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Comparison of Newton-Type and Direct Search Algorithms
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An examination of the calibration aspect of conceptual rainfall-runoff models was undertaken using
the Sacramento soil moisture accounting model and a study comparing the performance of a Newton-
type optimization algorithm with that of a direct search algorithm. Results indicate that the direct search
algorithm is the more robust of the two because the Newton-type algorithm is more susceptible to poor
conditioning of the response surface. Graphical studies of the response surface of the model's parameter
space confirmed the presence of discontinuities and a rough-textured surface, particularly in the deriva-

tives.

INTRODUCTION

Mathematical models have become an important tool in the
study of hydrology. They are used for scientific study of water-
shed processes, engineering problem solving, and forecasting
and predicting hydrologic phenomena. Model development
typically occurs in several stages: problem definition, selection
of a suitable type or structure of model, model calibration,
and ideally, model verification. Successful completion of this
process requires, at a minimum, (1) selection of a model type
suitable to the problem at hand, (2) adequate calibration data,
and (3) estimation of unique model parameters.

There are two basic approaches to estimation of model pa-
rameters: manual and automatic. This paper deals with the
automatic approach, which has two major components: (1)
the estimation criterion and (2) the optimization algorithm.
The choice of estimation criterion has been discussed exten-
sively in recent years [e.g., Sorooshian and Dracup, 1980; Sor-
ooshian et al., 1981, 1983: James and Burges, 1982; Sefe and
Boughton, 1982; Lemmer and Rao, 1983; Ibbitt and Hutchin-
son, 1984; Sorooshian and Gupta, 1983]. Issues related to the
choice of optimization algorithm are the topic of this paper.
Discussion is restricted to the calibration of conceptual
rainfall-runoff (CRR) models such as the Stanford [Crawford
and Linsley, 1966], Sacramento soil moisture accounting
[Brazil and Hudlow, 1981], or Boughton [Boughton, 1965]
models. Much of the discussion, however, may be relevant to
other types of nonlinear models,

HisTtorICAL P ERSPECTIVE

One technique often employed during model calibration is
the use of an automated optimization algorithm which sys-
tematically searches the parameter space for the extremum of
an estimation criterion which in some fashion measures the
agreement between observed and simulated flows. Such an
approach is especially useful in the latter stage of model “fine
tuning” [Brazil and Hudlow, 1981]. Use of the automated ap-
proach implies a lessened reliance on the subjective judgement
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of the hydrologist performing the calibration, particularly an
advantage when experienced and skilled model calibrators are
in short supply. Automated optimization algorithms also
speed the calibration process significantly, although they often
require more computer time [James and Burges, 1982]. How-
ever, with recent advances in computer technology, compu-
tational restrictions are becoming less severe. While automa-
ted parameter estimates are in some sense more objective and
reproducible than manual estimates, automated techniques
suffer from a lack of mechanisms for maintaining conceptually
realistic parameter values. Nevertheless, a review of the litera-
ture reveals that the use of automated algorithms is wide-
spread [ Dawdy and O'Donnell, 1965; Nash and Sutcliffe, 1970;
Monro, 1971; Clarke, 1973: Sorooshian, 1983; Isabel and Vil-
leneuve, 1986; Wheater et al.,, 1986]. ‘

The calibration of a CRR model is often a nonlinear, un-
constrained optimization problem. A number of different algo-
rithms have been applied to such problems. Systematic algo-
rithms may be divided into three major classes: direct search,
gradient, and second derivative. Random methods [Karnopp,
1963; Bekey and Masri, 1983: Pronzato et al., 1984] search the
parameter space in a random fashion. Research in progress by
the third author is exploring the use of these algorithms. Pre-
liminary results seem to indicate that they are best suited for
the early stages of estimation. (Terminology in the following
paragraphs is largely taken from Bard [1974])

Direct search methods sample the value of the estimation
criterion in a systematic manner, without utilizing derivatives
of the estimation criterion with respect to parameters. Popular
examples of direct search methods include the simplex method
[Nelder and Mead, 1965], pattern search algorithm [Hooke
and Jeeves, 1961], and rotating directions method of Ro-
senbrock [1960]. For instance, the pattern search algorithm,
which is used in this study, conducts a series of exploratory
searches followed by pattern searches. In an attempt to de-
crease the function value, the exploratory search increments
cach parameter value in turn. The pattern search travels along
the vector defined by the exploratory search.

The difference between gradient and second derivative
methods is that the former uses only first derivatives, although
this distinction may blur. The use of the term “gradient” used
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here differs from that of Bard [1974], who uses the term for
both first and second derivative methods. The most basic of
the gradient algorithms is that of steepest descent, which
searches along the gradient direction. This method is quite
inefficient, however, in most cases, including most quadratic
response surfaces.

Newton-type methods are the most widely used of second
derivative algorithms. The Newton method, also known as the
Newton-Raphson method, uses the supplied values of the first
and second derivatives at the current parameter point to con-
struct a quadratic surface and then solves analytically for the
minimum (in a minimization problem). The Marquardt ver-
sion of the Newton method [Levenberg, 1944; Marquardr,
1963] restricts the search to the space of dominant eigenvec-
tors to prevent long steps in the direction of poorly identifia-
ble parameters, thus optimally interpolating between the
steepest descent and Newton methods. The Gauss approxi-
mation to the Hessian, or matrix of second derivatives, may be
utilized in implementing the Newton method. The Gauss
method omits terms containing derivatives higher than first
order from the analytical expression of the Hessian, as is de-
scribed in the appendix.

The Davidon-Fletcher-Powell method [Fletcher and Powell,
1963] is a popular method which uses finite difference schemes
to recursively approximate the inverse of the Hessian. This
method, however, is not strictly a Newton-type method and is
considered by some to be a gradient method.

Newton-type methods obtain more information about the
response surface at each iteration than do direct search meth-
ods and thus should be expected to converge faster, although
greater computational effort is required at each iteration to
compute the derivatives. The experience of Bard [1974] has
been that “[Gradient and second derivative] methods, even
using finite difference approximations, have outperformed
direct search methods on all but the most trivial parameter
estimation problems, both in reliability and speed of conver-
gence.” On the other hand, Himmelblau [1972] states that

As a general rule in solving unconstrained nonlinear programing
problems, gradient and second-derivative methods converge
faster than direct search methods. However, in practice, the
derivative-type methods have two main barriers to their imple-
mentation. First, in problems with a modestly large number of
variables, it is laborious or impossible to provide analytical func-
tions for the derivatives needed in a gradient or second-derivative
algorithm. Although evaluation of the derivative by difference
schemes can be substituted for evaluation of analytical deriva-
tives..., the numerical error introduced, particularly in the vicin-
ity of the extremum, can impair the use of such substitutions.

The nonlinear optimization literature contains examples of
comparative algorithm studies involving problems other than
hydrologic modeling. This body of literature [Leon, 1966;
Wortman, 1969; Bard, 1970; Himmelblau, 1972] indicates that
gradient and second derivative methods are usually preferable
to direct search methods, while, as illustrated below, the ex-
perience of those calibrating hydrologic models suggests
otherwise. In the optimization literature, use of nonlinear al-
gorithms on well-known test problems almost always yields
the correct solution. In such a situation efficient algorithms,
those that require the least computational time, are desired.
However, in hydrologic optimization problems (as will be il-
lustrated later in this paper), the correct parameter estimates
frequently cannot be obtained. Hence hydrologists are also
concerned with algorithm robustness, the ability to find the
correct solution under a wide variety of conditions.
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Little theoretical information is available to assist the hy-
drologist in selection of an effective algorithm; comparison of
algorithms must generally be accomplished through experi-
mentation. A number of researchers have performed compara-
tive studies of algorithms using CRR models and a summary
of their findings is given below. However, the results of com-
parative studies should be considered as a general guideline
only. Details of algorithm implementation, termination cri-
teria, heuristic logic introduced into the algorithm on the basis
of experience, and characteristics of the test problem can have
a significant impact on resulits.

Gupta and Sorooshian [1985] computed analytic derivatives
of a simplified version of the soil moisture accounting model.
They then compared the performance of the (direct search)
simplex algorithm with the Marquardt-Gauss-Newton algo-
rithm used in this study. Results from synthetic data indicated
that both algorithms had similar abilities to find, or not find,
optimal parameters, but that the simplex algorithm used sig-
nificantly more computer time. Johnston and Pilgrim [1976]
used both the simplex algorithm and the Davidon-Fletcher-
Powell method in calibrating the Boughton model on histori-
cal data. They found that “Although both methods were rea-
sonably satisfactory, the Simplex method (a direct search
method) appeared to be less susceptible to irregularity of the
response surface than the Davidon method (a descent method)
and was more efficient in the early stages of optimization.”

The work of Ibbitt [1970] and Ibbitt and O’Donnell [1971]
is particularly interesting. They investigated the performance
of five direct search, one gradient, two Newton-type, and one
random search algorithms using the Stanford Watershed
model and synthetic data. Ibbitt and O’Donnell found that the
“rotating coordinate method of Rosenbrock, after suitable
modification for dealing with hydrologic models... is the most
[robust] of the nine methods for fitting the model...” How-
ever, the Davidon-Fletcher-Powell method was nearly as
robust as the Rosenbrock method. Ibbitt and O’Donnell also
noted convergence problems associated with methods which
assume a quadratic response surface. Some of the problems
were attributed to the violation of assumptions regarding con-
tinuity of derivatives. Pickup [1977] compared the per-
formance of four optimization algorithms on a CRR model
using synthetic data. He found the simplex method of Nelder
and Mead to be most successful in finding correct parameter
values. The Davidon-Fletcher-Powell method performed
poorly due to becoming “trapped” on a local minima. It
should be noted that the results of Pickup are based on only
one calibration run; those of Ibbitt and O’Donnell are based
on six calibration runs. However, as results presented later in
this paper will indicate, many calibration runs with different
initial parameter values may be needed to reliably compare
the performance of several algorithms.

MOTIVATION FOR PRESENT WORK

Motivation for the current research stems from the appar-
ent difficulties associated with the development of successful
hydrologic models, particularly, the experiences reported in
the literature of unsuccessful attempts to find reliable parame-
ter estimates [e.g., Johnston and Pilgrim, 1976].

A number of factors may be responsible for poor per-
formance of hydrologic models: inappropriate model struc-
ture, error in calibration and operational data, failure of point
data to represent mean basin processes, and poorly estimated
parameters. Some researchers feel that an inability to obtain
truly optimal and unique parameters is a serious obstacle to
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TABLE 1. Parameters of the Soil Moisture Accounting Model

Parameter Explanation

UZTWM maximum capacity of upper-zone tension storage, mm

UZFWM maximum capacity of upper-zone free storage, mm

LZTWM maximum capacity of lower-zone tension storage. mm

LZFPM maximum capacity of lower-zone primary free storage. mm

LZFSM maximum capacity of lower-zone secondary free storage, mm

ADIMP fraction of basin which becomes impervious as all tension storage is met

UZK lateral drainage rate of upper-zone free storage, fraction/day

LZPK lateral drainage rate of lower-zone primary storage, fraction/day

LZSK lateral drainage rate of lower-zone secondary storage, fraction/day

ZPERC percolation parameter which indicates. when used with other parameters,
the maximum possible percolation rate, dimensionless

REXP percolation parameter, an exponent, determining the rate of change of
the percolation rate as the lower-zone moisture varies from full to dry.
dimensionless

PCTIM fraction of basin which is impervious and contiguous with stream
channels

RIVA fraction of basin covered by streams, lakes. and riparian vegetation

PFREE fraction of percolation water entering free storages, regardless of tension
water deficiency

SIDE ratio of groundwater flow entering channel to that bypassing channel

SAVED fraction of lower-zone free water unavailable for evapotranspiration

rainfall-runoff modeling. For example, Johnston and Pilgrim
[1976] state that “Until greater confidence can be placed in
the estimation of appropriate parameter values for a particu-
lar watersheds, it is unlikely that the potential usefulness of
watershed models will be fulfilled.” Therefore the current
study attempts to improve parameter estimates through selec-
tion of a robust optimization algorithm. A robust algorithm is
one which is able to reliably obtain correct solutions under a
variety of conditions.

In the past, Newton-type algorithms have not been a popu-
lar choice for the calibration of CRR models, possibly because
of the difficulty of evaluating required derivatives. Since the
estimation criterion of a CRR model is not available in closed
form, it was thought that analytical derivatives were not avail-
able [Moore and Clark, 1981]. Finite difference derivatives
were regarded with skepticism due to possible inaccuracies
associated with numerical approximations. Recently, a
method was proposed by Gupta and Sorooshian [1985] to
analytically compute derivatives of a CRR model.

The primary goal of the current research therefore is to
compare the performance of Newton-type and direct search
optimization algorithms. Use of analytic first derivatives such
as those suggested by Gupta and Sorooshian [1985] will avoid
the possible disadvantages of numeric derivatives which were
present in previous studies.

The remainder of the paper presents the results of the fol-
lowing: (1) response surface study; since gradient methods are
particularly sensitive to response surface characteristics, re-
sponse surface studies were first conducted in order to exam-
ine the response surface for smoothness, discontinuities, and
convexity, and (2) comparative calibration study; the per-
formance of the pattern search algorithm was compared to
that of the Marquardt-Gauss-Newton algorithm using the Soil
Moisture Accounting model.

METHODS

The model used here is the version of the Sacramento soil
moisture accounting model used by the National Weather
Service (NWS) in their National Weather Service River Fore-
cast System (NWSRFS). A description of the model is found
elsewhere in the literature [Brazil and Hudlow, 1981; Peck,
1976; Kitanidas and Bras, 1980] and will not be repeated here.

A description of model parameters is found in Table 1, how-
ever. This model was selected because it is a general purpose
CRR model which has received widespread application on
watersheds of different sizes and types [Brazil and Hudlow,
1981]. The model is part of the NWSRFS and is linked with a
unit hydrograph and various other hydrologic routing pro-
cedures to provide forecast information for rivers throughout
the United States. The model currently is calibrated using
manual techniques and a program utilizing the pattern search
algorithm. Calibration data typically consist of 6-hour precipi-
tation totals and mean daily discharges. Instantaneous dis-
charges are available for selected events. For the purposes of
the calibration study, a unit hydrograph was linked to the
model, and mean daily flows were averaged from 6-hour dis-
charges. ‘

For the purpose of facilitating comparison of algorithms,
error-free synthetic data were used in both the calibration and
response surface studies. When using synthetic data, the lo-
cation of the global minimum is known, so that determination
of the correctness of estimated parameter values is straightfor-
ward. This is not the case when using observed data, since true
parameter values are unknown. Bird Creek parameter esti-
mates were utilized as “true parameter values.” Bird Creek is a
2344-km? catchment near Sperry, Oklahoma, characterized by
rolling terrain, subhumid climate, and a quickly responding
stream. One month of synthetic true flows were created by
running the model with Bird Creek parameter estimates. Pre-
cipitation data were selected to activate all modes of model
behavior. Modes of model behavior were defined by the
various combinations of runoff processes such as overland
flow, base flow, and impervious area runoff. Precipitation data
were varied until the model output contained periods of each
possible mode. The precipitation data for the calibration study
were changed slightly, while retaining activation of all modes,
so that precipitation amounts were more consistent with
actual Bird Creek climate. The model code and parameter
estimates were supplied by the NWS.

A simple least squares estimator was used in both response
surface and calibration studies. This estimator is the sum of
the squares of the difference between model and observed
streamflow at each time step. According to maximum likeli-
hood (ML) theory, the appropriate form of the estimation
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Fig. 1. Cross section and derivatives of SLS function along axis
of parameter UZTWM. Arrow marks the location of the disconti-
nuity shown at a smaller scale in Figure 4.

criterion depends on the error structure of the data. Sor-
ooshian and Gupta [1983] have shown that for error or noise
free synthetic data the difference between a ML and a simple
least squares (SLS) estimator is negligible. The appropriate
estimator for the current study is therefore SLS, and results
and conclusions reported herein would not be changed by the
use of a ML estimator.

Analytical first derivatives of the estimation criterion with
respect to parameters were computed in accordance with the
principles of analytical calculus as described in the work by
Gupta and Sorooshian [1985]. Since this is a recursive method,
a closed-form expression for the derivatives cannot be ob-
tained. To the authors’ knowledge, this is the first time that
exact analytical first derivatives have been obtained for a com-
plex CRR model. Since calculation of analytical second de-
rivatives is computationally prohibitive, the Gauss method
was employed to obtain a first-order approximation of the
Hessian. Details on the methods used to calculate derivatives
are found in the appendix.

In the course of implementing analytical derivatives, it was
necessary to compute numerical derivatives to check the ana-
lytical derivatives. When using central finite differences, a
0.1% finite difference step size and a 64-bit computer word,
numerical and analytical derivatives were found to be identi-
cal to at least the sixth decimal place. It appears that finite
difference derivatives are sufficiently accurate for many appli-
cations, providing that an appropriate step size is used. Nu-
merical derivatives have the advantage of being easier to im-
plement than analytical derivatives, requiring less computer
storage, and resulting in code which is easier to maintain.
Comparison of computational efficiency would depend on de-
tails of implementation.

RESPONSE SURFACE STUDY

It is generally accepted that the nature of the response sur-
face has a profound impact on optimization. This is particu-
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larly true when using a Newton-type algorithm because, for
best results, both the response surface itself and its derivatives
(with respect to parameters) should be smooth and continuous
and the surface should be approximately quadratic. In addi-
tion, the “ideal” response surface is convex (in the case of
minimization), having a single extremum, and is influenced
little by parameter interaction. The form of the estimation
criterion should therefore be carefully selected to achieve a
well-behaved response surface. For example, it has been
shown that use of maximum likelihood estimators can lead to
reduced parameter interaction when using historical data [Sor-
ooshian and Gupta, 19837 and that the square root of the SLS
estimator has poorly behaved derivatives [ Pickup, 1977].

Many researchers have noted the existence of dis-
continuities in a CRR estimation criterion or its derivatives
[Restrepo-Pasada and Bras, 1982; Pickup, 1977; Johnston and
Pilgrim, 1976; Ibbitt and O’Donnell, 1971; Gupta and Sor-
ooshian, 1985]. The response surfaces of CRR models also
tend to suffer from a high degree of nonlinearity, ridges and
valleys resulting from parameter interaction and contain
multiple optima (“potholes”). These features conspire to make
the calibration of CRR models an extremely difficult task.

The response surface of the soil moisture accounting model
was examined by plotting one-dimensional cross sections of
the response surface and its first and second derivatives along
the parameter axes of interest. Response surface plots for three
parameters are shown in Figures 1-3. The bottom plot is of
the SLS criterion, the middle plot is of analytical first deriva-
tives, and the top plot is of the (approximated) second deriva-
tives. In each case, the parameter value is represented along
the x axis. Since neither the estimation criterion nor its deriva-
tives are available in closed form, the plots were generated by
sampling the criterion at 100 closely spaced points. Therefore
the existence of discontinuities must be inferred from abrupt
changes in value. :

In Figure 1, parameter UZTWM (upper-zone tension water
maximum) represents the amount of moisture that the upper
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soil zone will absorb before surface runoff occurs and is the
parameter associated with the most abrupt threshold in the
model. LZPK (lower-zone free primary recession), which is
represented in Figure 2, is a recession parameter associated
with the production of baseflow. REXP, which is a parameter
associated with the complex, nonlinear percolation function
that is a special feature of the model, is represented in Figure
3

Plots at increasingly finer scales failed to discover the exact
locations of the discontinuities; they were always located
somewhere between two sampling points. Also, it was dis-
covered that discontinuities exist at many different scales. The
apparently smooth SLS function in Figure 1, in fact, contains
the small discontinuity shown at a finer scale in Figure 4. The
arrow in Figure 1 marks the location of the discontinuity in
Figure 4.

Plots were made of 16 model parameters, although only
three are shown here (Figures 1-3). They reveal that the re-
sponse surface is convex, at least in the vicinity of the mini-
mum, a condition necessary for the convergence of most algo-
rithms. However, discontinuities and a rough or bumpy tex-
ture are also present, particularly in the derivatives. The fact
that the derivatives have a rougher texture than the estimation
criterion may explain why the Newton-type algorithm per-
formed more poorly than the direct search algorithm in the
study presented below. Recall that direct search algorithms
base the next “step” on the SLS values at a number of points;
Newton-type algorithms typically base the next step on the
SLS value and derivatives at a single point. If that single point
is located at an irregularity in the response surface, the algo-
rithm will act on misleading information.

Extensive sampling of the soil moisture accounting model’s
estimation criterion and its derivatives using both synthetic
and historical data has always yielded finite derivatives. This,
coupled with the inability to exactly locate the discontinuities,
leads to the conclusion that both the criterion and its first and
second derivatives are piecewise continuous and everywhere

finite. It is to be expected that the discontinuities may ad-
versely affect the performance of gradient and second deriva-
tive methods. They will not, however, prevent their use. As a
rule, these algorithms require that the response surface be
continuous and differentiable and that the derivatives be con-

tinuous. A more appropriate requirement would be that the

criterion and derivatives be piecewise continuous and every-
where finite. While large-scale discontinuities would be a
problem for any algorithm, small-scale discontinuities such as
shown in Figure 4 would probably have little effect on a
Newton-type algorithm.

An investigation was undertaken to discover the cause of
the discontinuities. Using a version of the soil moisture ac-
counting model in which threshold structures were replaced
with smoothing functions, Restrepo-Posada and Bras [1982]
found discontinuities in a log likelihood criterion. They sug-
gested that the discontinuities were due to the model’s vari-
able internal time step which is a function of the amount of
moisture percolating from the upper to lower soil zones. This
variable time step results in a more exact integration in time
than a fixed time step provides. A discontinuity could occur if
the number of internal time steps changes as parameter values
change. Another possible cause of discontinuities is the exis-
tence of thresholds in the structure of the original model, in
conjunction with a discrete time step. The dominant threshold
structure in the soil moisture accounting model is the upper-
zone tension reservoir, whose magnitude is described by pa-
rameter UZTWM. Precipitation must fill the upper-zone ten-
sion reservoir, which may only be depleted by evapotranspira-
tion, before it is available for surface runoff or percolation. A
discontinuity could occur if surface runoff does not occur for
some value of UZTWM, but does occur for a smaller value of
UZTWM.

The following procedures were used to determine if dis-
continuities were being caused by either of the above two
mechanisms. The variable time step was removed from the
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Fig. 5. Diagrams of models BOX (left) and HOLE (right) which were used to study response surface discontinuities.

model, and resuiting response surface plots were examined.
There was no noticeable decrease in discontinuities. Next, two
extremely simple CRR models, shown in Figure 5, were for-
mulated. Model BOX generates streamflow only when cumu-
lative rainfall minus evaporation exceeds the threshold, caus-
ing the reservoir to overflow. Model HOLE has a variable
internal time step identical to the one found in the soil mois-
ture accounting model and produces runoff through recession
parameter K [flow = K (reservoir contents)]. The primary fea-
ture of model BOX is its threshold behavior, and the primary
feature of model HOLE is the variable time step.

Response surface plots were then produced using models
BOX and HOLE. The thresholds of model BOX resulted in
discontinuities, while the variable time step of model HOLE
did not. From these results, the authors conclude that the
major cause of discontinuities for the soil moisture accounting
model is the existence of threshold structures such as the ten-
sion reservoirs and not the variable time step. Although the
work of Restrepo-Posada and Bras [1982] suggests that there
may be other causes of discontinuities, the complexity of the
soil moisture accounting model precludes an exhaustive search
for them. It is likely that thresholds are the major cause of
discontinuities associated with other CRR models.

Kitanidas and Bras [1980] introduced a version of the soil
moisture accounting model (used by Restrepo-Posada and
Bras [1982]) in which abrupt thresholds were replaced with
“§” curves. Such a change would be expected to replace dis-
continuities with smooth S-shaped jumps in the value. How-
ever, such smooth jumps would introduce perturbations in the
derivatives and not completely solve the problem of non-
smoothness.

COMPARATIVE CALIBRATION STUDIES

The calibration studies described here compared the per-
formance of the (direct search) pattern search algorithm of
Hooke and Jeeves [1961] with that of a Marquardt-Gauss-
Newton method, hereafter referred to as the Newton algo-
rithm for purposes of brevity. The pattern search algorithm
was chosen because it is currently used by the NWS to cali-
brate the soil moisture accounting model. These two algo-
rithms were felt to be reasonably representative of commonly
used direct search and Newton-type methods, respectively. It
is doubtful that use of different algorithms would have
changed the final conclusions that direct search methods tend
to be more robust and that Newton-type methods more com-

putationally efficient. Code for the pattern search method was
supplied by the NWS, and code for the Newton method was
supplied by Gupta [1984]. Readers interested in details of al-
gorithm implementation should contact the authors.

Care was taken to ensure that similar convergence criteria
were used for both algorithms. Due to the differing structure
of each algorithm, however, it was not possible to make con-
vergence criteria identical. A calibration was terminated if the
estimation criterion fell below a very small value (0.05 (m3/s2)),
if the function value changed less than 1% in one iteration
(Newton routine) or one pattern (pattern routine), or if a max-
imum number of iterations were exceeded. The maximum
number of iterations were proportional to the number of pa-
rameters being optimized and were 2.4 times greater for pat-
tern search than for Newton runs. The maximum iteration
criterion did not cause convergence very often, and function
convergence and minimum function value were most fre-
quently the cause of termination. An additional pattern search
convergence criterion (maximum number of unsuccessful pat-
terns) caused termination a few times.

Initial calibrations were performed using the root mean
square criterion ([SLS/number data points]'/?), which is usu-
ally used by the NWS to calibrate the model. It was found
that the Newton algorithm performed very poorly using the
root mean square criterion. Plots of the response surface re-
vealed that the SLS estimator was roughly quadratic as re-
quired by Newton-type algorithms, at least near the minimum,
while the root mean square estimator was not. This finding
agrees with that of Pickup [1977]. SLS was therefore used for
the calibration studies presented here. The performance of the
pattern search algorithm was virtually the same for both esti-
mators.

Three kinds of calibration runs were performed: single-,
two-, and four-parameter runs. Single-parameter optimization
with error-free synthetic data is a straightforward problem,
and success should be expected. All 14 model parameters
which are manually or automatically estimated were included
in the single-parameter study. For each run, the parameter of
interest was perturbed 35%, and both algorithms were used in
an attempt to recover the true value. As can be seen from
Table 2, the pattern search algorithm was successful in finding
all but 1 of the 14 correct values, while the Newton algorithm
failed for 5 of the 14 parameters.

Two measures of the success of an optimization run were
considered: (1) how close the final estimation criterion value
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TABLE 2. Ending Values for One-Parameter Calibrations TABLE 4. Statistics for Two-Parameter Calibration Runs
Newton Pattern Estimation
Initial True Ending Ending Overall Criterion
Parameter Value Value Value Value Parameter Performance Value,
Set Index (m*/s*) CPU
UZTWM 52.0 80.0 60.6* 80.8
UZFWM 10.0 15.0 15.0 15.0 1 (Newton) very poor 752. 25
LZTWM 107.0 160.0 107.0* 159.6 2 (Newton) poor 190. 27
LZFPM 189.0 140.0 140.0 139.9 3 (Newton) fair 92.4 33
LZFSM 9.0 14.0 14.0 14.0 4 (Newton) very poor 169. 29
ADIMP 0.11 0.17 0.17 0.17 | (pattern) poor 0.26 64
UZK 0.20 0.30 0.30 0.30 2 (pattern) excellent 0.03 124
LZPK 0.018 0.013 0.013 0.013 3 (pattern) excellent 0.00 173
LZSK 0.170 0.126 0.126 0.126 4 (pattern) fair 0.33 257
ZPERC 3t.0 48.0 48.0 47.9
REXP 1.37 2.10 2.39* 2.10
ggggé ggg; 88(2)(1) gg?:* 83%* ending estimation criterion value, and CPU are found in
SIDE 2.31 3.55 2.31% 3.55 Table 6.

Average Newton CPU = 25.2/run
Average pattern search CPU = 45.6/run

*Unsuccessful run.

was to zero and (2) how close the final parameter values were
to the true values. In order to easily interpret the results of
individual calibration runs, an overall performance index was
devised. Final estimation criterion values were grouped into
five ranges which were designated ratings of excellent, good,
fair, poor, and very poor. Similar ratings were assigned to the
percent closeness of the final parameter values to the true
values, averaged between the calibrated parameters. The two
ratings were then averaged. The resulting index emphasizes
robustness, or the ability to obtain correct solutions, and does
not consider computational efficiency.

Four sets of two parameters each were selected for the two-
parameter calibrations. The ending parameter values of the
two-parameter calibration runs are listed in Table 3. Table 4
sets forth the overall performance index, ending estimation
criterion value, and CPU for each run. A 35% perturbation
was used for the two-parameter calibrations.

A single-parameter set, ADIMP, UZK, LZPK, and REXP,
was used for the four-parameter calibrations. All of these pa-
rameters were perturbed 15, 35, and 50% in separate runs.
The ending parameter values for the four-parameter runs are
contained in Table 5. Each run’s overall performance index,

The results of the above calibration runs indicate that the
pattern search algorithm is more robust than the Newton al-
gorithm when calibrating the soil moisture accounting model.
It is significant that for over half the multiparameter sets,
neither algorithm was successful in estimating the correct pa-
rameters, even under the ideal conditions of error-free synthet-
ic data. Clearly, parameter estimation for the soil moisture
accounting model is not a trivial task. A detailed analysis of
the reasons for the poor performance of the algorithms was
not made. Undoubtedly, response surface characteristics such
as roughness, discontinuities, multiple optima, and ridges and
valleys associated with parameter interaction play an impor-
tant role. In some cases the Newton algorithm may have failed
to recover from misleading derivatives at the initial parameter
point due to an irregularity in the response surface. It is possi-
ble that in cases where the Newton algorithm completely
failed that the quadratic assumption was poor.

The pattern search calibration runs used slightly more than
two and one half (2 1/2) times as much total computer run
time than did the Newton runs. This is probably due to the
Newton algorithm obtaining more information at each iter-
ation and therefore requiring fewer iterations. Apparently, the
additional computer run time required to compute the deriva-
tives is more than offset by the savings associated with fewer
iterations.

Other researchers [Johnston and Pilgrim, 1976; Ibbitt and

TABLE 3. Ending Parameter Values for Two-Parameter
Calibration Runs
Newton Pattern
Initial True Ending Ending
Parameter Value Value Value Value
Set |
ADIMP 0.110 0.170 0.125 0.167
PCTIM 0.002 0.001 0.000 0.003
Set 2
UZK 0.200 0.300 0.344 0.300
LZPK 0.018 0.013 0.013 0.013
Set 3
ADIMP 0.110 0.170 0.174 0.170
UZK 0.200 0.300 0.323 0.300
Set 4
LZPK 0.018 0.013 0.013 0.013
PCTIM 0.002 0.00t 0.000 0.002

TABLE 5. Ending Parameter Values for Four-Parameter
Synthetic Calibrations

Newton Pattern

Initial True Ending Ending

Parameter Value Value Value Value
15% Perturbation

ADIMP 0.140 0.170 0.170 0.170

UZK 0.260 0.300 0.299 0.300

LZSK 0.150 0.126 0.150 0.129

REXP 1.790 2.100 2.255 2.119
35% Perturbation

ADIMP 0.110 0.170 0.169 0.169

UZK 0.200 0.300 0.300 0.300

LZSK 0.170 0.126 0.101 0.109

REXP 1.370 2.100 1.924 1.985
50% Perturbation

ADIMP 0.090 0.170 0.170 0.166

UZK 0.150 0.300 0.301 0.298

LZSK 0.190 0.126 0.176 0.084

REXP 1.050 2.100 2.489 1.830
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TABLE 6. Statistics of Four-Parameter Calibration Runs
Overall Estimation
Performance Criterion
Algorithm Index Value, (m?¥/s?) CPU
15% Perturbation
Newton fair 6.46 27
Pattern excellent 0.13 141
35% Perturbation
Newton good 0.35 27
Pattern good 0.59 142
50% Perturbation
Newton fair 119 . 30
Pattern fair 6.11 73

O’Donnell, 19717 have suggested that the sequential use of
several optimization algorithms may produce better results
than using one algorithm alone. It is possible that an apparent
local minima which causes one algorithm to converge can be
more readily escaped by another. [sabel and Villeneuve [1986]
caution, however, that changes in the strictness of convergence
criterion can effect the apparent robustness of various algo-
rithms. Nevertheless, attempts were made to improve parame-
ter estimates through sequential use of both algorithms. On
unsuccessful multiparameter Newton runs, a pattern search
calibration was made with initial parameter estimates equal to
final Newton values. The reverse was done for unsuccessful
pattern search runs, and results are set forth in Table 7. This
procedure led to improved parameter estimates for 7 of 11
unsuccessful runs. In two of the seven multiparameter sets,
sequential use of both algorithms produced excellent results,
while use of either algorithm alone did not. Excellent results
were obtained by a single algorithm for three sets, but excel-
lent results could not be obtained by any method or combi-
nations of methods for the final two sets.

The resuits of the calibration study indicated that the out-
come of any calibration run was highly dependent on charac-
teristics of the response surface in the vicinity of the initial
parameter point and other factors. It appears that more than a
few calibration runs using different parameters and different
initial parameter points are necessary before comparison be-
tween optimization algorithms becomes meaningful.

A four-parameter calibration was performed using 3 years
of historical Bird Creek data. The two algorithms converged
to markedly different points in parameter space, although the
final estimation criteria were similar: 341,000 and 304,000
(m?/s?). Three year split sample verification runs were also
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made. The fact that both parameter sets produced similar se-
quences of simulated flows for both calibration and ver-
ification data highlights the degree of parameter interaction
within the model.

CONCLUSIONS

The method proposed by Gupta and Sorooshian [1985] pro-
vides the capability of computing analytic derivatives for CRR
models. The main purpose of the current research was there-
fore to compare the use of a direct search and a Newton-type
algorithm (using analytical first derivatives) for use in calibrat-
ing CRR models. The pattern search and Marquardt-Gauss-
Newton algorithms, error-free synthetic data, and the soil
moisture accounting model of the NWS were used for the
investigation.

The primary finding is that the direct search algorithm was
more likely than the Newton-type algorithm to find accurate
parameter estimates, although the latter used less computer
time. The primary reason for the lack of robustness of the
Newton-type algorithm appears to be poor conditioning of
the response surface due to discontinuities and, most impor-
tantly, lack of smoothness in the estimation criterion and its
derivatives. It appears that Newton-type algorithms are not
well-suited to the characteristics of CRR response surfaces.
The authors believe that results would be similar for other
algorithms or other CRR models. Moreover, the authors be-
lieve that none of the currently popular systematic search al-
gorithms, used alone, are sufficiently robust for the difficult
response surfaces associated with the calibration of CRR
models. This belief is supported by the failure of either algo-
rithm, used alone, to find correct parameter estimates in a
significant number of cases in the current study. Additional
findings are as follows.

1. The least squares response surface of the soil moisture
accounting model was found to be rough textured and contain
discontinuities. The first and second derivatives of the re-
sponse surface (with respect to parameters) were more roughly
textured and contained more numerous and more severe dis-
continuities than the surface itself, a factor which contributed
to the relatively poor robustness of the Newton-type algo-
rithm. Derivatives were found to exist on many scales.

2. The discontinuous estimation criterion and its deriva-
tives were found to be piecewise continuous and everywhere
finite. It is to be expected that the discontinuities will have
some adverse impact on Newton-type algorithms. They will
not, however, prevent their use.

3. The major cause of discontinuities in a CRR response
surface was found to be the existence of thresholds in the

TABLE 7. Overall Performance Indices for Calibration Runs Using Both Algorithms Sequentially

Parameter Newton- Pattern-
Set Newton Pattern Pattern Newton
Two-parameter | very poor poor fair excellent
Two-parameter 2 poor excellent excellent NP
Two-parameter 3 fair excellent excellent NP
Two-parameter 4 very poor fair poor fair
Four-parameter (15%) fair excellent good NP
Four-parameter (35%) good good good good
Four-parameter (50%) fair fair excellent fair
Average CPU 28 144 154 158

NP, calibration was not performed because initial calibration with first algorithm produced excellent

results.
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model, in conjunction with a discrete time step. For example,
the worst discontinuities were associated with the tension res-
ervoir which must fill before surface runoff can occur.

4. Analytic and finite difference first derivatives were
found to be identical to at least the sixth decimal place. It
appears that numerical derivatives are sufficiently accurate for
many applications, providing that an appropriate finite differ-
ence step size is used.

S. The accuracy of parameter estimates should be en-
hanced by any technique which would result in better con-
ditioning of the response surface such as the use of maximum
likelihood estimators. When using error-free synthetic data, a
least squares estimator approximately satisfied the Newton
assumption of a quadratic response surface, at least in the
vicinity of the optimum, while a root mean square estimator
did not.

The authors believe that future research should focus on the
roles of model structure and calibration data in the opti-
mization problem, and on methods to alleviate the problems
of rough response surface texture, discontinuities, multiple
optima, parameter interaction, and parameter nonidentifiabil-

ity.

APPENDIX

The first and second derivatives of a SLS function are as
follows:

OSLS . 3qs,(0)
60i = z,gl(qst(o) - qoz) 60,
n 2
H. = 22 Méz‘f'(_o)_,_(qsr(g)__qot)w

=1 00, 486, . 06,60,

where

0 model parameters;
i,j parameters of interest;
gs5(0) simulated flows at time ¢;
qo, observed flows at time ¢;
H;; element of Hessian;
n the number of data points.

The Gauss approximation to the Hessian omits the last
term containing second derivatives of model flow, resulting in
a first-order approximation utilizing only first derivatives.

Details of the methodology used to analytically compute
first derivatives of model flow are given in the work by Gupta
and Sorooshian [1985]. As each model state and output vari-
able is updated, the derivative of that variable is computed
recursively. In practice, one line of derivative code must be
inserted after each line of model code for each parameter for
which derivatives are desired. Using the chain rule of calculus,
the derivatives are computing using

oX, 0/, X,_,u) 0f® X, u)dX,_,

00, 00, oX,_, 26,
9gs, _ 990, X,_,, u) + 090, X,_,,n) 0X,_,
28, 26, 3X,_, 26,

where

X, model state at time t;

u, model inputs;

Sf( ) model equation for updating state;
g( ) model equation for computing flow.
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Derivatives are initialized to zero at time zero.
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