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Abstract: The feasibility of linear and noniinear geostatistical estimation techniques for optimal merging of
rainfall data from raingage and radar observations is investigated in this study by use of controlled numeri-
cal experiments. Synthetic radar and raingage data are generated with their hypothetical error structures
that explicitly account for sampling characteristics of the two sensors. Numericaily simuiated rainfall fields
considered to be ground-truth fields on 4x4 km grids are used in the generation of radar and raingage obser-

of generated rainfall fields with various climatic characteristics
e covaniance function of rainfall events in extratropical cycionic storms. Optimal
stimates are obtained based on the minimum variance. unbiased property of krig-
e second order homogeneity assumption of rainfall fields. The evaiuation of
estimated rainfall fields is done based on the refinement of spatial predictability over what would be pro-
vided from each sensor individuaily. Attention is mainly given to removal of measurement error and bias

that are syntheticaily introduced to radar measurements. The influence of raingage network density on
estimated rainfail fields is also examined.
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1 Introduction

For real time operational forecasting of river flows, accurate estimation of the spatial dis-
tribution of precipitation rate over river basins is of paramount importance. High spatial
variability of precipitation at the river basin scale and sparse raingage network densities
are known to be major causes of uncertainty in forecasting streamflows. It is generally
recognized that proper prediction of river basin response to rainfall is highly dependent
on the accuracy of determining storm system locations within watershed boundaries.
Thus, the ability for obtaining higher resolution estimates of spatial variability in the
rainfall fields becomes important in the case of identification of locally intense storms
which could lead to floods and especially to flash floods.

The accurate estimatior: of the spatial distribution of rainfail from only raingage data
for operational purposes requices a very dcnse network of automated instruments, which
entails large installation and operational costs. In recent years, ground-based radar sys-
tems have been implemented to provide continuous estimates of rainfall amounts in
space and time over river basins. Since weather-radar can detect precipitation patterns
over a large area at short time periods, it could help to fill the space and time gaps which
is not in raingage data. Various studies discuss the hydrologic application of weather
radar (Byers 1948; Hiatt 1956; Kessler and Wilk 1968; Greene and Flanders 1976;
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Crawford 1979). The radar measurements of rainfall are obtained by scanning the precip-
itation producing clouds via electron radar beam and measuring the backscattered energy-
of hydrometeors which are then accumulated in time and converted to rainfall rate with
appropriate Z-R relationships, the relationship between reflectivity from hydrometeors
and the rainfall rate (Battan 1973).. However, the process of precipitation reflectivity
measurement and the transformation to rainfall rate is associated with very high measure-
ment errors, the sources of which are well documented in the literature. For exampie,
Zawadzki (1984) discussed various sources of random and systematic errors that corrupt
radar-rainfall data. These errors create large discrepancies between radar measurements
of rainfall rate and the true rainfall rate at the ground surface. which could be as high as
200% (Wilson 1970). Therefore. it is believed that due to high accuracy of point raingage
data, the combination of observations from both sensors couid improve the areal esti-
mates of rainfall.

Earlier attempts to merge raingage and radar-rainfall measurements included deter-
ministic and statistical techniques. The deterministic approach makes use of raingage
measurements for calibration of radar-rainfall data, and was applied by Wilson (1970)
and Brandes (1975). Statistical methods include those by Crawford (1979), Eddy (1979),
Krajewski and Hudlow (1983), and Ahnert et al. (1986). The works by Krajewski (1987)
and Cruetin et al. (1988) used ordinary co-kriging for merging radar-rainfall and raingage

data. The latest work by Seo et. al (19894, and b) evaluated the multisensor rainfall esti-

mation problem by utilizing a comprehensive numerical experiment using ordinary,
universal and disjunctive co-kriging techniques.

As an extension of previous work, this paper examines the muitisensor precipitation
interpolation problem in both linear and nonlinear estimation frameworks. The formula-
tion of the disjunctive co-kriging estimator for spatial rainfall estimation is introduced in
more detail and the resuits are evaluated with the main focus on the advantages and
disadvantages of linear versus nonlinear estimators for spatial rainfall estimation. An
important consideration in this research is the selection of a suitable estimation technique
that produces sufficiently accurate mean areal precipitation estimates for input to hydro-

logic models, and which may thus improve operational forecasting of river flows and

flash floods. The evaluation of estimation techniques is done by generating synthetic
radar-rainfall and raingage measurements with known measurement error parameters
from hypothesized known ground-truth rainfall fields and merging the two sampled rain-
fall fields via linear and non-linear co-kriging techniques. Since. in our experiments, the
true rainfall field is known, errors in the estimation procedures can be assessed and the
adequacy of these techniques for areal rainfall estimation evaiuated. In Section 2. the pro-
posed methodologies of linear and non-linear co-kriging techniques for spatial rainfall
estimation are described and compared. Section 3 presents the design and implementa-
tion of the numerical experiments, generation of ground-truth rainfail fields using a
space-time rainfall model, and generation of radar-rainfall and rain gage observations. In
Section 4, the results of numerical experiments are analysed and interpreted. and in the
last section, the conclusions of the study are presented.

2 Methodology

The rainfall estimation methodology presented in this section makes use of synthetically
generated, spatiaily Lontinucus. radar-rainfall data and syntheticaily generated point, rela-
tively accurate, measurements provided from rain gages. Our objective was to merge
these two measurements in an optimal way to take advantage of the different sampling
characteristics each sensor provides to improve areal rainfall estimates. A controlled
numerical experiment was designed and carried out to evaluate the relative performance
of the proposed estimation procedures under various combinations of sensor measure-
ment error parameters. In this study we resorted to controiled numerical experiments
since, due to lack of large enough raingage and radar-rainfall data sets. meaningful
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evaluation is impossible. Also, by implementation of such a numerical experiment the
evaluation of co-kriging techniques could be performed for various rainfall measurement
fields with different error statistics.

" Under realistic operational applications point raingage measurements are accurate but
sparse and are corrupted by about 10% measurement error (Larson and Peck. 1979) due
to causes such as turbulant wind flow about the gage. Radar measurements are spatially
continuous but are affected by various random and systematic errors that are created
through the physics of the measurement process and by space-time variations in the pro-
perties of precipitation-producing mechanisms. The main sources of errors are variations
in the Z-R relationship, nonuniform beam filling, anomalous propagation of radar beam,

changes in the rainfall rate at the sub-cloud kevel detected by radar and the rainfail rate at .
the ground surface due to causes such as coale

! scence and evaporation of precipitation
particles, and miscalibration of the radar electronics. For a detailed discussion of these

error sources see Doviak and Zmic (1984) and Zawadzki (1984). Synthetic radar and
raingage generators implemented in this study attempt to simuiate rain gage and radar-

infall measurements so that their inherent sampling and measurement error characteris-
tics are preserved. Thus, after merging the two data sets using the proposed estimation
methodologies, comparisons with ground-truth rainfall fields can be used in order to
evaluate and compare each estimation technique.

2.1 Estimation procedures ) T

We begin the problem of estimating the spatial distribution of rainfall by assuming that

the rainfall field Z(u) constitutes a second order homogeneous and isotropic random pro-
cess in 2-D space and that rainfall observations inciude: (1) point raingage measurements
of rainfall uniformly scattered over a 200x200 km area, and (2) radar measurements of
rainfall which consist of areally averaged observations on 4x4 km regular grids over the
same area. Figure | is a schematic diagram of the problem domain showing sub-cloud
precipitation echoes detected by a weather-radar electron beam and a network of sparse
raingages scattered under the radar umbrella. Both measurements are accumulated over
time intervals AT which could range from hourly to daily periods. Our goal is to further
improve the areal estimates of rainfall, which are traditionally provided from raingage
data aione, by including radar-rainfall measurements in the estimation, with the goal of
providing more accurate areal rainfall estimates. Consequently, the problem is formu-
lated as finding a function, F(Gw.R(v))), i=l,...n5; j=1,...,n,, which is an unbiased
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Figure 1. Schematic diagram of the problem domain consisting of precipitation echoes from radar returned
signal and the sparse network of raingages
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minimum variance estimator of Z(ug), where G and R are used to identify gages and
radar measured fields respectively, and n, and n, are the number of observations used in
the estimation. Z(ug) is theoretically obtained from averaging the rainfall rate Z(u) over
the area A (i denotes the areal support over which the spatially averaged rainfall esti-
mates are obtained) as follows:

Zug=pfzwan W
A

Here A is the area (4x4 km) where both rainfall estimates or radar-rainfall observations
of rainfall are obtained. The best approximation of Z(uy) by the measurable function

f(Gw)R(v))) is the conditional expectation of Z*(uo) (Matheron 1976) given the
raingage and radar-rainfall observations.

2" (up)=f (G RON=EIZu)|Gu) ROEP, i=ings j=1,...m,. Q) -

Computation of the above conditional expectation requires knowledge of the jomt proba-
bility density function of (n +n,+1) variables Z(ug), G(u;), and R(v ), which is difficult
_to obtain under operational condmons This is due to the lack of sufﬁcxent rainfall field
realizations needed to construct the joint distribution of the rainfall observations and the
high computational costs of obtaining such an estimate. However, if the assumption
could be made that the rainfall process is multivariate Gaussian, which is seldom a good
assumption, then the above conditional expectation would become a linear operator.
which requires nothing more than knowledge of the covariance function which could be
estimated from observations. It is only in this case that the assumption of second order
homogeneity of the rainfall process leads to the full definition of the muitivariate density
tunction. Therefore, to avoid this unrealistic assumption of normality in the framework of
rainfall estimation from raingage and radar-rainfall observations. the disjunctive
co-kriging (DCK) estimator is proposed. which requires no prior assumptioris about the
distribution of rainfall fields or knowledge of the covariance function. However, for the
DCK estimator. the assumption is made that the rainfall process can be obtained as a
transformation of a second order homogeneous field which has a bivariate standard Gaus-
sian distribution.

In the ordinary co- kngmg of raingage and radar-rainfall data, proposed by Krajewski
(1987), the estimator z (ug) was obtained as a linear combination of G (i;)’s and R(u )'s

given by the ordinary co-kriging (OCK) estimator

* 7 .
ZOCK(“0)=ZNG(“I')+ZYjR(Vj) (3)
i=l j=1
in which the coefficients A;’s and v;’s are obtained as Lagrange muitipliers for a con-
strained optimization problem. The unbiasedness condition for the above estimator
ensures that £ [Z(;CK(uO)]=E [Z(ug)] and results in the following conditions on the weight-
ing coefficients for the raingage and the radar-rainfall measurements

n, sy P

i=i j=1 ' :

The DCK estimator is obtained by forming the estimator (Yates 1986)

ZDCK(“O)‘Zf ilg(u; H“'Z" ilr(vpl 5)

i=1
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where f;'s and & jv‘s are a sequence of nonlinear functions. which makes DCK a nonlinear

estimator and is more general than the OCK estimator. As explained above the DCK
method makes use of the transformed variables which are assumed to be bivariate nor-
mally distributed. These transformations are defined as

KK
Gu)=,[g(upl=3 C H, g (u;)] (6)
k=0

K,
RO)=®,[r(v)I= X D Hlr (v)) (N
k=0

where H, is a Hermite polynomial of order . and ¢(u;) and r(v;) are the standard normal
random variables which are obtained from the transforms

8= (G (uy)]

®) -
= R(v))]. ©)
A Hermite polynomial of order & may be evaluated by the recursive relationship -
Hy i O)=vH ()—kH )y (y) (10

B4

where Hy=1 and H,=y. Making use of the orthogonality of Hermite polynomials with
Gaussian density the coefficients C, can be determined by ' k

Ce=k)™ 22 [ @(y)H, (y)e 2 dy, (11

The coefficients C;. can be obtained in different ways. The most widely used method in

geostatistics is by numerical integration by the Gauss-Hermite quadrature { Abramowitz
and Stegum 1970) ~

Ammin Y
Gk 2m 2 T O W H (Y e | (12)

j=

where J is the total number of terms used for abscissas ¥ ; and weight factors W;. The
above numerical integration is employed if ®, and ®, in Egs. (6) and (7) are nonlinearly

approximated. However. for piecewise linear interpolation. an anatytical solution for
Hermite integration is possible as shown by Puente and Bras (1982) and Krajewski and

Azimi-Zonooz (1987). For piecewise linear interpolation. the following approximation of
the anamorphosis function was proposed

2y Yy
Qy)=iay+b,  ySy<ven k=l..n-1 (13)
Zn Y2y,

where z,,25,....2,, are ordered data observations and Y1:Y25---»¥, are corresponding values of
standard Gaussian distribution function. From Eq. (13) it follows that,
Zp =2 ‘
ap=—2 k. , . (14)
Yieer ™Yk



2V ket~ Zk+1Y
bk'—' kY k+17“k+17k (15)
V1™ Yk .

Incorporating Egs. (13), (14), and (15) into Eq. (11) and integrating resuits in an analytic
solution. The final expressions are

n-1 y ,
ConiGn)+ T BGOS -8 )15 2, (1-G (v,)] (16)
i=1
Cx—-zxg(yl)*‘Z {~big 3" ~a; GOy O]y, oI+, [g )] (17
i=1
and for k22
Ci=l=21H, 18O +2 Hi 1 0)8 O)
n—1i »
+ ¥ {8OH 4 0)b; 13 +a; Vg OH 1 () 0DH () 1k ™ (18)
i=1
where g(y) is standard normal-density ;
g0)=(2m) 21 | (19)
. and
G=m™? [ g)ay. | 20)
Expanding the DCK estimator. Eq. (5). in a series of Hermite polynomials gives
K, n,
ZDcx(uo)—Z foka[g(“ I3 T hpHr(vy)] 2D
k=0i=1 k=0j=1 ‘

where £ and A are coefficients of Hermite expansion. The problem is to determine the
weights f;;, and A such that the following holds:

(1) The estimator Z ( lg) is a minimum variance estimator. i.e. ‘

Var(Z" (ug)-Z(ug)=EW(Z" (uo)-Z (up)}*]—»min (22)
(2) The estimator Z ¥ (up) is an unbiased estimator of Z(uy), i.e.

EZ" (ug)~Z (up)}=0 : ; (23)

The uniqueness of above unbiasedness condition is that the summation of f;;"s for k=0 in

Eg. (21) preserves the mean of the raingage observanons given by C, in Eq. (6) through-

the following equation:
Zf «=Co. - 24)
k=0

Following the approaches given by Joumnel and Huijbregts (1978) and Yates (1986) we
obtain the following system of equations

E[®@,[gup)]lg(ux)l= ZE Uilg )]lg(ua)]+ZE[h i[r(vllg (ug)] (25)

i=1 /-

E[®,[gup)ir(vl=3EL
i=l

where o=1, - - - ,n, and B=
in terms of Hermite polyn:

Fly)=k)™ T (py) Hyl
’ k=0
Then the conditional expe
E[®@X)IY 1= (py ) CiH
k=0

Incorporating Egs. (28), (.
* K *
Zpcklug)=Y, CiH [g(up)]
k=0

H, ,: [g(up)l is given by

* ’l' «
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i=1
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E[«bgtg(uo)]lr(va>1=%Evim(ui)1lr(va>1+}"le[hj[r(v,->1lr(vgn | 26)
where o=1, - - - ,n, ar:d B=1, - n,. Expax:iing the bivariate standard Gaussian densities
in terms of Hermite polynomials gives (Matheron 1976)
Foep)=tk)! k% P HLOH )2 (02 ). )
Then the conditional expectation of function ®(x) in Eqs. (25) and (26) can be written as
E[®<X>IY1=§0 (Poy*CeH(Y). | (28)
Incorporating Eqs. (28), (25) and (26) into Eq. (21) leads to the DCK estimate
Zscx(uo>=:)::;ckHZ O ' (29)
Hi[g(up)] is given by
'Hl'ig<uoii=fs§;aikﬂk[§<éf51+§bikﬂk[r(i,Si - 60
i =

where £, and hy in Eq. (21) are written as Cya; and Cyb;. The ay,s and by’ are deter-
mined from

Il! . n, . .

ZaikPng‘* bjkpgkruj=p§aa 05 0=l ‘ 3D
i=l J=1 .

I k _k

TbuPropit X ayPra=Plop  Ji» B=l....n, (32)
i=1 j=t

where Pera; and p,.q; are cross correlation functions between radar-rainfall and gage
fields, Pgoq is the correlation function of point to be estimated and the gage field. and

Prgop is the cross correlation function between point to be estimated on the gage field and
the radar-rainfall field.

2.2 Approximation of the anamorphosis function

The computations for obtaining a disjunctive co-kriging estimate begin by obtaining the
cumulative distribution of each data point in the radar-rainfall and raingage observations.
The estimates of cumuiative probability levels are then used to obtain the corresponding
standard Gaussian random variable. The next step is to approximate the function given by
Eqs. (6) and (7) by an expansion of Hermite polynomials referred to as the anamorphosis
function approximation in this study. A fully controiled numerical experiment was
designed and carried out to compare the two approaches for approximation of the
anamorphosis function. The approaches are the numerical solution for computation of
Hermite coefficients, given by Eq. (12), and the anaiytic solution given by Egs. (16),
(17), and (18). To test and compare these two approaches, samples of various sizes (50,
100, 200, 400, 800) were drawn from two-dimensional random, homogeneous, and iso-
tropic fields with exponential covariance function. The correlation length of the fields -
varied from 5 to 40 units and the sampling domain was 100 by 100 units. The data were
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point observations at randomly generated locations. The locations were kept constant for
all realizations of the generated fields. The smaller sampies were always included in the
larger samples, so that we could simuiate the expansion of our observational network.

The fields were generated using the Tuming Band Method (TBM), described by Man- -

toglou and Wilson (1982). Ten realizations of the fields were used for each set of param-
eters. All the fields were N(0,1) (normaily distributed with zero mean and unit variance).
The observations were generated for various levels of measurement error: 0, 10, and 50
percent. The measurement error is expressed as having a standard deviation equal to the
specified percentage of the field value at 4 given point. In this way the higher the abso-
lute field values. the higher are the observational errors. However. since the mean of the
error term is always zero. the generated noise does not introduce a bias into the samples.

Normally distributed samples were generated -and transformed to obtain lognormally

distributed data and the performance of the two approaches was compared. Results show
that for large samples the fit of the Hermite approximation is poor in the upper tail of the
distribution for the numerical solution method (see Fig. 2a. for example). This behavior
of the numerical solution approach is attributed to the initial step in the algorithm, where
fitting a polynomial regression to the sample to obtain points necessary for the numericat
integration scheme is made. The fit is dominated by a large number of points in the mid-
dle region of the distribution. The problem could be alleviated by careful selection of the
polynomial degree or a weighted least squares fit. Such a procedure. however. would
increase computational costs, and make the algorithm even more complicated. Another
problem. common to both algorithms is that under certain sampling conditions. there is
no unique solution to inverse problems. Egs. (8) or (9). An example of such a situation is
shown in Fig. 2b. The approach taken was to search for the roots of Egs. (8) or (9) in the
interval

¥i—~2uSy;Sy;+2u ' ' (33)
where ¥, corresponds to I; for which the solution is needed and u« is the
max{y,~v,_; i=l...n1}. If two or more solutions were present in the specified range then

the minimum solution was selected in the upper tail and maximum in the lower tail. The
investigated sampling conditions. such as correlation distance and measurement error.
did not appear to affect the relative performance of the two algorithms. The overail
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Flgure 2. Examples of anamorphosis function approximation (R is measurement error, 8 is correlation
length of simulated random field. and N is the sampie density)
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periment for transformation of non-Gaussian data. to soive the problem

resuits of the ex

y=07!(z), in general showed a very similar performance for the two investigated pro-
cedures. However. since the fit of the piecewise linear approximation is much better in
the upper tail of the distribution for large samples. this procedure was adopted in the
solution of disjunctive co-kriging equations. This feature of piecewise linear approxima-

tion is mainly attributed to the first step in the algorithm that effectively forces the fit to
the data to more or less pass through all observed points.

3 Experimental design

The evaluation of ordinary and disjunctive co-kriging algorithms is performed ina
framework similar to that used in the numerical experiments by Krajewski (1987) and
Seo et al. (1989a. and b). The following describes the steps involved in the generation of
synthetic ground-truth rainfall fields, and radar-rainfall and raingage observation fields.

3.1 Multidimensional model of ground-truth rainfall field

For generation of ground-truth rainfall fields. the space-time rainfall model of Waymire
et al. (1984) was utilized in this study to obtain simulated rainfall fields with various
climatic characteristics. The model generates rainfall fields using a spatial stochastic pro-
cess which has qualitative features similar to rainfall events produced by extratropical
cyclonic storms. To simulate the rainfall patterns observed in this storm type, the rainfall
fields are assumed to consist of a system of cellular patterns contained within regions of
cluster potential centers which themselves are located within larger scale rainbands
(Waymire et al. 1984). The rainfall process is generated from a fixed time and space ori-
gin with prespecified input parameters. The cluster potential regions are first generated as
a spatial Poisson process. and the expected number of rain cells with a Poisson distribu-
potential region. The formation and dissipation of rain-
cording to the space-time mathematical structure of the

fall events are then simuiated ac
model. The rain cells within a rainband are generated according to their underlying

space-time probability density function given by (Waymire et al. 1984)

Cfix(ny)=0  t<s-T , (34)

Fox @O VOf P y~(X4Up(t=s))  to5-T - 35)

where )

Fy=pe BT o T - 36

FAX)= 1 expy x‘-, xf,}, X=(x,.x,)e R? (37
=16 6> o7 205

In Egs. (36) and (37), f!"(t) and FAX) are the corresponding density functions
(assumed to be independent of each other), for the occurrence of cell centers in time and

space due to a cluster potential at support X . s is the time of arrival of the rainbands. T is
the mean cell duration. Uy, is the rainband velocity relative to a fixed coordinate system

on the ground. B is the ceijular birth rate, and o, and I, are the standard deviations

describing the degree of dispersion in occurrence of rain cells in space on support X. The

spatial and temporal dissipation of cellular rainfall intensity are assumed to be given by
the following geometrical forms

glar)=iog (a)gy(ry , (38)
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where

g(a)=e ™ a20 ]

g,(a)=0 a<0 (39-40)
r? '

gz(r)=exp{—?-D? } r20 ‘ 4n

and i, is the rainfall intensity at the cell center at 1=0, a is the mean cell age, r is the

radius from the cell center. and D and o are the parameters that determine the spatial and
temporal extent of the cell geometry respectively. The mathematical model of space-time
rainfall introduced by Waymire et al. (1984) was used to generate ground-truth rainfall
fields with hourly integration times over a 200200 km area with raingages located in
4x4 km bins. Rainfall fields were generated using a two dimensional stochastic point
process at gage locations. A sampling time interval of 0.1 hour was used over the hourly
simulation periods. Closed form expressions for the covariance function of the space-
time rainfall model are presented by Waymire et al. (1984). The theoretical derivations of
covariance function conform with the empirical descriptions of extratropical cyclonic
storms by Zawadzki (1973).

The three simulated climates (examples of which are shown in Fig. 3) range from fre-
quent storms, with high intensities and large number of cells (climate 1) to climates with
less frequent storms and lower intensities (climate 2). Details of the characteristics of
each climate are given by Valdes et al. (1985). ~

3.2 Radar-rainfall field generator

The statistical error structure of radar-rainfall data is not fully understood. therefore a
conceptual statistical method of Corrupting the ground-truth rainfall field was used. The
radar-rainfall field generation model of Krajewski and Georgakakos (1985) was utilized

" to superimpose measurement noise with known second order statistics at each point of
the hypothetical ground-truth rainfall field. The proposed methodology derives the sta-
tistical parameters of the noise field given some prespecified conditions. First of all. it is
assumed that the error field e(u) can be expressed as the logarithmic ratio of radar-
rainfall field to the ground-truth rainfall field (Hudlow et al. 1979)

e(u)=lo [ ] : 42
where u is the vector of coordinates in 2-D space. R(u) is the generated radar data. and
O(u) is the ground-truth rainfall data from the muitidimensional rainfall model’s hourly
simulations. The error field e(u) is assumed to be the product of a random component
and a deterministic component given by

e(u)=e(u)S (u) (43)

where €(u) is a homogeneous Gaussian random field and S(u) is the deterministic com-
ponent which is a function of the local ground-truth rainfall field magmtude and gradient
(Greene et al. 1980)

VG >0 p (0 ()< IVO ()l 0> : -

Sw= 2<IVO W)l >0, (W) , e

where <IVO(u)i> is the average absolute value of ground-truth rainfail field gradient in

four directions around point u, <IVO(u)ly,,> is the maximum absolute gradient. and

O max(W) is the maximum value in the ground-truth rainfall field. The deterministic com-
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ponent S(u) influences the generated radar field such that the errors are higher where
‘magnitude and gradient of the original field are higher. Note that the radar generator
attempts to simulate the random and systematic errors that occur in the radar-reflectivity
rainfall rate conversion process as described by Zawadzki (1984). Incorporation of Eq.

(42) in Eq. ;(43) leads to radar field magnitude as a function of ground-truth rainfall field
expressed as ‘

R(u)=0(u)108@S® , (45)
The next step in the radar-rainfall field generation is to specify the first and second order
moments of the noise component €(u) and generate it as a Gaussian random field using
the turning bands method (TBM) (Mantoglou and Wilson 1982). The parameters for gen-
eration of the radar-rainfail field are derived by specifying (1) the bias of radar field in
the mean expressed as E(RYE(0), allowing reproduction of the mean of €(u), (2) the
variance of logarithmic ratio (R/0) given by Eq. (42), from which the variance of ran-
dom component £(u) is derived, and (3) the correlation function of €(u), assumed to be

isotropic and exponential,

3.3 Point rainfall data generator

Raingage measurements are generated by first selecting the locations of the point
raingage data using random sampling from a uniform distribution over a 200x200 km '
area. Then the hypothetical point values of rainfail are assigned to those locations. The
raingage values are generated from the ground-truth rainfall field so that the sampling
and measurement error characteristics of the point measurements are preserved. Point
precipitation sampling errors are assumed to be lognormally distributed variables with
the mean equal to the value of ground-truth field at the grid containing the gage location,
and the standard deviation proportional to the mean (Krajewski 1987)

2 Ui)e<LN (2, (u;) O }+LN {0,0%2 X (u;)} : (46)

where LN{-} denotes lognormal distribution with mean z,(4;) and variance cpz. The
mean, z,(y;) is assumed to be the ground-truth rainfail value at grid point u;, and a is the
measurement error expressed as a percentage of the mean.

3.4 Numerical experiments

A controiled numerical experiment was carried out to analyce tne accuracy of ordinary
block kriging, ordinary co-kriging, and disjunctive co-kriging for rainfall estimation.
Rainfail fields having three different climatic characteristics were generated as simulated
original fields by using the space-time rainfall model developed by Waymire et al.
(1984). The experiment was carried out by repeating the analysis for 10 realizations from
each climate type, while keeping the noise parameters and raingage configuration
unchanged. The resuits were then averaged across the ensemble of realizations for exa-
mining the effects of noise parameters on the estimated fields. The radar-rainfall and
raingage generators developed and described by Krajewski (1987) were used to simulate
radar-rainfall and raingage fields with their prespecified sampling characteristics. The
radar-rainfall noise parameters chosen were bias, (E[R/E[O])=1 and 2, noise variance,
var{logo(R/0)}=.005 and .02, and the noise (parameter € in Eq. (45)) correlation
distance=8.0 and 16.0 km. Raingage densities were set to 32, 160, and 286 gages over the
200x200 km area. The first gage density represents approximately the raingage density
over the continental USA (one gage/1000_2000 km?, Wilson and Brandes, '1979). The
networks of 160 and 286 gages were also selected in order to examine the effect of higher
raingage densities on spatial estimates of rainfall. Climate 1, with the highest number of
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Figure 3. Simuiated hourly rainfall fields for various climates

cluster potential centers and the highest cell intensity (Fig. 3a) provides.a very rigorous
evaluation of estimation techniques for assessing the noise parameters which have the
highest influence on the outcome of the estimated rainfall fields.

4 Results of numerical experiments

Comparison among various estimators were made in terms of their effectiveness to ﬁlter
out measurement noise and bias from the radar-raintall field. and their ability to estimate
spatial variability in the ground-truth rainfall fields for various climates. Since we had
known true rainfall fields and sampled raingage and radar-rainfall fields with known
measurement error parameters, measures such as how well the merged field describes the
spatial variability in the true rainfall field after removing noise and bias introduced by
measurement error where obtainable.

The first check on the performance of the estimators was made to verify whether or not
the methods effectively remove bias from the radar.field. Figs. 4 and 5 show the average
power spectrum for residual ot estimated rainfall fields across all realizations for bias (E
{R]/E [ O ])=1, and bias=2 cases for Climate |. Residuals of the estimated rainfall fields
are obtained by subtracting the estimated rainfall fields from the ground-truth rainfall
field at each 4x4 km grid. The estimation approach referred to as Co-kriging I was per-
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Figure 4. Comparison of Co-kriging techniques - Average spectrai density of residuai fields for
semivariograms estimated from sampled gage field with (a) bias=1 and (b) hias=2
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Figure 5. Comparison of Co-kriging techniques - Average spectral density of residual fields for
semivariograms estimated from ground-truth rainfall field with (a) bias=1 and (b) bias=2

formed using variograms estimated from sampled gage fields and compared with estima-
tions performed with full knowledge of second order statistics (variograms estimated
from the ground-truth rainfall field), referred to as Co-kriging II. In the framework of
static estimation, Co-kriging I provides an upper limit on how well the linear and non-
linear Co-kriging techniques could estimate the spatial variability in the ground-truth
rainfall field. As is evident from the resuits in Figs. 4a and 4b, low and high frequency
components of the radar-rainfail-residual field are effectively attenuated by Co-kriging
techniques. In Fig. 4b for the bias=2 case, Disjunctive Co-kriging I provides the best per-
formance for filtering out the superimposed bias, where the residual spectrum 1is very
close to an uncorrelated random process over low and high frequency intervals.

Spatial rainfall estimates from raingages only using Ordinary Block-kriging and Ordi-
nary Co-kriging I (linear Co-kriging of radar-rainfall and raingage data) provide almost
the same- performance for estimating spatial variability in the ground-truth rainfall field.
This demonstrates that the inclusion of radar-rainfall data in the Ordinary Co-kriging [
case does not lead to significant improvements over estimation from raingage observa-
tions ‘alone using ordinary block kriging. The deterministic correction of radar-rainfall
data using raingages (Brandes, 1975) for the bias=1 increases the noise correlation
distance in the residual of estimated rainfall field, and shows the highest residual power
in low frequency range for bias=2 case. This feature of deterministic correction is attri-
buted to the fact that sampling characteristics of rainfall measurements do not enter the °
estimation procedure. In contrast, since Co-kriging techniques are performed in the
framework of minimum variance unbiased estimation, they posses a better bias removal
capability for the radar-rainfall field. '

In Figs. 5a and 5b Disjunctive Co-kriging II shows the least amount of correlated noise
in the low and high frequency ranges, where the residual power spectrum is effectively
flat and is not significantly different from a white noise randoin process. These plots also
demonstrate that nonlinear Co-kriging of raingage and radar-rainfall data with
variograms estimated from sampled raingage data, using Disjunctive Co-kriging I, pro-
vides better bias removal over linear co-kriging with full knowiedge of second order
statistics (Ordinary Co-kriging II). '

The radar bias and noise removal capability of estimators are also examined in terms

of root mean square error (RMSE) between the estimated and ground-truth rainfall fields.
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These results are plotted and shown in Fig. 6 for Climates 1 and 3. Disjunctive co-kriging
[ again shows the lowest RMSE in the estimated rainfall fields and other estimators show
the same type of performance as observed before. Figure 7 displays the influence of two
levels of random noise components in the radar-rainfall field, var{iog,o(R/0)}=.005 and

.02, on the residual power of estimated fields. The radar-rainfall residual field for higher
noise level shows slightly higher power in the low frequency range. The estimated fields
obtained using co-kriging techniques are relatively insensitive to the variations of radar-
rainfall field random noise parameters in the investigated range.
Figure 8 summarizes the effect of raingage network density on the estimated rainfall
fields. Higher raingage network densities lead to improved areal rainfall estimates for
Climate 1. However. increasing the gage density for Climate 3 does not lead to noticeable
improvements in the spatial estimates of rainfall. Estimated rainfall fields for the two
noise correlation distances were similar.
Table 1 is a summary of ME (mean error) and RMSE statistics for various spatial rain-
fall estimators that were examined in this study. These results were obtained by averag-
ing each error statistic across entire estimated rainfall fields. As was evident from previ-
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Table 1. Comparison of ME and RMSE statistics for various climates and estimators-

Climate Error Radar Brandes Ord. Ord. Ord. Dis. Dis.
Type (mm/hr) Field Method Blk. Co-I Co-II Co-1 Co-I1

1 ME 19.58 3.75 1.86 1.91 1.60 0.91 0:33
RMSE 7991 37.36 26.74 2594 20.69 . 17.42 12.45

2 ME 422 1.91 1.76 1.56 0.97 0.83 0.54
RMSE 17.79 8.86 8.68 8.25 6.43 492 3.49

3 ME 8.36 2.68 0.79 1.13 0.34 1.33 0.00
RMSE 34.86 22.04 13.19 13.09 9.81 10.31 5.70

Ord. Blk.: Ordinary Block Kriging  Dis. Co-I: Disjunctive Co-kriging I
Ord. Co-I: Ordinary Co-kriging I Dis. Co-II: Disjunctive Co-kriging Il
Ord. Co-1I: Ordinary Co-kriging II -
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Figure 8. Effect of raingage network density on the RMSE of estimated rainfall ficlds

ous results. it appears that Ordinary Co-kriging I does not offer any significant improve-
ments over just block kriging the gage field. Disjunctive Co-kriging I gives a 33% reduc-
tion in RMSE over Ordinary Co-kriging I for Climate 1. approximately 40% reduction
for Climate 2, and a 21% reduction for Climate 3. Disjunctive Co-kriging II again shows
the best performance for spatial rainfail estimation.

5 Conclusions

The main purpose of the research reported in this paper was to compare the performance
of various (co)-kriging methods for spatial rainfall estimation under a radar umbreila.
The results of numerical experiments indicate that spatial rainfall estimation by merging
radar-rainfall and raingage data is more accurately performed using the Disjunctive
Co-kriging techique than by using alternative linear Co-kriging procedures, the Brandes
method or either raingage or radar-raifall data separately. One important conclusion that
can be drawn from this study is that rainfall fields are generally described by nonlinear
functions that cannot be adequately estimated using linear estimators. The theoretical
advantage of disjunctive co-kriging, as presented in this paper. is. based on the ability, to
estimate bivariate distributions of rainfall fields so that the conditional expectation of two
observations at a time can be computed, using these distributions. The disjunctive
co-kriging procedure specifically aims at deriving the probability distribution of rainfall
fields, which in tum, preserves the spatial properties of rainfall fields more accurately.
The main conclusions of the study are summarized as follows:
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1) The disjunctive co-kriging estimator gives more accurate mean areal precipitation esti-
mates over ordinary co-kriging, as is evident from root mean square error and mean error
statistics obtained by averaging over entire estimated rainfal fields for each climate tvpe.
Disjunctive and ordinary co-kriging estimators provide a substantial increase in accuracy
over the Brandes method. This supports the earlier findings of Austin (1987). ’

.2) The power spectra of the estimated rainfall field residuals for ail kriging estimators
indicates that the best performance for the most uncorreiated noise over the low and high
frequency intervais is provided by Disjunctive Co-kriging 11, followed by Disjuncti:'e
Co-kriging I. and Ordinary Co-kriging II. Ordinary Co-kriging I. and Ordinary Block
Kriging showed similar low~accuracy performance. The Brandes method was found to be
poor for removal of noise and bias from the radar-rainrall field data. '

3) Inclusion of radar-rainfall data in the rainfall field estimation by Disjunctive
Co-kriging provides improvemed accuracy over only Block-kriging. but does not lead to
significant improvements in the case of Ordinary Co-kriging.

4) Disjunctive go-kriging generally provides better estimates of spatial variability in the
ground-truth rainfall field since it effectively removes significant correlation over low
and high frequency intervals from the estimated rainfall fields.

5) The effect of correlation distance of the radar error field was not found to have a signi-
ficant effect on rainfall estimation. -

6) Evaluation of spatial rainfall estimation events under three different climatic condi-
tions indicated that the relative performance of spatial rainfall estimators also depend on
intensity levels and the spatial extent of precipitation clusters.

7) For approximation of the anamorphosis function. the zinal_vtical method is much more
efficient in terms of CPU time and avoids certain instabilities of the numerical integra-
tion approach. N
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Technical comments

Comment

F. Ashkar.'B. Bobée. D. Leroux and D. Morisette: The generalized method of moments

as applied to the generalized gamma distribution. Stochastic Hydrol. Hydraul. 2.(1988)
161-174

V. Klemes. National Hydrology Research Institute. Environment Canada. Saskatoon.
Saskatchewan. S7N 3HS5. Cunada

Ashkar et al. (1988) have brought to the attention of hydrologists and hydraulicists the
generalized gamma (GG) distribution and pointed out its practical advantages - flexibil-
ity of shape, a zero lower bound and no upper bound.

It may be of interest that the late Russian hydrologist Kalinin (1962) suggested theoret-
ical reasons for using this distribution for annual runoff totals. His rationale is based on a
simplified description of the mechanism of runoff formation. taking into account alterna-
tion of rainy and rainless periods on the one hand and. on the other. the empirically often
documented nonlinear relationship between annual precipitation and runoff volumes. [
have reproduced Kalinin's rationale in connection with the occasionally observed
phenomenon of a negative skew in historic samples of annual runoff (Klemes. 1970) and
pointed out that the GG distribution may be regarded as a first step to a physically based
model for the distribution of annual runoff (Klemes. 1978). More detailed studies .
involving transformation of stochastic inputs by nonlinear storage systems (Klemes,
1982) suggest that a theoretically accurate mathematical description of distributions of
hydrological phenomena may be very complex and may not even be obtainable in a
closed form ( e.g., see Moran. 1967): however. this is the very reason why a GG distribu-
tion or. more specifically. a power transformation of the simple 2-parameter gamma dis-
tribution may provide a good approximation to distributions of many hydrological vari-
ables. '

[ would also like to supplement and correct some historic information given by Ashkar
et al. (1988) since the authors’ sources were obviously incomplete. They correctly state
that the GG distribution is widely used in the Soviet Union: however, it has been used
there not only for flood frequencies but perhaps even more often for fitting distributions
of annual and monthly runoft totals (or mean flows). Actually. in the USSR and coun-
tries where the Russian hydrology school has become more familiar (e.g., China and
Eastern Europe), the power-transformed gamma distribution is known as the Kritskiy-
Menkel distribution although Kritskiy and Menkel themselves have consistently called it
“three parameter gamma" distribution. They originally proposed the use of this distribu-
tion in hydrology neither in 1969 as Ashkar et al. (1988) imply, nor in 1950 as I have
long believed (Klemes. 1970), but in 1946 (Kritskiy and Menkel. 1946) as Professor
Kritskiy wrote to me shortly before his recent death. Extensive analyses of sampie
parameter estimates by an approximate maximum likelihood method were done for this
distrihrtion by Blokhinov (1974) whose results. together with a wealth of other relevant
inforination te.g., ordinates of the normalized GG distribution function for various ratios
of its coefficients of variation and skew), are summarized in the last two books of the two

eminent late Russian hydrologists and water resource engineers. Professors S.N. Kritskiy
and M.F. Menkel (Kritskiy and Menkel, 1981, 1982).



