MAP), mean areal temperature (MAT),
instantaneous discharges (QIN), and mean daily discharges (QME) and make
intelligent decisions concerning the quality of the data and what
information can be learned from the data for the purpose of selecting
initial parameter values. As a first step towards producing this
interactive software, a program (INIT) was developed to guide a user
through an analysis of the quality of data and the initial phases of
SAC-SMA model parameter estimation. As more effort is put into this
project, the software will be expanded to include other data analysis
tools., INIT eventually will expand into an interactive session where a
user can perform trial-and-error analyses as well as initial parameter
estimation.

INIT Program

Program INIT was developed as a result of analyzing the SAC-SMA
model, holding discussions with experts and referring to previous work
by others (Peck, 1976, and Restrepo-Posada, 1982). Experience with the
model has shown that reasonable values can be obtained for a number of
the parameters by analyzing portions of the hydrologic record where
parameters are known to have the most influence on the simulated
flows. For instance, the baseflow component of the SAC-SMA model is the
component most easily identifiable from analysis of streamflow
records., During periods of baseflow, only the lower zone free water
elements are contributing to TCI. This allows the model to be decoupled
so that the lower zone components can be analyzed independently. The
impervious portion of the watershed also is represented by a parameter
which often can be estimated from the hydrometeorological record.

At the beginning of a session in INIT, a user specifies the file
names for the watershed to be analyzed, period of record to be examined,
and tolerance for the model fit. The program begins with quality
control of the data. Although this currently is limited to a comparison
of the sums of MAP, PE, and QME, the values provide the user with enough
information to know that the input data appear to be reasonable.

Ongoing research will provide other quality control measures, such as
outlier detection, which will be incorporated into INIT.
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Program INIT next begins analyses of the lower zone drainage
coefficients. Lower zone free water within the SAC-SMA model is made up
of two components, primary and supplemental. Four parameters, LZPK,
LZSK, LZFPM, and LZFSM, control the amount of runoff which occurs during
baseflow periods. LZPK and LZSK are the recession coefficients for the
primary and supplemental reservoirs, respectively. LZFPM and LZFSM are
the reservoir capacities. The recession rates are exponential. The
rates can be computed from the following relationships:

NAT

LZPK = 1.0 = (EI] (5.1)

Qu

/t,
Qa)

LZSK = 1.0 - ( (5.2)

Where Q1, Q2, Q3, QM' ’c1 and t, are defined as shown in Figure 5.1.

Although the equations for computing the coefficients are
straightforward, actual estimation of the parameters for real data can
be a difficult and time consuming task. Various procedures have been
attempted for computing the parameters. Restrepo-Posada (1982)
developed an automated tecnnique for estimating baseflow parameters by
looking for the minimum flow during a year and trying to fit a model of
baseflow to the period preceeding it. The procedure was never
implemented due to various problems. The current research has produced
a procedure for guiding the user through a manual identification
process. It was decided that the user probably would benefit from a
program which could aid the user in understanding the workings of the
model.

Program INIT is an interactive program with graphical displays
similar to Figure 5.2. The user selects a period of data to be
displayed and then looks for a period of baseflow within the displayed
hydrograph. Baseflow is typically a long recesslon with little or no
precipitation. The user is prompted for beginning and ending dates of
primary baseflow. Response is given by moving the terminal cursor to
the appropriate location and entering a character from the keyboard.

The program computes the corresponding value of LZPK and then simulates
the selected baseflow period to see if the model is an accurate
representation. Accuracy is determined by the tolerance the user
specified at the beginning of the program. If the percent deviation
between simulated and observed flows exceeds the tolerance, the date and
simulated flow are displayed. The user is given a chance to drop the
period from the analysis if the simulation fails to give good results.
INIT continues prompting the user until the entire period of record has
been examined., Finally, the list of LZPK estimates is printed and the
user is given a final chance to discard outliers. The mean and standard
deviation for LZPK are computed from the remaining values.
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Replotted after subtracting primary baseflow

/Original hydrograph
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Figure 5.1. Hydrograph Decomposition with Program INIT
(Initial Parameter Estimation Program).



0 (na/day)

37

ENTER BEGINNING & ENDING PRIMARY BASEFLOW DATES DELETE ANY LZPK ESTI
DATES SELECTED 1
LZPK- .013 ACCEPTABLE?
OTHER LZPK EVENTS?
1S THE EVENT IN THE D
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ENTER BEGINNING & ENDING PRIMARY BRSEFLOW
SELECTED ARE: 12 13 1955 1 17 1956
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Figure 5.2. 1Interactive Display from Program INIT

(Initial Parameter Estimation Program).
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Similar calculations are performed for LZSK and the user is
prompted for the corresponding inputs. 1In the case of LZSK, the mean
LZPK value is used to subtract primary baseflow from the total discharge
so that the remaining flow can be modeled with the supplemental
component. Checks similar to those for LZPK are made to verify that the
supplemental baseflow model represents the data.

In addition to LZPK and LZSK, program INIT guides users through the
estimation of LZFPM and LZFSM. The parameters are traditionally
estimated by selecting large events, extending baseflow back to the peak
of the hydrograph and estimating the content of moisture in the lower
zones. The technique is shown graphically in Figure 5.1. The program
allows users to specify periods of data for estimating the values. The
reservoir capacities are estimated from a combination of the previously
computed LZPK and LZSK values and the observed hydrograph peak. The
equations are:

LZFPM = Q,,/LZPK (5.3)
LZFSM = Qg /LZSK (5.4)
where Q_. ., Q are defined as shown in Figure 5.1. The values actually

used for the capacities are typically greater than the largest of the
estimates since these baseflow reservoirs rarely fill completely.

Checks are made to see that the backwards extended baseflow
recessions do not violate the assumptions in the algorithms (i.e.
extended simulated baseflows exceeding observed discharges). Figure 5.1
shows an example of the extension technique.

The fifth parameter estimated with INIT is PCTIM, the percentage of
the basin considered impervious and connected to the stream. The user
is asked to select beginning and ending dates for a period during which
streamflow occurs in excess of baseflow and appears to have been
generated only by runoff from impervious areas. This typically would be
a small event during the summer which follows several days with little
or no precipitation. The algorithm in INIT uses the discharge on the
beginning and ending dates as baseflow and computes the amount of
impervious runoff as that streamflow which exceeds the baseflow. PCTIM
is the result of dividing the impervious runoff by the observed
precipitation over N days.

N N
PCTIM = © Runoff / I Precipitation (5.5)
£=1 £=1
The user is encouraged to select a number of these events and take the
average of the computed values.
INIT Verification
Each component in the multilevel methodology was tested as it was

developed using synthetic data. Seven years of six-hourly streamflow
were generated with the state-space SAC-SMA model using seven years of
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actual precipitation from the Bird Creek watershed near Sperry, Oklahon
(water years 1956-1962). No errors were introduced into the synthetic
flows, except in cases specifically described, so the only differences
between simulated and observed flows were due to parameter differences.

Test runs were made for INIT using the Bird Creek synthetic data.
Results are shown in Table 5.1. The Level I work is a first step
towards the development of a workable interactive calibration system.

If used properly, the system should provide a reduction in the dimension
of the calibration problem. The rules which are incorporated into the
algorithm for checking the assumptions in the estimation procedures
should aid the user in learning how to better select appropriate periods
for calculating the various parameter values. The Level I system also
provides a structure for adding algorithms and quality control features
to the overall process. As new features are added, more information can
be generated which will be useful as the input t£o the Level II programs.

Level II Development

The purpose of the Level II strategy is to further reduce the
dimensionality of the calibration problem through use of an effective
parameter space search procedure. As described in Chapter 3, numerous
research projects have been aimed at developing efficient and robust
search algorithms for estimating parameters of rainfall-runoff models.
Many of the projects have adapted search tools from other scientific
fields. Most of the approaches have a major point in common: they
generally are hill climbing procedures which give results that are
strongly influenced by parameter starting values. If the initial values
are inaccurate, the procedures often can converge to unrealistic optima
(Brazil and Krajewski, 1987). Studies (Gupta and Sorooshian, 1983 and
Hendrickson, 1987) have shown that the surface may be highly irregular,
making a climb to the true optimum a difficult task. Also, search
techniques typically are driven by one objective function which may or
may not be the best criterion for the model or application.

The focus of the current work is to develop an effective search
algorithm which is not dependent on accurate starting values, although
can make use of reasonable estimates, and 1s not adversely affected by
severe parameter interaction. Several candidate search procedures were
considered. Random search techniques offer a means for overcoming many
of the disadvantages of hill climbing procedures. The random procedures
search within an area rather than along a line determined from a
starting point, and therefore, tend to be less prone to converge at a
local optimum. Random procedures do not have to be driven by a single
evaluation criterion. Although they typically are more computationally
expensive than hill climbing searches, random search techniques are
becoming more attractive as computer hardware prices decrease and
processing time becomes more readily available (Brazil and Krajewski,
1987) .

This project produced two search procedures for the Level II
strategy. Both techniques are based on random search algorithms. The
first procedure is Uniform Random Search (URS). As the name indicates,
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Table 5.1

Summary of INIT Analysis for Bird Creek Synthetic Data

LZPK = .013 (True value = .013)

Event beginning date Event ending date Estimated parameter
value
* 11/18/55 11/24/55 013
* 12/13/55 1/17/56 .01l
* 3/25/56 3/30/56 014
10/01/56 10/10/56 .013
11/03/58 11/10/58 .013
9/29/60 10/10/60 .013

. . . . s o o o . . . * e o s & o o o o . . e * e LI} " e o e o o

LZSK = .125 (True value = .126)

Event beginning Event ending Primary flow Est.parameter
date date date value
10/11/55 11/06/55 11/18/55 .135
7/08/57 8/05/57 8/06/57 .130
6/16/60 7/11/60 7/16/60 . 109

LZFPM = 160. (True value =140.)

Event beginning date Event ending date Est. contents
5/26/57 8/07/57 103
6/13/57 7/16/57 89
3/30/58 5/01/58 78

therefore, LZFPM = 103./(50% to 90%) = 114, - 206.

. . o . . L) . . . o . e o s s . . . e & e . . o o .

LZFSM = 20. (True value = 14)

Event beginning Event ending Primary flow Est contents
date date date
10/03/59 11/28/59 10/20/59 13

therefore, LZFSM = 13./(50% to 90%) = 14, ~ 26,
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Table 5.1 (Continued)

PCTIM = .001 (True value = .001)

Event beginning date Event ending date Estimated parameter
value
1/18/56 2/09/56 . 001
3/12/56 3/23/56 .001
4/25/56 ‘ 5/05/56 .001
9/15/56 9/26/56 .001
10/11/56 » 10/18/56 .001

10/20/57 10/25/57 .001 |
¥ Shown in figure 5.2
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the technique 1is based on an algorithm which selects parameter values
randomly between bounds using a uniform distribution. The second
procedure is based on an Adaptive Random Search (ARS) (Pronzato, 1984).
Instead of uniformly searching the entire feasible parameter space, ARS
concentrates on areas which show greater potential for containing the
global optimum (Brazil and Krajewski, 1987).

Program OSRCH was developed to test and implement the two random
search procedures with the SAC-SMA model. The user input consists of
optional starting parameter values, parameter bounds, stopping criteria,
and a random number seed. If the user does not specify initial
parameter values, ARS uses the parameter range midpoints. URS does not
use starting values. The program performs simulations by running the
original SAC-SMA model or the state-space SAC-SMA model and
corresponding reduced-order unit hydrograph for the specified period.
Each pass through the data is a trial. Statistics are computed for each
trial to determine how well the simulated discharges for a particular
parameter set match the observed flows. The statistics can be computed
for instantaneous or mean daily discharges depending on the time
interval of the observations. Several types of statistics are computed
for each trial. Table 5.2 shows the equations used £o compute the
statistices in OSRCH.

The statistics represent a variety of evaluation criteria. They
include bias (BIAS), maximum deviation for the simulation period
(ABSMAX), root mean square error (RMS), average absolute error (ABSERR),
the variance of the residuals (RVAR) and correlation coefficient (R').
PDIFF and BASEFL are computed for user specified events. They represent
the difference in the magnitudes of the simulated and observed peak
flows and the sum of the differences of flows during a baseflow period,
respectively. TMVOL is a measure of the monthly volume differences and
would be useful in a situation where the model is being used to forecast
volumes rather than peak discharges. NSC is computed by summing the
number of times the sign of the residual changes from one time period to
the next. Venot (1986) showed this to be a robust identification
measure, FEach of the evaluation criteria is computed every time OSRCH
performs an iteration of the model.

A user typically would run OSRCH after having run INIT to determine
initial values for several of the parameters. Using the current version
of INIT, the user should have accurate estimates for five parameters and
some information about their variability. The variability information
is useful in determining the bounds for the random search. Future
versions of INIT will have the capability to aid the user in estimating
most of the model parameters and deftermining their variability through
sensitivity analyses and interactive trial and error simulations. OSRCH
is run to examine the parameter space within the bounds set by the
user. This step in the calibration process further refines the feasible
region of the problem soluftion and hopefully provides a good point for
performing Level III fine tuning analyses or returning to Level T for
more manual adjustments.

A synthetic data experiment was conducted to test the OSRCH
program. Results from the experimental runs are described later in this
section after each of the algorithms in the program has been discussed.
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Table 5.2
Statistics Computed for Each OSRCH Trial

N N
T (s,~0. )/ Lo
£=1 t t t=1

t
max [s, - o
t=1,...,N

N
((z (s
t=1

el
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¢ " %))/ N)

- ot))z/ N) 7/ (N-1)
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Simulated discharge @ time t (Volume/time step)
Observed discharge € time t (Volume/time step)

[continued on following page]
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Table 5.2 (Continued)

Simulated peak discharge for the specified
peak period (Volume/time step)

Observed peak discharge for the specified

peak period (Volume/time step)
Number of time steps
Number of time steps in the specified baseflow period
Number of months
Number of time steps per month
Residual sign change from one time step to the next
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Sensitivity Analyses

An option within OSRCH allows a user to perform sensitivity
analyses. The user specifies a set of parameters to be used as the base
and a corresponding range for each parameter. One hundred trials are
run as each parameter is incremented through its range, all other
parameters remaining fixed. Both synthetic and real streamflow
observations were used for Bird Creek to demonstrate the sensitivity
analysis capabilities. The objective functions were normalized so that
comparisons could be made without concern about units. Conclusions can
be drawn about the sensitivity of the various evaluation criteria to
changes in each parameter and also about the relative sensitivity of the
different parameters. Synthetic and real resulfs for representative
parameters are shown in Figures 5.3 a, b, and ¢ and in Figures 5.4 a, b,
and ¢, respectively. As expected, the plots show that LZPK is far more
sensitive than LZTWM, one reason for identifying LZPX in the Level I
analysis. Because it is a sensitive parameter and interacts with
several other parameters, identification of LZPK in Level I reduces the
problem dimension significantly. Figures 5.4 a, b and ¢ emphasize the
fact that the problem is multi-objective. An analysis of the plots
could yield far different parameter values depending upon which
objective function is used.

Uniform Random Search

The user must specify the number of trials to be run when using the
URS option, since URS does not converge. In test cases run during the
development of the program for the seven years of synthetic data, 10,000
trials typically were specified. This number seemed to give reasonable
results without overburdening the computer. Runs were made during the
night on the NWS Central Computer Facility (NCCF) NAS9000 system and
typically took approximately four hours of CPU time. Results from the
runs are shown and discussed later in this chapter.

One of the main advantages of URS is the fact that it is not driven
by an objective function. Instead it runs multiple trials through the
data, computing and recording various statisties, using an assortment of
parameter combinations. This type of run allows a user to perform a
postsimulation multi-objective analysis of the results. All of the
objective functions are normalized so that trade~offs can be made among
the values.

Program NINF was developed to aid a user in analyzing the results
of a URS run. In order to further reduce the problem dimension, the
program determines the set of noninferior points in the true multi-
objective sense. Cohen (1978, p.70) defines a feasible solution as
being noninferior "if there exists no other feasible solution that will
yield an improvement in one objective without causing a degradation in
at least one other objective." Figure 5.5 shows the concept of
noninferiority. NINF examines the statistics from each trial against
previous trials and keeps track of the noninferior points. For the test
runs made during the development of the program, the noninferiority
analysis reduced the number of possible solutions to about 3 percent of
the original sample. This reduction in points is critical because in
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the case of a 10,000 iteration run, it transforms the multi-objective
analysis from a batch job to an interactive program. Program CMPTPI was
developed to assist a user in performing a multi-objective analysis of
the noninferior points. A user specifies weights to be assigned to each
objective function and the program selects the trial with the best set
of weighted objective functions. A synthetic data experiment was
conducted to test the program. Results are provided later in this
chapter. The computations within CMPTPI for a typical 10,000 trial
OSRCH run take only a few seconds, enabling a user to try various
combinations of weights within one interactive session.

Experience with the model has shown that relationships sometimes
exist between some of the parameters in the SAC-SMA model.
Identification of parametric relationships can help to restrict the
search space if some of the parameters can be shown to be dependent on
the values of other parameters. An experiment was conducted to
determine what relationships might exist among parameters. Parameter
values were analyzed for 28 basins selected from various parts of the
U.S. and other countries. The basins were calibrated by experlenced
hydrologists and were considered to have good simulations. Plots were
made for every parameter against every other parameter to see if any
obvious relationships could be determined. Little or no correlation was
detected for most parameters. This is a sign that the model is not over
parameterized--no parameter can be expressed as a combination of other
parameters. However, this does not help the effort to restrict the
search space. Experience with the model and discussions with experts
indicated that three pairs of parameters should be examined more
closely: REXP vs. ZPERC, UZK vs. LZSK, and UZFWM vs. PBASE. PBASE is an
intermediate varlable in the SAC-SMA model which is a function of four
parameters:

PBASE = LZFPM ¥ LZPK + LZFSM ¥ LZSK (5.6)

Experience in calibration has shown that the strongest correlation
probably exists between REXP and ZPERC. Research by Gupta and
Sorooshian (1983) verified that interaction is strong between these two
parameters. Hydrologists generally adjust the two parameters
simultaneously when calibrating. NWS experience with the SAC-SMA model
has shown that the parameters probably are related in a quadratic
manner. A relationship similar to the curve in Figure 5.6 was used in
the current study.

The relationships for UZK vs. LZSK and UZFWM vs. PBASE are less
known. It can be argued that some positive correlation exists between
UZK and LZSK. As the interflow rate increases, the supplemental baseflow
rate probably will increase proportionately. A ratio of UZK to LZSK of
2.5 was assumed for the experiment with bounds of 0.2 and 0.5 for UZK.
In general, lower zone permeability is positively correlated with upper
zone permeability. A linear relationship was assumed between UZFWM and
PBASE. The experiment and its results are explained later in this
chapter after the development of all the components of the experiment
have been described.
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Adaptive Random Search

The ARS procedure was included in OSRCH to provide the user with a
converging random search. Previous studies have shown ARS to be a
particularly effective technique for optimizing multidimensional
problems (Pronzato, 1984). Although the procedure uses a single
objective function to drive the convergence, the technique can be
extremely useful when the proper statistic or combination of statistics
is selected. Details of the algorithm are given by Pronzato (1984).
Basically, the procedure consists of uniform random searches over
various defined search spaces. The initial search is over the entire
feasible region. The best point found is assumed to be near the optimum
and a new uniform random search is made near its vicinity. This cycle
of restricting the space and resuming the search is continued for a user
specified number of times. When the smallest search space has been
examined, the program begins the cycle again with the largest area.

This enables the procedure to escape from local optima. When the search
returns to the same vicinity a predetermined number of times, the best
point in the vicinity is assumed to be the best point within the search
space.

The algorithm was summarized by Brazil and Krajewski (1987):

1. Select the criterion to be minimized f(g) and the

admissible range of the parameters

a& £ ay < ag for i = 1,...,N
U
Ri = ai - o
2. Select the starting point as
0 1 L U .

a; =3 (ai ai) for 1 = 1,...,N
3. Set MAX, LOC, K, Lstop’ and K = 1, Lopt =0
4, Compute r(K) 101K g for i = 1,...,N

i i
5. Perform MAX iterations of uniform random search so that

4 _ 3 L U )
o = aj + U(Bi’ Bi) for i = 1)""N
where
L _ Lo J _ 1:(k)
B, = max {ai, ay = 3R }
u U J 1_(k)
Bi = min{ai, ai + 2R i }

*
Store the best found point and the corresponding k as a (k)
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6. Set k =k + 1.
If Kk > K, go to 7, otherwise MAX = MAX/k, go to 4.

7. Select min{a*(k): Kk =1,...,K} . Record the best k as
K*,

L

= L to to

* =
If k K, the Lo If L,

pt opt * 1 pt stop’

10.

If k* = K, set Lopt = 0.

*
8. Perform LOC iterations of uniform random search around a (k)

*
within the neighborhood 5(k ) corresponding to the best

k¥,
9. Reset the parameters MAX and k = 1. Go to 4,

*
10. Stop. The best point is %opr = & (k).

The ARS algorithm also was coupled with the parametric relationship
algorithm to restrict the search space. Figure 5.7 shows the concept
representation of ARS with and without the restricted space.

Synthetic Data Experiment

A synthetic data experiment was designed and conducted to evaluate
the performance of the OSRCH algorithms. The seven years of Bird Creek
synthetic data were used for all the runs. Four algorithms were used to
estimate parameters: URS (1), ARS (2), and URS and ARS with restricted
search spaces, (3) and (4), respectively. Five runs were made for each
algorithm, each with a different random number seed. Root mean square
error (RMS) was used as the objective function for all runs. The
results from the experiment are shown in Table 5.3. The columns show
the paramefer values for the best run for each algorithm. The
unmodified ARS algorithm gave the run with the loest objective function
value. On the average, ARS with the modified search space provided
slightly better results. The small difference between the algorithms
with and without parametric relationships might be explained by the fact
that the search spaces were only slightly modified and the fact that
only five realizations were made for each algorithm. Because the trials
are generated randomly, one would expect more runs to produce a larger
average difference. Identifiable parameters have more of a tendency to
converge £o the same value in each run. If is obvious from the results
that some parameters are more identifiable than others.

The programs developed for the Level II system provide an effective
mechanism for selecting values for any or all of the model parameters.
When used in conjunction with Levels I and III, the Level II objectives
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Table 5.3

Results from Random Search Synthetic Data Experiment -
Best Run for each Optimization Algorithm

Algorithm¥* True Lower Upper

Parameter 1 2 3 y Value Bound Bound
UZTWM 131. 121. 11, 17. 120, 100. 150.
UZFWM 15.1 15.1 14.8 15.6 15.0 10. 30.
LZTWM 200. 165. 193. 159. 160. 100. 200.
LZFPM 167. 168. 158. 150. 140. 100. 200.
LZFSM 14, 14, 15. 12. 14, 10. 60.
UZK .280 .303 .382 .276 .300 .2 U
LZPK L0144y .0150 .0098 L0140 .0130 .001 .02
LZSK .138 .102 167 .130 .126 .02 .2
ZPERC 62. 53. 81. ko, 48, 10. 100.
REXP 2.90 2.70 2.57 2.29 2.10 1.5 u,
PFREE 017 .053 .073 .037 .020 0. .1
ADIMP .135 171 .175 .188 170 o1 .2
PCTIM .015 .000 .000 .000 .001 0. .05
RMS (mm) L0141 .0026 .0148 .0031

Average RMS
(mm) .0158 .0060 0166 .0058

*1  URS

2 ARS

3 Restricted URS

4 Restricted ARS
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should give users a way of optimally selecting parameter values which
could not be identified with Level I procedures. The results from Level
IT should give users the information necessary to perform additional
Level I computations or proceed to Level III to adjust parameters using
a filtering approach.

Level I1I Development

The purpose of the Level III strategy is to perform a search of the
response surface in the immediate vicinity of the location determined to
be optimal by the Level I and II analyses. The objective of the search
is to find the local optimum and determine if the point provides a
satisfactory set of parameters for the simulation model or if additional
Level I or II analyses are required. This process is commonly called
fine-tuning.

Numerous fine-tuning tools have been used in previous hydrologic
studies. Several of these were discussed in Chapter 3. Most of the
procedures are gradient based or hill-climbing techniques with stringent
convergence criteria. Probably the most frequently used fine-tuning
tool is trial-and-error analyses, commonly called manual calibration.
The work presented in this study assumes that manual calibration will
always be available for use and probably should normally be the final
fine-tuning step in any calibration.

Two very different types of fine-tuning procedures were included
for testing and evaluation in this study. The first tool is the current
version of the NWS OPT program (OH, 1987). The program uses the Pattern
Search (Hooke and Jeeves, 1961) algorithm and has been shown to be an
efficient local search procedure (Hendrickson, 1987) when started at
reasonable and consistent parameter values. The program uses the
deterministic version of the SAC-SMA model and is run with batch
processing. This means that all data are processed in a single trial
before a parameter is adjusted. In contrast to this is the program
LINDRV. LINDRV is a recursive stochastic parameter estimator which was
developed for this study and uses the extended Kalman filter to adjust
model states and parameters at every observation. The LINDRV work is
believed to be the first application of Kalman filtering to simultaneous
state and parameter estimation of a complex soil moisture accounting
model (Georgakakos & Brazil, 1987).

OPT

The OPT program is a general optimization program which was
designed to be used to select parameters for the models within NWSRFS.
The program adjusts model parameter values automatically based on a
statistical comparison of simulated and observed data. The only
optimization routine currently available is Pattern Search. The ARS
algorithm described in Level II currently is being added to the OPT
code. Five objective functions are available in the program: three are
based on differences between simulated and observed mean daily
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discharges, one is based on monthly volumes, and one is a modified form
of the correlation coefficient. Daily RMS error is the most commonly
used objective function:

T (Q

)% s

sim ~ QoBs’ -

Index = ( No. Days

(5.7)

Although this objective function tends to be influenced more by large
errors, typically from high flows, experience has shown that this
function normally results in parameters which allow the model to
simulate flows adequately in most situations (Brazil and Hudlow, 1980).

User input to OPT consists of initial parameter values, parameter
adjustment increments, upper and lower parameter bounds, and convergence
criteria. The Pattern Search algorithm establishes a pattern of
adjustments based on the success of parameter moves using the specified
increments. Studies have shown, however, that the algorithm can have
difficulties when irregular response surfaces are encountered (Brazil &
Hudlow, 1980). The irregularities typically are caused by interactions
among parameters. Gupta and Sorooshian (1983) investigated and reported
on some of these interactions. The irregular response surface often
causes the Pattern Search algorithm to converge at a local suboptimal
point. Although the random search algorithms described as part of the
Level II work do not have an effect on the shape of the response
surface, they are not directly driven by its slopes and appear to
produce a point on the surface which is a suitable position for
beginning a local search. The Pattern Search algorithm shows promise of
being an effective tool when applied in such a situation.

Previous studies have confirmed the utility of the OPT program, so
no developmental results are given here (Brazil & Hudlow, 1980 and
Sorooshian and Hendrickson, 1987). Results from OPT runs are presented
as a part of the case study described in Chapter 6.

LINDRV

The LINDRV program was developed to provide users with a fine-
tuning parameter adjustment tool that could be used to recursively
estimate model states and parameters and give information concerning the
statistical properties of the data and uncertainties associated with the
estimates. The estimation algorithm is based on the extended Kalman
filter. The program allows users to run the state-space version of the
SAC-SMA and reduced order unit hydrograph models for any length of
record and observe the filter as it updates model states and parameters
at each time step. The user can specify how many and which parameters
are to be estimated for any given run. Estimates of the variance of the
input errors (U), system errors (Q), and measurement errors (R) can be
specified by the user. Observation data can consist of instantaneous or
mean dailly discharges. The following sections describe the Kalman
filter algorithm steps, the application of the filter to the hydrologic
model, the computational steps in adaptive filtering, and computer runs
that were made to test the program.
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The Kalman filter provides a linear unbiased minimum variance
estimate of a model state (Gelb, 1974). Details of the development of
the filter were described by Kalman (1960) and Kalman and Bucy (1961).
Numerous sources are available which describe the derivation of the
filter equation (Gelb, 1974, and Jazwinski, 1970). A schematic diagram
of the filtering process is shown in Figure 5.8. The first step in
applying the filter is to express the system and measurement equations
as linear functions of the model states. The discrete form of these
equations expresses the state vector at time, ¢t + 1, as a function of
the state vector at time, t, external inputs and system noise. The
measurement equation shows the relationship between the observations and
the system states. The system and measurement equations are:

Xiop = O * Gtut + T, (5.8)
z, = Htxt * Ve (5.9)
with
E W) =0, E (ww T) = Q§
£ ’ t's ts?
T
E (Vt) =0, E (v,cvS ) Rdts’
E (wtvsT) = 0 for all t,s;
where

X = state vector estimate at time t, (n x 1)

Qt = state transition matrix at time t, (n x n)

Gt = 1input coefficient matrix at time t, (n x j)
ug = input vector at time t, (j x 1)

Ft = system noise coefficient matrix at time t, (n x k)
W o= system noise vector at time t, (k x 1)
Ve = measurement noise vector at time t, (m x 1)
Ht = measurement matrix at time t, (m x n)

z, = measurement at time t, (m x 1)

Q = system noise covariance matrix, (n x n)

R = measurement noise covariance matrix, (m x 1)

st =1, ¢t = s,
§, = Kronecker delta function 3
ts §._ =0, t = s.

ts
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The Kalman filter is used to estimate the optimal state as a linear
function of the observation and the state estimate prior to the
observation. The system equation is used to forecast the state. The
computational steps in updating the state are:

(a) Predict the error covariance, Pt+1|t
T T T
Pt+1't = QtPtItQt + GtUth +raQr, (5.10)
(b) Compute the Kalman gain, K
T T -1
Keer = Prare Bear Beny Poaqpe Hom ¥ Rea) (5.11)
(e¢) Process the observations
Xear]ta1 = Xe1]e © Ko Zpaq ~ Heyg xt+1|t) (5.12)
(d) Update the error covariance, Pt+1|t+1
T
Pearfeer = D0 Kooqoq IPpaq g [T Ko ey
K. R . K T (5.13)

£+1 TE+1 e

where

= state vector estimate at time t,

tls given observation at time s, (n x 1)
P = state estimate error covariance matrix at time t,
t|s X
given observation at time s, (n x n)
Ut = input noise covariance matrix, (J x 1)
Kt = Kalman gain matrix at time ¢, (n x m)
I° = identity matrix, (n x n).

The result is a linear unbiased minimum variance estimate of the state
and the associated state error covariance.

In this study the Kalman filter is applied to a nonlinear model and
therefore referred to as the extended Kalman filter. The extended
filter was first applied to the SAC-SMA model by Kitanidis and Bras
(1980a). The filter was used to demonstrate how streamflow observations
can be used to update states and improve hydrologic forecasts.

Kitanidis and Bras (1978) and others (Bras and Rodriguez-Iturbe, 1985)
have shown how the nonlinear models can be linearized using a technique
such as Taylor series expansion.

Linearization for this study was done using the procedures outlined
by Kitanidis and Bras (1980a). The highly nonlinear SAC-SMA model
described earlier in this chapter can be expressed in general form as:

x = f(x,u) (5.14)
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Linearization results in a system equation:

X = Ax_ +Bu *+f . (5.15)
The system of equations which comprise the state-space model (equations
4,1 through 4.10) can be linearized into the form of equation (5.15).
The elements of A and B are:

fl

Aij Gfi(x,u)/éxj; (5.16)
B1j
The last step in implementing the filter is the integration of
equation (5.15) into the form of equation (5.8). Kitanidis and Bras
(1978a) developed an accurate integration scheme which produces a
solution for ¢ and G in equation (5.8). The matrices are:
2

1

Gfi(x,u)/auj . (5.17)

2

At 2 At (-1 At 2 At
& = (I - A =+ A 752)_1 (I + A =+ A > ) (5.18)
At 2 At
= (I A = + A ) ) BAt. (5.19)

The state-space SAC-SMA and reduced order unit hydrograph (REDO-
UHG) models were coupled for the purposes of this study into one set of
system and measurement equations. The output from the original SAC-SMA
model and input to the unit hydrograph operation, is total channel
inflow (TCI). TCI, therefore, is the link between the state-space SAC-
SMA and REDO-UHG matrix elements. The state vector consists of the six
soil moisture states, TCI, and the REDO-UHG states. Elements in the
SAC~-SMA portion of ¢ and G come from equations (5.18) and (5.19). The
elements in the REDO-UHG component of & ,G and H are produced by the
REDO-UHG operation from the original unit hydrograph ordinates.

The purpose of the Kalman filter development work is to produce a
parameter estimation procedure which has the same properties as the
state estimator. Parameter estimation is accomplished by augmenting the
state vector with parameters, thus producing parameters which are
updated in the same way as model states. The parameters have
essentially become model states for the purpose of filtering. The
objective function in OPT typically is based on a least squares
statistic for the observed and simulated discharges. In the Kalman
filter, optimization of parameters is performed by updating the
parameters according to the Kalman gain which minimizes the weighted sum
of the diagonal elements of the error covariance matrix. Although
optimality cannot be guaranteed with the extended and augmented filter,
the variance of the error of the state and parameter estimates is
reduced by adjusting both states and parameters. Parameters converge
because the elements in the covariance matrix are reduced as more
information is processed.

The matrices in the program are quite complex and vary considerably
depending on how many parameters are being estimated and how many states
are being used to describe the unit hydrograph. Subroutines in LINDRV
build the matrices according to the user specified inputs. The states
representing parameters are inserted in the matrices in the rows and
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columns following the actual model states. The general forms of the
filter matrices are shown below. There are n parameters and m unit
hydrograph states.

State vector, x:

X = Xe (5.20)

where X = actual model states
o = parameter states
f, = TCI
UG = Unit hydrograph states.



A matrix, for equation (5.16):

[ ar,

3%,

(%
H o o o
o

(¥4
o X

-

QO e o o

B matrix, for equation

of,

X g

Q
) e & e
[}

e« .
(o %
Oe o « O X

»

(5.17):
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of

oa,

of ¢

da,

Oe o o

(5.21)

(5.22)



¢ matrix:

G matrix:
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2 2 _1
(1-a AL 4 4" ALy 0
2 2
(1+ A2 4 4 A .
for n+6 by n+6 elements .
of, 3f, of, of ,
% W, tm % O
0 e 0 Gyg
0 cee 0 Gyg
m

n+6 elements from

At 2 A2
(I"AT*’A 17

B (n+7) * At

_1
) ¥ BAt

(5.23)

(5.24)
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H matrix:

H = . (5025)
n+7

UG,

UG
m

The 147 derivative equations (derivatives of 7 functions with respect to
6 states, 14 parameters, and 1 input) calculated to determine the
elements in the A and B matrices are given in Appendix A.

The computational steps in LINDRV closely follow the steps outlined
in equations (5.10) through (5.13). Input data consist of estimates of
mean areal precipitation and potential evaporation. The computational
time interval of the forecast model is variable and can be set to agree
with the interval of the precipitation data. The only current
restriction is that the time interval of the REDO-UHG model must match
the time step of the SAC-SMA, and only multiples of hour time steps
which are evenly divided into 24 hours currently are allowed in REDO-
UHG. Six hour precipitation observations typically are used with the
model and potential evaporation usually is expressed as total for a day.

Inputs to LINDRV also consist of the initial state error covariance
matrix (P,), the system noise covariance matrix (Q), the input noise
covariance matrix (U), and the measurement noise covariance matrix
(R). The P, diagonal elements must be specified by the user. Off
diagonal elements are set to 0.0, If the filter is stable, the choice
of P, should not be crucial to its performance (Georgakakos, 1980). It
may, however, affect the results and should be tested with various
values to assess its impact. The case study in Chapter 6 addresses the P,
sensitivity. The Q matrix diagonal elements represent the variance of
the errors in the system model. These values are estimated for the
model states and typically are set to zero for the parameters. The
parameter estimation procedure is based on the assumption that no system
error exists for the parameter states. Bowles and Grenney (1978) and
Rajaram and Georgakakos (1987) have described some of the problems
associated with estimating values for Q. The covariance characteristics
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also can be included in the parameter space and recursively estimated.
Information concerning the choice of Q for this research is given in
Chapter 6.

Only one input (precipitation) is treated as a driving variable in
LINDRV and only one measurement (streamflow) value is observed, making U
and R scalars rather than matrices. The values of U and R are both
functions of time and vary with the magnitude of the estimate with which
they are associated.

U is expressed as a function of the precipitation value and the
coefficient of variation of the precipitation time series (vu).

2
U = (vu « precipitation value) (5.26)

where
v, = S /mp
sp = sgandard deviation of the precipitation time series
mp = mean of the precipitation time series

R is a function of the streamflow measurement and the coefficient
of variation of the streamflow time series (vr).

2
R = (Vr - streamflow value) (5.27)
where
vV, =8 /m
Sg = standard deviation of the streamflow time series
mg = mean of the streamflow time series

A discussion of how the values for Vu and v_ should be estimated is
included in the case study description in Chapter 6.

The forecast step in LINDRV is performed by running the
deterministic state-space SAC-SMA and REDO-UHG models for one time
step. As discussed in Chapter 4, the nonlinear state-space model
appears to be a reasonable compromise which produces output
statistically close to the original SAC-SMA model and gives results
which are superior to the linear expression in equation (5.8). The
forecast step results in predicted estimates of the model system states.

The updating step requires evaluation of the A and B and resulting
® and G matrices. The point at which matrices A and B are evaluated
becomes the point about which linearization takes place. Several LINDRV
runs were made to try to determine the best point of linearization. The
points evaluated included the points at both the beginning and end of
time steps and the point represented by the mean of the beginning and
ending state values. Kitanidis (1978) used the mean point and the
results from the runs for this study showed no reason to differ. The
mean point was used for linearization as shown in figure 5.9.

The only other source of information needed to process the
observation and update the states is the observation itself. Equation
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t-1 t t+1

Xp = predicted state

X, = value of state at
point of Linearization

X5 = observed state

X, = updated state

Figure 5.9. Point of Linearization for Computation
of State Transition Matrix.
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(5.12) shows the computation for the update step. Observations can
consist of instantaneous or mean daily streamflow values. The most
straightforward procedure for updating is to have a measurement
observation at the same time interval as the model time step.
Unfortunately, for most watersheds, streamflow observations at less than
daily time intervals are available only for isolated periods.

Typically, streamflow records for extended periods consist of mean daily
flows. LINDRV was developed such that the streamflow observation can be
an instantaneous or mean daily value. This is done by choosing the
point of linearization as the midpoint of the time interval of the
observation. Instantaneous output from the model is averaged to compute
a mean daily simulated flow which can be compared to the observed mean
daily flow for the purpose of processing the observation. The result is
a filter which has the forecast step driven by the time interval of the
input and the update step driven by the time interval of the
observation,

Synthetic Data Development Runs

Numerous computer runs were made to test the features of LINDRV.
Because the experiment involved tests of the first implementation of
adaptive filtering to such a complex hydrologic model, the developmental
runs were for synthetic data. Synthetic discharges were generated using
actual 6-hour mean areal precipitation values and daily potential
evaporation estimates for the Bird Creek watershed near Sperry, Oklahoma
for water years 1956-62.

The first set of LINDRV runs were made to determine if perturbed
parameter values could converge to their true values. Runs were made
for every parameter in the SAC-SMA model. A representative sample of
run results are shown in figure 5.10 a-f. The discharge observations
were instantaneous 6-hour values and contained no errors. The initial
error covariances for the parameters were set at 10 percent of the
parameter values. The results show that the parameters tend to converge
from both high and low initial values. Some of the parameters converge
faster than others. Parameter adjustments generally occur in steps and
correspond to events where the parameters tend to have the most effect
on the simulation. For instance ADIMP is corrected abruptly during the
first event where significant direct runoff occurs since ADIMP affects
direct runoff most. In fact, the first occurrence of simulated direct
runoff was on February 9. Direct runoff accounted for 80 percent of the
total flow on February 9 and 10, the dates of change in ADIMP. SIDE
which is controlled more by overall volume tends to move more slowly
throughout the period.

The same runs were made over again for all parameters with
observations of mean daily discharge. Results are shown in figure 5.11
a-f. The plots are similar to the results shown in figure 5.10, except
a certain amount of overcorrection can be seen to occur as a result of
the averaging effect of the discharges. Because updating occurs only
after every four steps of forecasting, flows are allowed to deviate more
from their optimal estimates before they are corrected. The result is
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an overcompensation in many of the time steps. Convergence is still
evident in the runs, though. SIDE exhibits a slowly converging trend,
even for mean daily flows.

One criticism of previous studies of Kalman filfering in hydrologic
forecasting has been the limited amount of data used in the analysis.
Studies have tended to focus on only one year of data. For this reason,
LINDRV was run to estimate UZK from instantaneous discharge for each of
the seven water years in the synthetic period of record. Results are
shown in Figure 5.12 a-f. Results for water year 1959 were given in
Figure 5.10a. The figures show how the filter adjusts a parameter at
different rates depending on the type of streamflow activity within the
simulation period.

One problem commonly assocliated with model calibration is the
simultaneous estimation of several parameters. Numerous runs were made
with various combinations of parameters. 1In general the parameters
moved toward their true values, however, the adjustments were sensitive
to changes in elements in P, and Q. Figure 5.13 shows results from a
run where UZK and LZSK were estimated simultaneously. The two
parameters were assigned each others true value as their starting value
and converged to their correct values.

The parameter UZK became the focus of most of the remaining
developmental runs because it showed relatively predictable sensitivity
to changes in inputs. A number of runs were made £o examine the '
behavior of the algorithms using data with a known error structure.
Figure 5.14 shows results from a run where the instantaneous streamflow
observations included a measurement error corresponding to a coefficient
of variation of 10 percent. Results were similar to previous runs,
however, convergence occurs before the parameter reaches its true
value. Figure 5.15 shows results from a run where error also was
introduced into the precipitation. The precipitation error coefficient
of variation also was 10 percent.

Two final runs show the effect of not using a Q matrix diagonal
element of zero for parameter values. Figures 5.16 and 5.17 show
results from runs analogous to Figures 5.14 and 5.15 except for
parameter Q values equal to 1 percent of their values. Although the
parameters still exhibit convergence, the nonzero Q values introduce an
unnecessary element of uncertainty in the parameter estimation
procedure.
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Summary

Chapter 5 provided the technical details of the development of the
various levels in the calibration strategy. The first level consists of
an interactive program which uses computer generated graphical displays
to guide a user through the process of estimating initial values for
some of the model parameters. The Level II work was aimed at developing
an effective random search procedure which would overcome many of the
problems associated with hill-climbing techniques that are dependent on
consistent parameter starting values. Two random search techniques were
developed. The first procedure, a uniform random search technique,
randomly selects parameter values and generates an output data set of
various statistics which can be evaluated with a multi-objective post
simulation analysis program. The second random search procedure
converges as the simulation statistics improve. Level III work resulted
in the development of a recursive parameter estimation procedure using
the extended Kalman filter. Each of the calibration tools was tested
using synthetic data for a seven year period.



Chapter 6
CASE STUDY

Introduction

A case study was conducted to demonstrate and evaluate the
calibration strategy developed in the previous chapter for an actual
watershed. The case study provided a mechanism for testing the various
parameter estimation tools on real data and fine tuning the details of
the strategies and procedures. The study also gave information relating
to the sensitivity of the results to alternative ways of applying some
of the optimization algorithms.

Selection of a suitable test basin can be key to the success of a
case study. In order to adequately evaluate the calibration strategy
for the complete set of model parameters, the watershed should produce a
variety of flows: floods, periods of baseflow, and occasional small
events dominated by impervious or direct runoff. The data for the basin
must be reliable and cover a period long enough to represent a
heterogeneous mixture of climatic and hydrologic conditions.

Case Study Design
Test Watershed

The Leaf River above Collins, Mississippi was chosen to be the case
study watershed. The basin exhibits the characteristics described above
and has been used in a variety of previous studies (Brazil and
Hudlow,1981; Sorooshian and Gupta, 1983; and Sorooshian et al., 1983).
The watershed is primarily forested and has a drainage area of
approximately 1948 square kilometers. The location is shown in Figure
6.1. Average annual runoff is 450 millimeters. Data are readily
available for water years 1952-1969 and consist of mean daily
discharges, daily potential evaporation estimates, and 6-hour mean areal
precipitation totals. The mean areal values were computed in previous
studies.

Strategy

The purpose of the case study was to calibrate the SAC-SMA model
for the Leaf River using the newly developed procedures and compare the
results to a calibration performed previously for the basin. The
calibration was performed by an experienced hydrologist using manual and
automatic procedures. Although it was not necessarily the best possible
calibration, it was considered adequate for conducting tests on the
watershed for this and other studies. Data are available for 18 years
of record., A five to ten year period generally is considered adequate
for calibration. For this study calibration was performed on the first
eleven years of data (water years 1952-1962). Several assumptions were
made so that the calibration could focus only on the SAC-SMA model. The
evapotranspiration adjustment curve was assumed to have been previously
optimized, although this typically is estimated in conjunction with the
other model parameters. The ordinates for the unit hydrograph also were



98

b

MISSISSIPPI

ARKANSAS

ALABAMA

LEAF RIVER BASIN

v

LOUISIANA

Figure 6.1. Leaf River Watershed Location.



99

assumed to be known prior to the case study. Ongoing work in this
research area will provide a mechanism for simultaneously estimating
these model inputs along with the SAC-SMA parameters.

The case study was designed to demonstrate the steps a model user
would perform to utilize the parameter estimation procedures outlined
previously as Levels I, II, and III. Level I constitutes running the
INIT program on an interactive computer using a terminal with dynamic
graphics capabilities. The results were interpreted and used as input
to Level II. The Level II work consists of running the OSRCH program
with various options to perform either uniform or adaptive random
searches and sensitivity analyses. The results from Level II dictate if
additional Level I work is required, more Level II runs should be made
or Level III work should be started. Level III consists of fine tuning
some parameters by further adjustment or checking for applicability of
Kalman filter estimation techniques.

Case Study Results
Level I

The purpose of the Level I work is to identify some of the model
parameters and their ranges by analyzing the hydrometeorological record
using interactive computer generated graphics. Program INIT, which
contains algorithms for estimating some of the parameters normally
identified by hand calculations, was developed to guide the user through
this process. The program uses interactive graphical displays to allow
a user to scan through a hydrometeorological record to identify periods
where the effects of individual model components can be isolated. Peck
(1976) presented procedures for estimating several of the SAC-SMA
parameters using similar hand calculation techniques.

For this case study 2U-hour time series were developed for
precipitation and discharge. Precipitation values were computed by
summing 6-hour observations. The program begins with a comparison of
total precipitation, potential evaporation and runoff for the period of
interest. Although only a crude first attempt at establishing data
quality control, this simple test verifies that the data being used in
the analysis have been read correctly by the program. For the Leaf
River for the period October 1951 to September 1962, the ratio of
precipitation to runoff was 3.0 (14,636 mm vs. 4875 mm). The total
potential evaporation was approximately 90 percent of the total
precipitation. The precipitation/runoff ratio seems reasonable for the
area. The potential evaporation/precipitation value is high, but it is
within the acceptable range.

The period of record was scanned for each of the five parameters:
LZPK, LZSK, LZFPM, LZFSM and PCTIM. Displays similar to Figure 5.2 were
analyzed and events of interest were identified. Table 6.1 shows the
events and the corresponding estimates of the parameters. Based on the
analysis of the data, it was assumed that the lower zone primary and
supplemental components had filled to one-half and two-thirds of their
capacity, respectively, during the peaks examined. The table shows that
the estimates were reasonably consistent for LZPK, LZSK and PCTIM, with
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Table 6.1

Summary of Initial Parameter Estimation Analysis for Leaf River

LZPK = .008
Event beginning date Event ending date Estimated parameter
value
10/08/51 10/20/51 .006
01/13/52 01/20/52 .012
09/22/53 10/25/53 .006
08/18/54 09/06/54 .008
LZSK = ,195
Event beginning Event ending Primary flow Est parameter
date date date value
04/18/52 04/22/52 05/17/52 .223
06/04/52 06/14/52 06/22/52 .182
05/24/53 06/06/53 07/07/53 .184
09/06/53 09/11/53 09/23/53 .195
03/703/55 03/15/55 03/18/55 .203
04/23/55 05/03/55 05/19/55 .182
12/26/55 01/01/56 01/13/56 .231
04/19/56 04/30/56 05/12/56 .131
10/08/58 10/22/58 10/29/58 . 184
04/11/60 04/25/60 0U4/26/60 .231
LZFPM = 128.
Event beginning date Event ending date Est. contents
05/02/58 06/01/58 u7,
02/23/61 06/03/61 64,
LZFPM = 64./.5 = 128.
LZFSM = 52,
Event beginning Event ending Primary flow Est Contents
date date date
02/23/61 03/16/61 03/06/61 33.
0L/01/61 04/08/61 04/07/61 35.

LZFSM = 35./.67 = 52.
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Table 6.1 (Continued)

PCTIM = ,006

Event beginning date Event ending date Est. parameter
08/31/52 09/04/52 .003
09/10/52 09/25/52 : .008
08/18/54 08/26/54 .000
09/14/54 09/24/54 .007
11/03/54 11/09/54 .006
09/21/55 09/26/55 .005
10/22/55 11/01/55 .002
10/25/56 10/30/56 .005
11/06/56 11/13/56 .008

10/01/61 10/06/61 .012
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the maximum scatter occurring for PCTIM. This was interpreted as a sign
that considerable confidence could be placed in the three parameters,
and that they could be assigned fairly tight ranges In the Level II
analyses. Estimates for LZFPM and LZFSM were based on fewer events, but
appear to be reasonable values. Examination of the data and computation
of the parameters took approximately one hour using program INIT. The
primary advantage of the program is the capability it gives the user to
rapldly estimate parameters for numerous events and decide whether or
not t£o include them in the final analyses.

Level 11

The Level II analysis was performed by running the random search
procedures outlined in Chapter 5 for the Leaf River. Input to the
program consisted of the ranges for the parameters being optimized,
program options, and observed data. The input data were 6-hour mean
areal estimates of precipitation computed from point observations and
24-hour estimates of potential evaporation, Streamflows consisted of
observed mean daily discharges. As in the Level I analyses, the unit
hydrograph ordinates and potential evaporation demand curve were assumed
to have been optimized previously.

Program OSRCH can simulate discharges with either the original SAC-
SMA model and traditional unit hydrograph operation or the state-space
s0il moisture accounting and unit hydrograph models. Because previous
calibrations had been made with the original model and comparisons would
be easier, and because no current version of the state-space models are
available for use in forecasting, the original model was used for this
analysis. A few runs actually were made with both models to be sure
there were no major differences. The only notable difference is that
the original model uses approximately 35 percent less CPU time. This
can be a considerable advantage in long random search runs.

Program OSRCH can be used to run either the ARS or URS
algorithms. Runs with both options were made for this case study. Two
runs were made using the ARS algorithm. Different random number seeds
were used to minimize bias due to the choice of seed. Daily RMS error
was used as the objective function. The period run was water years 1956
to 1962. The inputs and results are shown in Table 6.2. Also shown in
the table are statistical results from the calibration done for previous
studies. The values in Table 6.2 represent the results from
implementation of the Level I and II strategies. The statistical output
indicate that Runs #1 and #2 gave slightly better results than the
previous calibration studies for the Leaf basin. In general, the runs
produced reasonable parameters with statistics comparable to those
produced after numerous trial-and-error runs.

One run also was made to show the advantage of having the Level I
analysis as input to the OSRCH runs. Results are given in Table 6.3.
The only difference in the inputs between Runs #1 - #2 and Run #3 are
the initial values and ranges used for the five parameters estimated in
using INIT. The initial values for the five INIT parameters were the
midpoints of their ranges. The results show that the run without the
INIT input converged at an inferior point on the response surface.
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Table 6.2

Results from ARS Case Study Runs #1 and #2

Parameter Base Run ARS Run #1 ARS Run #2 ARS Starting Lower Upper
Value Bound Bound
UZTWM 20. 10. 10. 25, 10. 150.
UZFWM 25, 36.9 37.9 30. 10. 75.
LZTwWM 200. 222, 231, 175. 75. 400.
LZFPM 140. 129, 131. 128, 120. 140,
LZFSM 45, 51. by, 52. 4o, 60.
UZK .35 .329 .307 .3 .2 .4
LZPK .004 .0068 .0082 .008 .006 .01
LZSK .15 AT .193 .195 .15 .20
ZPERC 200, 14, 135. 175. 5. 250.
REXP 3.3 3.99 3.93 3. 1.1 y,
PFREE .10 .055 .029 .1 0. .6
SIDE 0. 0. 0. 0. 0. 0.
ADIMP .15 .20 .20 N 0. .2
PCTIM .025 .003 .016 .006 0. .02

Obj. Function (Computed from mean daily flows in mm.)

RMS
BIAS
ABSMAX
ABSERR
RVAR
PDIFF
BASEFL
TMVOL
R'

NSC

.8539 . 7922 . 7927
.0123 -.0019 .0063
11.8264 10.8u484 10. 8373
.370 .3492 .35T
. 7292 .6278 .6285
8.5182 10,8484 10.8373
2.5632 . 7056 1.0347
213.7851 164.9763 165.8239
.9633 . 9692 .9632

298 336 3M



104

Table 6.3

Results from ARS Case Study Run #3

Starting Lower Upper
Parameter ARS Run #3 Value Bound Bound
UZTWM 56. 25. 10. 150,
UZFWM L6, 30. 10. 75.
LZTWM 131. 175. 75. 400.
LZFPM 162. 525. 50. 1000.
LZFSM 23. 155, 10. 300.
UZK 245 .3 .2 LU
LZPK .0086 011 .001 .02
LZSK .0429 .135 .02 .25
ZPERC 226. 175. 5. 250.
REXP 3.65 3. 1.1 y,
PFREE .063 .1 0. .6
SIDE 0. 0. 0. 0.
ADIMP 173 .1 0. .2
PCTIM .043 .05 0. .1

Obj. Function (Computed from mean daily flows in mm.)

RMS .8393
BIAS .0658
ABSMAX 10.5917
ABSERR . 4016
PVAR .6961
PDIFF 9.1315
BASEFL 4,7085
TMVOL 242.8958
R’ . 9654

NSC 298
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One run was made using the URS algorithm. Ten thousand iterations
were run, each with the original SAC-SMA and unit hydrograph models.
The ten objective functions discussed in Chapter 5 were computed at each
iteration. The period of record was the same seven years as that used
for the ARS runs. Parameter ranges also were the same as in ARS Runs#1
and #2. Program OSRCH generated an output file consisting of 10,000
parameter combinations and their associated evaluation criteria. The
data set was analyzed using program NINF to determine the noninferior
set of objective functions. Output from NINF consisted of 192 parameter
combinations/evaluation criteria. The number of noninferior points is
consistent with the 2-3 percent range of noninferior points found during
the development of the programs using synthetic data. Program CMPTPI
was run interactively to analyze the noninferior points and select the
optimum parameter set. Twelve different weighting combinations were
used. The combinations included one analysis where each objective
function was given a weight of 0.1, ten analyses where each objective
function in turn was given a weight of 1., and one analysis where RMS
error and correlation coefficient were each given weights of 0.5. The
results are shown in Table 6.4, The clear winner from the analysis is
iteration number 7853, Six of the twelve weighting schemes selected
number 7853 as the optimum. Because the problem truly is multi-
objective, though, six other iterations also were selected as optimal
for six of the weighting schemes.

A comparison between Tables 6.2 and 6.4 show that considering the
ranges of possible values for the parameters, the parameter sets
representing Run #1 in Table 6.2 and Trial #7853 are quite similar. A
number of observations can be made about Table 6.4, For instance, the
trial selected as producing the best simulation for the designated
baseflow period (#3955) had the UZTWM which deviated most from the ARS
results., UZTWM typically has an insignificant effect on baseflow.
Trial #7457 was considered optimal using PDIFF as the objective
function. ZPERC has little effect on the simulated peak flow, and
therefore has a value for the #7457 parameter set which differs most
from the other ZPERC values. In other words, ZPERC probably was not
identifiable using PDIFF. It is interesting to note that the parameter
set which produced the best peak event scored the worst on six of the
other nine evaluation criteria.

Sensitivity Runs - Program OSRCH also was used to make three sets
of sensitivity runs for the Leaf River. The runs were designed to show
the effect that each level of the calibration procedure had on the
smoothing of the response surface. Figures 6.2a, b and ¢ represent the
objective functions over the full range of parameter values where all
other parameters were given the values of the midpoints of their full
range of values. In this case, the parameter bounds were the same as
those shown in Table 6.3, Figures 6.3a, b and ¢ show the same objective
functions, however, the five parameters analyzed using INIT were
assigned their estimated values rather than their range midpoints.
Figures 6.4a, b and ¢ represent the surface about the parameters when
assigned the values resulting from the best ARS run (Run #1 in Table
6.2). The figures show that the response surface becomes better defined
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Table 6.4

Results from URS Case Study Runs

Trials Lower Upper
Parameter 7853 1165 2944 3955 7457 6076 1761 Bound  Bound
UZTWM 15, 110. b7, 141, 14, 15. 5T. 10. 150.
UZFWM 30. 16. 16. 55. 26. 4, 12. 10. 75.
LZTWM 245, 110. 121. 310. 152. 243. 133. 75. 4oo.
LZFPM 128. 137. 121. 122, 125. 136. 136, 120. 1140.
LZFSM 53. 60. 41, 41, 45, by, b2, 4o. 60.
UZK 278 .301 .373 .274 .275 .376 .318 .2 A
LZPK .0077 .0065 .0085 .0098 .0064 .0081 ,0082 .006 .01
LZSK 154 162 .199 .166 .157 .162 .151 .15 .20
ZPERC 154, 62. 69. 118 12. 175. 37. 5. 250,
REXP 3.77 1.95 3.27 3.70 3.81 3.87 2.82 1.1 b,
PFREE .035 .396 .078 .138 .207 .296 .241 0. .6
SIDE 0 0 0 0 0 0 0 0 0
ADIMP .188 .185 .036 .140 .172 .152 .154 0 .2
PCTIM .019 .015 .011 .,011 .004 .005 .001 0 .02
Obj. Functions (Computed from mean daily flows in mm)
Parameter 7853 1165 2944 3955 TU57 6076 1761
RMS .8247%  1.04l1 .9230 1.1217 1.3646 .8631 1.0156
BIAS -0243 .0000% .0366 -.1887 L1466 .0163 .0042
ABSMAX  11.3275 15.0874 8.5171% 18,1547 18.8882 14,4096 9.6173
ABSERR .3605% L4653 . 14389 . 4683 5240 .3928 L4327
RVAR .6792% 11,0906 . 8496 1.1877 1.8199 L7448 1.0319
PDIFF 10.0706 15.0874 8.5171 18.1547 7.066% 14,4096 8.7679
BASEFL .6160 8.3515 5.8250 .2U20%  2,3439 7.6490 14,0890
TMVOL 191.21% 303.58 275.22 623.71 831.01 271.93 302.65
R' .9670 .9508 . 9571 .9u9y L9191 .9671% . 9483
NSC 329 302 286 229 266 276 342%
.1 EACH *

.5 RMS,.5 R'

*
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Leaf River Sensitivity Analysis Results
for SIDE (Ratio of deep recharge to channel
baseflow) prior to Level I analyses.
(Objective function definitions shown in
Table 5.2.)
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Leaf River Sensitivity Analysis Results

for SIDE (Ratio of deep recharge to

channel baseflow) following Level I analyses.
(Objective function definitions shown in
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Leaf River Sensitivity Analysis Results
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Figure 6.4b.

Leaf River Sensitivity Analysis Results
for UZFWM (Upper zone free water
capacity) following Level II analyses.
(Objective function definitions shown in
Table 5.2.)



0.7

0.4

1

OBJECTIVE FUNCTIONS

115

8.0

.\'~- \\ \\ /' ’/ .—.‘(__f ~
a0 P s R g e~~~ -
T T T T s‘% T T T
105,0 135.0 165.0 195.0 25.0 5.0 285.0 315.0 $45.0
LZTWM

Figure 6.4c. Leaf River Sensitivity Analysis Results
for LZTWM (Lower zone tension water
capacity) following Level II analyses.
(Objective function definitions shown in
Table 5.2.)



116

at each level. That is, the individual parameters become more
identifiable from the objective function curves as the entire parameter
set moves closer to the optimum.

Level III

The purpose of the Level III analyzes is to fine tune the
parameters resulting from the Level II work, This is done by examining
the response surface of the objective functions in the immediate
vicinity of the parameter values. The Level II results provide
information concerning sensitivity analyses which can be helpful. Two
programs were described in Chapter 5 which can be used for fine
tuning: OPT3 and LINDRV. Each program has advantages and
disadvantages. OPT3 uses the Pattern Search procedure which has been
shown to be an efficient optimization algorithm when the starting
parameter values are close to the true optimum. LINDRV is a new
procedure developed for this study which uses the Kalman filter for
recursive parameter estimation and therefore can account for errors in
the inputs or streamflow observations. The filter also can provide
information regarding the confidence in states and parameters. Several
runs were made using both programs for this case study.

A number of OPT3 runs were made in an attempt to improve upon the
results from the Level II analyses. Table 6.5 shows results from the
run where all thirteen parameters were optimized. The run was for the
same seven years as the Level II runs, water years 1956 - 1962, and used
the results from the best ARS run as its starting point. The range of
acceptable values as well as the starting and ending parameter values
are shown in the table. The statistics for RMS error and R' show that
the fit was improved slightly. One run also was made where all
parameters were optimized for only water year 1956 so that comparisons
could be made with the LINDRV results.

An analysis of the results in Table 6.4 show that most of the
significant parameters were adjusted very little. In some cases
compensating adjustments were made. For instance, consider the
percolation function. Most of the parameters which determine
percolation (LZPK, LZSK, LZFPM, LZFSM, ZPERC and REXP) were adjusted,
some significantly from the base parameters. Considering the range of
feasible values the percolation curve can assume, the net effect on the
percolation curve was insignificant. Figure 6.5 shows the percolation
curves for the base, ARS, and ARS+OPT parameter sets.

As the statistics indicate (Tables 6.2 and 6.4) the simulations for
the base, ARS, and ARS+0OPT runs were quite similar for the calibration
period. Verification runs were made for two periods. One period
consisted of the calibration period (water years 1956-1962) plus water
years 1963-1969. The other period consisted of only the extension
(water years 1963-1969). Results are shown in Table 6.6, Once again,
the statistics were very close for all three runs. Plots of the three
simulation time series coincide for most events. Figures 6.6a and b
show a baseflow period where the different streamflows could be
differentiated. Figures 6.7a and b show the same period where flow
differences are exaggerated because of the logarithmic diacharge
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Table 6.5

Results from Level III Opt Case Study Runs

Starting

Value TYr OPT 1Y¥r OPT Lower Upper
Parameter (ARS Run #1) Run Run Bound Bound
UZTWM 10. 9. 10. 9. 150.
UZFWM 36.9 39.8 23. 10. 75.
LZTwWM 222, 240. 140. 75. 400.
LZFPM 129. 120. 120. 120. 140,
LZFSM 51. Lo, ho. 40. 60.
UZK .329 .200 .253 .2 U
LZPK .0068 .006 .006 .006 .01
LZSK AT .15 .15 .15 .20
ZPERC 14, 250. 105. 5. 250.
REXP 3.99 4,27 4.5 1.1 4.5
PFREE .055 .027 .012 0. .6
SIDE 0. 0. 0. 0. 0.
ADIMP .20 .25 .081 0. .25
PCTIM .003 .003 .001 0. .02
Obj. Functions
RMS (CMSD) 18.04 17.26 10. 42

R' . 9686 .9708 .9887
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Table 6.6

Verification Runs Using BASE, ARS, and ARS + OPT Parameters

Obj. Function

RMS (CMSD)

R'

RMS (CMSD)

Rl

Period of BASE ARS ARS & OPT
Record Parameters Parameters Parameters
10/1955 - 16.687 16.274 15.762
9/1969 .9626 .9640 .9664
10/1962 14,063 14,300 14.100
9/1969 .9615 .9585 .9611
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scales. The main difference between the base run and the ARS run is
attributable to the fact that the ARS run has a slightly faster baseflow
recession. The ARS+OPT run has longer periods of interflow and more
direct runoff.

Considerable testing was made with the parameter UZK during the
development of the Level III procedures. Several runs were made using
OPT3 to optimize UZK so that results could be compared to LINDRV
optimization runs. The runs optimized UZK while all other parameters
were held at their ARS optimal values. The first run used data for the
entire seven year period. Although found to be one of the most
sensitive parameters in these studies, the OPT3 search produced a
converged UZK value of 0.333. This was within one percent of the
starting value. The results are an indication that the parameter values
obtained by the Level II analysis (ARS algorithm) probably are reliable
consistent values. Other runs for UZK, using variations in input, gave
similar results. One run was made using only the first year of data
(water year 1956). Results were quite different. With all other
parameters fixed, UZK converged at a value of 0.6. Apparently, events
during water year 1956 (or possibly data errors) are not adequately
modeled by the ARS parameter set and cause the optimization algorithm to
drastically change the UZK parameter. This also is evident in the
LINDRV runs.

Numerous runs were made with LINDRV for comparison with OPT3 and to
test its capabilities as a fine tuning tool and to assess the
sensitivity of the filter to variations in the initial covariance of the
state error (P), the variance of the measurement noise (R). and the
variance of the error in the precipitation input (U). The initial
LINDRV runs continued with the estimation of UZK, since it had been
analyzed most in the previous runs. Later runs included other
parameters in an attempt to begin to develop a strategic selection of
parameters to be examined in fine tuning. Unlike a search procedure
where the period of record to be analyzed is determined prior to a run,
the filter estimation algorithm estimates the parameters as each data
point is processed. This means that parameter values can be assessed
for any length of record, beginning with the first day, by running the
filter for the entire period of record. This information can be useful
in determining how rapidly a parameter tends to converge. It also can
be used to indicate seasonal variations in paramefers.

The first few case study runs with LINDRV were made to determine
the sensitivity of the results to the initial P matrix. All elements
other than those on the diagonal were set to zero. The nonparameter
elements of P and Q were set to nominal values of 0.1. In the first two
runs R and U were computed according to the equations in Chapter 5 from
coefficients of variation of 0.2 and 0.1, respectively. In other words,
the standard deviation of the error in the streamflow observation was
assumed to be twice that for the precipitation input. Element P was set
to be 0.1 percent of the parameter value, an initial value assumed to be
severely constraining. The full seven years of data (water years 1956~
1962) were processed with the filter with little change being observed
in the UZK parameter. At the end of one year the parameter had moved
from its starting value of 0.329 to 0.322. By the end of year seven the
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value had converged to 0.295, and because of contraction of the P
matrix, was no longer changing. Another run was made with initial P set
to one percent of UZK. The Initial P restricted movement of the
parameter, however, the final value of convergence was 0.253. Results
are shown in Figures 6.8 and 6.9. The filter has a tendency to slightly
reduce UZK, whereas, the OPT3 pattern search algorithm with the RMS
objection function left UZK essentially unchanged when the other
parameters were fixed.

Several runs were made to determine the sensitivity of the filter
to changes in R and U. R represents an estimate of the variance of the
error in the streamflow. The observation can contain errors from
several sources: the rating curve, bed scour or deposition, backwater
effects or faulty recording equipment. R is computed from the
coefficient of variation (Vr) and is a function of the streamflow
observation., A Vi value of 0.2 means that the true streamflow
associated with a measurement of 100 cms has a 0.67 probability of being
between 80 and 120 cms. For this case study, a value of v, between 0.1
and 0.3 seems reasonable. Ongoing research is being conducted to assess
the effect of using a time varying coefficient of varliation so that R
can be adjusted to reflect seasonil as well as streamflow magnitude
differences.

Errors in precipitation also can be accounted for in the filter.
The errors generally are attributable to problems with the precipitation
gages or in the procedure for estimating mean areal values from the
point observations. The latter error can be significant when dealing
with areas where flooding is caused by localized events. The
coefficient of variation for the precipitation (Vu) was assumed to range
from 0.1 to 0.3 also. Seasonal adjustments may be appropriate for
computing v, and will be considered in ongoing research.

Figure 6.10 shows the results from a run where UZK was estimated
when both the observed streamflow and precipitation were assumed to
contain no errors (v, and v, = 0). Similarly to the OPT3 results for
water year 1956, the filter attempts to adjust UZK upward to a value
much greater than its starting point. Although subject to further
correction during the following years, the parameter never converges to
a more realistic value. Figure 6.11 shows the results from a run with
the same input as Figure 6.10 except for Vi being assigned a value of
0.2. In this case the filter adjusted the parameter for the events of
water year 1956, but managed to correct to reasonable values and finally
converge to an acceptable level. One other case was run where Vp and Yu
were both set to 0.2. Slight changes were made in the output values,
however, no significant differences could be seen in the plot. The
results indicate that the parameter estimation algorithm is quite
sensitive to changes in vy, and, as expected, produces reasonable results
only when allowed to filter the data with an assumed error structure.

One of the development runs described in Chapter 5 was used to
estimate both UZK and LZSK. In that case the starting values were
switched with each others true value. One run was made with LINDRV to
estimate UZK and LZSK for the Leaf River. All other parameters were

held at their best ARS values. Both Vi and v, were set to 0.2. The
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LINDRV Results for UZK (Fractional daily upper zone
free water withdrawal rate) for Leaf River Data
(Po=0.1% initial parameter value, vr=0.2, A =0.1).
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Figure 6.9. LINDRV Results for UZK (Fractional daily upper zone
free water withdrawal rate) for Leaf River Data
(P,=1% initial parameter value, vr=0.2, vu=0.1).
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Figure 6.10. LINDRV Results for UZK (Fractional daily upper zone
free water withdrawal rate) for Leaf River Data
( Po=1% initial parameter value, y =, =0).
r u
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results are shown in Figure 6.12. After both downward and upward
corrections, both parameter values converged fo lower values. This
result is consistent with the OPT3 run shown in Table 6.5 where both
parameters were decreased to their lower bounds.

Several runs were made with an estimation of all parameters to
further test the effects of the initial P matrix. Table 6.7 shows the
results for initial P diagonal elements equal to 1 percent and 10
percent of the parameter values. As shown in the table, the increase in
P gives the filter more freedom to adjust the parameter values. The
indication is that the inclusion of all parameters in the filter gives
the algorithm too many degrees of freedom. Some parameter adjustments
tend to dominate others and result in parameter values which may be
outside the range considered to be acceptable. This may be an
indication of model structural errors. Although model parameter
compensation may be controlled somewhat by arbitrarily adjusting the
filter parameters, a more structured approach which l1imits the number of
parameters estimated at any one time seems more reasonable.

The results from these runs provided valuable information to be
used in development of a strategy for using the filter in a parameter
estimation mode, Selection of initial P values and estimates for Vi and
v, can be critical to the estimation process. 1Initial P elements must
be large enough to give the filter freedom to move parameters but may
need Lo be adjusted so that not all the correction between observed and
simulated streamflow is accounted for in one parameter., Also,
reasonable estimates of R and U are necessary. With these thoughts in
mind, several more runs were made to estimate various combinations of
parameters.

Results from previous runs showed that some of the parameters were
better candidates for recursive parameter estimation than others. This
conclusion is consistent with the objectives of the study: estimation of
the parameters through projection and reduction in problem dimension.
Although optimized in some of the previous LINDRV runs, the five
parameters estimated with INIT were assumed to be fixed at their best
ARS values. Two levels of calibration analysis were devoted to their
estimation, thus, they are assumed to be .at their optimum. Because of
the nonlinearities associated with threshold elements (UZTWM, UZFWM,
LZTWM) they were considered to be undesirable candidates for recursive
filter estimation. The same argument can be made against ADIMP,
however, it was included in some of the runs. The remaining five
parameters also were the parameters showing the most adjustment during
the OPT3 runs.

The results from three of the final LINDRV runs are presented in
the following paragraphs. Five parameters were estimated in the first
run: UZK, ZPERC, REXP, PFREE, and ADIMP. ADIMP was eliminated from the
final two runs. All other parameters were held at thelr best ARS
values. Results from the first run are shown in Figures 6.13a, b and
¢. Initial values of P were set at 10 percent of the initial parameter
value with the exception of UZK. Prior runs showed that UZK was too
sensitive when P was initiated at 10 percent; therefore its value was
set at one percent instead. Parameters ZPERC, REXP, UZK, and ADIMP all



131

UZK
0.2 0.3 0.4 0.5

L

8.0
1

8.0
L

DISCHARGE (MM/BHR)
u‘:.o

0.
1

Figure 6.12.

LINDRV Results for UZK (Fractional daily upper zone
free water withdrawal rate) and LZSK (Fractional

daily supplemental withdrawal rate) for Leaf River Data
( P,=1% initial parameter value, v.= vu=0.2).
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Table 6.7
Results from LINDRV Runs with Varying PINIT
Results with Results with

Parameter Sts:zi:g PINIT - PINIT "o
UZTWM 10, 10,02 12.27
UZFWM 36.9 36.89 39.40
LZTwWM 222 222,04 221.9
LZFPM 129, 128.97 129.0
LZFSM 51. 50.99 51.3

UZK .329 .27 .036

LZPK .0068 .006 .006

LZSK AT .169 .335
ZPERC 141, 140.97 140.4
REXP 3.99 3.985 5.098
PFREE .055 .052 .195
ADIMP .20 277 .608

PCTIM .003 .000 .002
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Figure 6.13a. LINDRV Results for 5-parameter Run for Leaf River Data.
REXP (Percolation equation exponent)
ZPERC (Maximum percolation rate coefficient)
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LINDRV Results for 5-parameter Run for Leaf River Data.
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appear to converge by the end of the seventh year. ADIMP moves to a
value considered larger than the normal range and UZK is adjusted below
what 1s generally considered acceptable. The UZK move is consistent
with the seven year OPT3 run shown in Table 6.5, where UZK was adjusted
to its lower limit. It appears that the increase in ADIMP has resulted
in a change in the components which sum to generate the peaks and has
essentially eliminated the need for interflow controlled by UZK. PFREE
continues to be corrected throughout the period. The scale of the plot
makes the parameter appear to be less stable than it actually is. The
movement of PFREE to a lower value also was consistent with the OPT3
run.

A second run was made with ADIMP fixed at its ARS value. The
results are shown in Figures 6.14a, b and ¢. UZK again moved to a lower
value, but not as small as in Figure 6.13b. REXP did not decrease as it
did in Figure 6.13a. The differences between the two runs are
indicative of the complex interrelationships that exist among the
parameters in the model. A third run was made with doubled initial P
values. Results were basically the same, indicating that the initial P
value in the second run probably was adequate for the estimation
procedure.

As an independent check on the validity of the LINDRV runs, two
runs were made with MCP to compute the statistics for a simulation
produced by the parameters resulting from the final two LINDRV runs.
The results from the runs plus the statistics from the best ARS run are
shown in Table 6.8. The statistiecs show that the LINDRV program
produced parameters which slightly degraded the model fit according to
the OPT3 evaluation critera, however, the results are all within a
highly acceptable range. This probably is due to the fact that the
recursive estimation procedure uses an objective function different from
OPT3. One run also was made with OPT3 to optimize the same four
parameters that were adjusted in LINDRV. Parameter corrections were
insigificant, with three of the four parameters moving in the same
direction as the Figure 6.14 run. The conclusion that can be drawn from
these final runs is that the parameters must be close to their optimum,
at least for this vicinity of the response surface, and any further
adjustments will consist of insignificant trade-offs among parameter
values. Some of the runs showed that the adjustment of parameters can
be sensitive to initial values of the P matrix elements. In some cases,
such as UZK, the parameters are just more sensitive than others, and
this can be controlled somewhat by adjustments to the initial value of
P. Further studies will be made in the future to test filter
sensitivity to P, R, and U,

Several conclusions can be drawn from the analysis of the LINDRV
runs, The filter algorithm provides the user with a tool for assessing
and accounting for errors in the inputs and in the streamflow
observations, The results from the water year 1956 data show how
valuable this capability can be, particularly if short data periods are
being used or the data are known to contain errors.
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Table 6.8

Results from MCP Runs with LINDRV Parameters and OPT Run

ARS Run #1

Parameters Values
UZTWM 10,
UZFWM 37.
LZTWM 222,
LZFPM 129.
LZFSM 51.
UZK .329
LZPK .0068
LZSK AT
ZPERC 141,
REXP 3.99
PFREE .055
SIDE 0.
ADIMP .20
PCTIM .003
Obj. Functions

RMS (CMSD) 18.04

R! .9686

4

—" No parameters were constrained by bounds.

Fig. 6.13 Fig. 6.14
Values Values
Same Same

n "

1 "

" "

" "
.090 .212
Same Same

" "
141.2 140,
3.177 4,126
014 . 001
Same Same
.795 "
Same "
26,117 18.257
. 9459 . 9605

OPT

Values-

Same

.312

Same

150.
4,233
.050

Same

17.99
. 9686
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The Level III analysis showed that both the OPT3 Pattern Search
algorithm and the LINDRV filter are capable of providing useful
information about the local response surface. In this particular case
study, the Level III work probably was insignificant due to the success
of the calibration results from Levels I and II. This may be different
for other watersheds. The choice of which fine tuning tool is
appropriate will be dependent on the application of the results. State-
space modeling and automatic updating soon will become part of the
standard tools available for operational forecasting. As this occurs
recursive parameter estimation which is consistent with the forecast
system will begin to play a larger role in model calibration.

Case Study Conclusions

The multilevel calibration strategy developed in previous chapters
was applied to the Leaf River watershed near Collins, Mississippi.
Program INIT was used to estimate five of the SAC-SMA model
parameters. The five parameters along with ranges for the remaining
parameters were used as input to program OSRCH. Both the ARS and URS
procedures were used to estimate the remaining parameters. Results were
similar for both types of runs and comparable in fit to simulations
after several hours worth of hand calculations and trial-and-error
runs. Fine tuning was performed using both deterministic and stochastic
techniques. Results from the Level III work showed that only small
improvements could be seen in the fit of the model beyond the Level II
analysis. There were no indications that further runs were necessary.
The case study reveals that the multilevel approach provided
satisfactory results for this basin in far less time than using previous
methods.






. Chapter 7
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

The purpose of this research was to develop and test a systematic
methodology for calibrating conceptual hydrologic simulation models. A
multilevel approach was proposed to reduce the problem to a number of
subproblems which could be solved using several different optimization
techniques. The NWS SAC-SMA model was chosen for implementation of the
methodology. A state-space version of the model was formulated for use
in some components of the study.

Three levels of optimization were proposed for the model. Level I
consisted of the development of a guided interactive initial paramefer
estimator. The program uses computer generated graphics along with
interactive input to lead an inexperienced user through some of the
steps of initial data quality control and estimation of the model
parameters. The Level II work was designed to overcome some of the
convergence problems commonly associated with direct search
procedures. Two random search techniques were developed for use with
the SAC-SMA model. URS performs a random search by randomly selecting
parameter values and creating an output data set of various statistics
for each iteration. Programs NINF and CMPTPI were created to allow a
user to perform a multi-objective post simulation analysis of the

results. ARS is a converging random search procedure that was shown to

produce effective results. A program for generating sensitivity
analysis plots for various objective functions also was presented.

Level III was designed to be a fine-tuning analysis. A recursive
parameter estimation procedure was developed and tested against a direct
search algorithm. The recursive technique uses the state-space version
of the SAC-SMA model with a state augmentation form of the Kalman
filter. The filter was tested for sensitivity to inputs. All of the
procedures were tested and verified with synthetic data. A case study
was presented where the multilevel strategy was applied to the Leaf
River. ‘

Conclusions and Recommendations

The general strategy of dimension reduction and projection should
be applicable to almost any type of complex simulation model. The
multilevel methodology was shown in this case to be a valid approach to
the problem of hydrologic model calibration. The procedures produced
results in a case study which were comparable to those obtained using
traditional manual techniques, but in considerably less time. The
results from this research will serve as a framework for building a
hierarchical structure of procedures for analyzing the components of a
conceptual hydrologic model.

The resulting strategy consists of the identification of different
parameters in each level of optimization. The choice of which
parameters to include in the various levels obviously is up to the
modeler, however, several conclusions can be drawn from this research.
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The dimension of the calibration problem can be tremendously reduced
when certain components in the model can be isolated and the
corresponding parameters identified. 1In the case of the SAC-SMA model,
the baseflow parameters were readily identifiable and were shown to be
some of the most sensitive. The net effect of computing and fixing
thelr values, as shown in the case study, was to restrict the remaining
search to a more quadratic region on the response surface. Any other
available tools, such as trial-and-error calibration runs, also should
be used to gain information and establish bounds prior to running the
large scale search techniques. The random search procedures can be run
for all parameters, however, the number of trials required to obtain
convergence in the ARS case will be correlated with the number of
parameters. In this application of the methodology, all parameters were
estimated with ARS, buft the Level I parameters were given tight
constraints. The parameters included in Level IIT should be those which
still show considerable uncertainty after Level II. 1In the initial
applications of the projection technique, the parameters causing the
least complications were included in the inner problem. This philosophy
was used in the Leaf River case study, where the inner problem (Level
III) was restricted to those parameters least associated with the model
nonlinearities. In this case, the inner problem delineation works well
because the Kalman filter algorithm is based on assumptions of
linearity. In general, the selection of parameters for each level
should be based on identifiability, sensitivity, complication factors
and the assumptions corresponding to the optimization tools.

Tools were developed for use in each level of the strategy. The
procedures serve as initial steps towards the development of an enhanced
interactive modeling system for hydrologic simulation and forecasting.
The INIT program was shown to be a useful calibration tool and will be
expanded in the future to include other parameters. The area of initial
parameter estimation seems particularly suitable for application of
expert system technology. Both of the random search procedures offer
users several advantages over direct or gradient search techniques. The
multi-objective aspects of URS allow users to emphasize the importance
of various evaluation criteria, much as experts typically do in manual
calibration. The URS and ARS procedures should be tested further and
compared for results. URS offers a user more flexibillity, but costs
considerably more to run. The ARS procedure should be analyzed
carefully to be sure that convergence is taking place most
efficiently. This is an area with large potential benefits because of
the vast amounts of computer time being used by the program. As
processing time becomes more available, random search techniques will
become more significant in optimization problems.

If the initial parameter estimation procedure and random search
programs typically produce results similar to the Leaf River case study,
the choice of a local search procedure may not matter. In this study,
neither Pattern Search nor the Kalman filter parameter estimation
algorithm significantly improved the model performance, because the
Level II results produced a simulation considered to be a final
calibration for most purposes. Research will continue, however, in the
development of the LINDRV program. The primary advantage of the Kalman
filter in this application appears to be the generation of error



145

covariance information which can be used to assess the reliability of
parameters in calibration and states in forecasting. In fact, the form
of the model used in LINDRV could be used in a forecast mode where the
parameters could be updated as well as states, and the covariance
information could be used to determine confidence in both parameters and
states. Filter inputs, such as the Q and R matrix elements, could be
adjusted to reflect relative user confidence in the states and
parameters.,

Several areas have been considered for enhancing the Kalman
filtering work. Selection of error covariances is always a concern when
using the filter. Techniques for estimating the values, such as
adaptive filtering, will be examined. Also, additional information
concerning the active components and parameters in the model is
available from the function derivatives, the filter gain vector and the
computed error covariances and should be incorporated into the parameter
estimation procedure. Future research plans in this area should
consider exploring items such as selective filtering, where some
parameters are updated only during periods when they are active, and
techniques for artificially propagating error covariances for periods
not updated. The results from this research represent another step
towards the development of a system of state-space models. Current
research in state-space snow modeling and previous work in state-space
routing modeling (Smith, 1983) eventually will be coupled with the work
in this thesis to produce an operational hydrologic forecast system with
automatic updating. When this occurs, recursive parameter estimation
which 1s consistent with the forecast system will play a more
significant role in model calibration.
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Appendix
STATE TRANSITION AND INPUT COEFFICIENT
MATRIX DERIVATIVE COMPUTATIONS

This appendix contains the derivatives of the functions in
equations 4.4 to 4,10, The derivatives represent the elements in the A
and B matrices in Chapter 5. A and B are used to compute ¢ and G as
shown in equations 5.18 and 5.19.

The symbols defined in Table 4,3 are used in the equations.
Additional symbols are defined below to simplify notation in the
derivatives.

X,
r, = — (A.1)
31

r, = — (A.2)
ry = — (A.3)
mr, = ——————— (A.B)
mr, = ———— (A.5)

mry = ———— (A.6)
dxrl = mm——— (A07)
X

dxr, = ———— (A.8)
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m
Mj3*X3

dxr, = T—m_3+—1 (A.9)

X3+X ,+X g

y =1. - (E?:;?:;E) (A.10)

zZ = 1.+eey (A.11)
X3tX,*Xs
dy = (IR (A.12)
0-1
Br = (8e-y) «dy (A.13)
PPN
dey = m (A.14)
m
Pf3 = (1.-Pf)‘(1.-r’3 %) (A.15)
c, = di-x2+dg-x§ (A.16)
di s x2
cfy = (cperg=1.) « r .+ 1, (A.18)

szs = (1--02 . r’s) . Y‘., (Ao19)
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Derivatives for UZTWM (x}):

Xy X3

of 4 r,
— = (dxr,*Px) + (u_ *» —%) (A.20)
ox? e X1
of , .
%7 = -dxr,*Px<(1. = r, 2) (A.21)
1
af3 "‘Xa
ST CHE
X3 r,

(;?‘:—zg) . (E?)) (A.22) i
of , |
= - 0. (A.23) :
of 5
of ¢ Xe~ X1 2 Xe = X3
%0 = ( X3 ) edxr,ePx + ug (1. =r,) o (mz) -

|

Xe = X, r, r, l

Ut TRy TxT Ve Tk
Xeg — X1 2 msp

(1. = ( %3 Y ) e r, « dxr, + Px (A.25)
of , Xg = Xy 2 My

5 = (——3—) ¢ Px « (-dxr;) « By + Px (-dxr,) e r, *

Xe¢ = X1 2

(1. = By = 8y) * (1o = (—7) ) - r,n2 .

(-dxr,) + Px + 8, (A.26)
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Derivatives for UZFWM (x2):

o (a.27)
g - O ‘
of , m rs
_a_x_;o_ = Y‘: 1, Px o Xm"z + 01 s 7 e ;-g- (A.28)
of s i (A4.29)
CUAE T S '
Bf., —PZ ( O)
m =C,° 2 * (7'62') . (1." Pfs) * cth A.3
st 'r'z
3T " Cit 2 ( xg) « (1. - Pfa) « c,fs (A.31)
of Xe = Xy 2

; = (1. - ("‘s“‘o——“) ] e dxr, - r'lml « Px (A.32)
9x 9 X3
of , m
m = PX o r, 1 (-dX!"z) . (1- - Bx - 82) +

r,™ « Px + B, (A.33)
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Derivatives for LZTWM (x§ ):

af,

%3 0

af ,

§;§ ==-C, * € *0r *r,

of,

3%T T C1 T2 Ter (1. = Pg) « dxry +
Pf.3 * Cy* € *0Or s r, +

X3
ue c (1. = r;) - (z;?—:~;§72

af .,

_37(-2-=cl e Z eI, o-—((‘]. —Pf) odxr'a) .
sz|*+(1. —Pfa) .
sz.,'CI'E'@r’°r'2

of ¢

.-a—x—g—=cl o Z Or'zo -(1. —Pf) 'Xm";, oczfs-j-

(1. = Po3) = cfs = Ccy*=€ *» 0Or *r,

fa

8f5‘ 2(x5 -x1)2

= L] l . .
axg ( xg 3 ) r, PX) + [Ue (1
Xg — X, 2(xg - %)
X7 + ;?‘z) - (-———;;g*r‘-) .
2 m,

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

. = ry) e

(A.39)
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(A.40)
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Derivatives for LZFPM (x2):

of ,

=0 (A.41)

=C;* € *0Or er,tz epr, -« (—dk) (A.42)

(¢, € »6r +2z o di ) P,y e r, (A.143)

f3

=(01'Z°r’2°((02°t’5° "'x—é')"'

di o d" . x$ r,
P (S ) rgp)

(caorg »ry = r, +1.) « ((c, » € «0r «r,) +

Z sr, o dk)) - (1. = Pgy) (A.4Y4)
-r,

= (01 * 7 o (1. - Pf‘S) . (( x‘?) + 02 . Ps °

r, dy e dy - x 2

-x—.o. - r“ . C% 3 r's) + (1. - Pf3) .

c,fs * (c, *€ *0r +2z o di)] er, (A.145)
= 0. (A.46)
= 0. (A.47)
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Derivatives for LZFSM (x2):

of ,
i 0. (A.148)
of , .
T3 = =C; * € *0r epr, +2 spr, o (-d%) (A. l49)
of 5
i (c, € «Or er, +2z o r, o da) . Pf, (A.50)
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m=(1‘-Pf3).rz.(cl.z.(c2'r'h.
rs -dp - db . x2
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UZK (du) :

-X,

X, (1. - B, - Bz)

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)

(A.60)
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).
LZPK (d2)’

53{ = 0. (A.62)
of ,
.a_a.'. = -xa sz er, (A.63)
af,
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Xh ez er, « (1. - Pfa) (A.65)
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of, X
3d' ((1 ¥ U)) « (1. - B, - B,) (A.68)



Derivatives for

of 5

3an

of ¢
agn
Bdl

of ,

165
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-Xg + X3 * 2z e r, « (1. - Pfg) e r,

w o
adz

(A.69)

(A.70)

(A.71)

(A.T2)

(A.73)

(A.TH)

(A.75)



Derivatives for

of .,
o€

of 5
o€

of ¢
o€

of ,
d€
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ZPERC (e) :

c,* ye sr, » (1. =P

e, ° ye er, o (1.

- P

3) * cf,

f!

)

+ C, fs

(A.76)

(A.TT)

(A.78)

(A.79)

(A.80)

(A.81)

(A.82)
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Derivatives for REXP (@) :

of , g
—_— A,
— = 0. (1.83)
of , 0

ae --c1 e g Yy . r'z ¢« dn y (A.Sll)
of 5 .
T (¢, €y ) = 8ny «r, Pfa (A.85)
of, 0

ae 01 e £ o y L] R‘ny . r‘z (]

(1. - Pf,) « c,f, (A.86)

of s 6

30 Cy, € °* Yy e 1ln Y ° I, (1- - Pfg) * 02f5 (A-87)
of ¢ 58
=5 = O (A.88)

of ,

= = 0. (A.89)

30
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Derivatives for PFREE (Pf) :

m
'01°Z°l"2‘(1."1"33)

m
C; * 2z *r, ¢« (1. =-1r, %) « c,f,

m
01'Z'Y‘z‘(1."1"33)'02f5

(A.90)

(A.91)

(A.92)

(A.93)

(A.94)

(A.95)

(A.96)



Derivatives for SIDE (yu) :
of ,
= 0'
ou
of ,
= 0.
ou
of 4
— = 0.
oy
of
= O.
ou
af s
— = 0.
ou
of ¢
= o.
ou
3f7 'C‘l
w0+ w7

169

‘(10"31'62)

(A.97)

(A.98)

(A.99)

(A.100)

(A.101)

(A.102)

(A.103)
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Derivatives for ADIMP (B,) :

ik (A.104)

— = 00

98,

o (A.105)

— = 0.

9B,

o (A.106)

T— = 0-

98,

o (A.107)
= 0.

98,

o (A.108)

— = Oo

98,

o (A.109)

—_—= Oo

98,

of, c, Xe = X1 2

I O SR LI

msp

(A.110)
r, 2 rlm‘ . Px
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Derivatives for PCTIM (B,) :

of ,

= 0. (A.111)

= 0. (A.112)

= 0. (A.113)

af

— = (A.114)
TR 0.

of s

= 0. (A.115)

of ¢

— = (A.116)
58, ~ °

3f7 Cl
9B, u

Px « 1" « p,M2 (A 117)



172

Derivatives for UZTWC (x,) :

of | :
X, - "M ocmry, - Pxo-u - (-;?) (A.118)
of , m
SRy = Mot omry Px « (1. = r, 2) (A.119)
of 5 1 X,
" Ye ( xf) . (xf+x§) (A.120)
of ,
T = 0, (A.121)
of s
T = 0. (A.122)
of ¢ Xe"X; 2 m,
TR = (1. - (~—;§—) ] emr, « (1. - r, « Px) +
Xs'Xl
m, m,
r c (1. = r;72) ¢« Px o (2. ¢ +—5cg) +
3 1 (Xg)Z)
ue~(1. -r;) Xe = X, ug ug
(xg + X?) + (x—g" + ley) * (X—‘;) = ;(‘f' (A.123)
af , Xe = X,
aXI—( xb.a)opx omr-l.sl—
n Xe = X,
r, o 2 ¢ (——pvz-) *» Px +
1 Bl (xg)z
Px emr, «r, 2 « (1 -8, -8,) +
Xg = X, m
(1. - ¢ = )2) «r,"2 e mp, . Px . B, +
3

(A.124)



Derivatives for
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UZFWC  (x,) :

of,
aXZ = ol
afz 01 e Z
= - 1, o - -
> r, mr, Px du X3
3f3 C, e Z
= 5 ¢ P_,
X , X3 f
af.. Cl . Z
axz = xg d (1. - Pfs) b CZfA.
ofg ¢, * z
axz = xg o (1. - Pfg) hd chs
afs XG - Xx m
—— = - 2 . 1 . - .
5%, (1. (-——:Eg——) ) o r, (-mr,) « Px
of , o
™, dy (1. = By = B,) +Px e ry ' +mr,

(1. - B, - Bp) + (1. '(“T) ) .

m
mr, *r, ! « Px * B,

(A.125)

(A.126)

(A.127)

(A.128)

(A.129)

(A.130)

(A.131)
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Derivatives for LZTWC (x,) :

of,
= " 0. (A.132)
of 6-1 -1
L - O Tt E” B oy o (x93 + x% +x2)  (A.133)
of
TP -C;, * 2 *r, ¢ (1~ Pf) e mr, +
6= 0 0 THL

Pes +(-cy e e+ 0y e r,) o (x§ + xJ + x¢

ug e (1.-ry) s (xD e x9)"] (A.134)
of,
o (¢, 2 er, « (1. - Pf) e mr, - (1. - Pfg) .

(01 s £ o B - ye_1 . r'z) *

(x2 + x2 + x071) -+ c,f. (A.135)
of s 0-1
3X3=(cl .Z.(1.—Pf) omr‘a—cl oe.Qoy .

. (1. - Pfg)) e (r, » c,fs) (A.136)

5

M (A.137)
X 4
of

- (A.138)

9X 4
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Derivatives for LZFPC (x,)

of ,
T 0. (A.139)
of 61 -1

=¢C, *P, € * 8 Yy o (x93 + x9 +x32) (A.140)
9X,
of 5 o-1
ax“.-_-—cloeony or‘zo

(x$ + x0 +x0)7 . Pos (A.141)
of, -1
ax“ = —di + [01 *« Z (CZ . Ps - 10) d Xs -

Gafu v oy e s 0 oyt (k8 x2exDT)

r, » (1. - Pfs) (A.1142)
3f s -
T (¢, *2 « (1. =~c, *rg) « xi -

6, ce 0y xgexg D

C,fg o1y (1. - Pfa) (A.143)
.
'3—)?: = 0. (A.144)
5t iy
T = di o (1. + p) e (1. = B, - B,) (A.145)
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Derivatives for LZFSC (x4) :

of |

93X ¢

)

x5

af“

9Xs

9Xs

af ¢

9X s

ot

9Xs

=

0. (A.146)

ey cry re s 0 oy o (x2 e x2 4 xD7TT (A14T)
-cl.e.e.ye-1.p2.

(x3 + x2 + xg)_1 . Pf, (A.148)
(er =z + (e = xI7 = ry) - cuof, -

ey re 0oy’ o xgexs e xTT)

r, « (1. - Pfa) (A.149)
-d" + (¢, * 2z + (-c,) - ng *ry -

C, * €+ 0 » ye“1 o (x93 + x) + xg)_1 .

C,fs *r, « (1. - Pfa) (A.150)
0. (A.151)
am e (1.« W (1. - B, - 8y) (A.152)



Derivatives for

of ,

3%

of ,

X ¢

of 5

X

of ,

X ¢

of 5

X ¢

9 &

9X ¢

af,

9% ¢

ADIMC

(XG) :

177

(A.153)

(A.154)

(A.155)

(A.156)

(A.157)

(A.158)

(A.159)
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Derivatives for Px:

of ,

A r,M (A.160)
of m m
px - e mre®) (A.161)
af,
3% - O (A.162)
af .,
3Px% - 0. (A.163)
af 5
3% - 0 (A.164)
of ¢ Xe = X; 2 Xg = X1 2
- e ¢ Sd—— L] m - -

3Px = (1- ( xg ) r, 1) (1. ( Xg ) ) ¢

r,nz . p,M (A.165)
of, Xe = X3 2 m
i s S L L

r‘lml . r'zmz ° (1 - Bl - BZ) +

Xe = Xy 2
(1o - =5z ) - ra™ e 0™ -y (A.166)
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