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A Model of Daily Municipal Water Use for Short-Term F orecasting

JAMES A. SMITH
Interstate Commission on the Potomac River Basin, Rockville, Maryland

A time series model of daily municipal water use is developed. The model is termed a conditional
autoregressive process and can be interpreted as an autoregressive process with randomly varying mean.
The randomly varying mean accounts for changes in water use that result from the complex interaction
over time of “structural features™ of the water use system. These features may include the price of water,
total service area connections, plumbing code provisions, and customer income, among many others. The
modeling approach is semiparametric. The model can be split into a component that is treated in a
nonparametric framework and a component that is treated parametrically. The random mean process,
which represents long-term trend in water use, is treated in a nonparametric framework. Conditional on
the random mean water use, the model reduces to a Gaussian autoregressive process with a modest
number of parameters. The water use model is the core of a forecast system which is used to schedule
releases from two water supply reservoirs which serve the Washington, D. C., Metropolitan Area. Mode!
structure dictates that the key step in producing a water use forecast is an updating step in which a

revised estimate of current mean water use is computed.

1. INTRODUCTION

In this paper a forecast system for daily municipal water use
is developed. The forecast system is based on a time series
model of water use and is used to schedule releases from two
water supply reservoirs that serve the Washington, D. C,
Metropolitan Area (WMA). The model is termed a con-
ditional autoregressive process and can be viewed as an auto-
regressive process with randomly varying mean. The random-
ly varying mean accounts for changes in water use that result
from the complex interaction over time of “structural features”
of the water supply system. These features may include the
price of water, total service area connections, plumbing code
provisions, and customer income, among many others.

The modeling approach is semiparametric. The model can
be split into a component that is treated in a nonparametric
framework and a component that is treated parametrically.
The random mean process, which represents long-term trend
in mean water use, is treated in a nonparametric framework.
Conditional on the random mean water use, the model re-
duces to a Gaussian autoregressive process with a modest
number of parameters. Time series models with randomized
parameters have been used in a variety of applications, includ-
ing economic forecasting [e.g., Nicholls and Quinn, 1982;

_Swamy, 1982] and hydrologic modeling [Klemes, 1974; Potter,
1976; Smith and Karr, 1983].

In the WMA, trend in mean water use (see Figure 1) is tied
to a number of factors beyond the control of water managers
(such as sectors of growth in the local economy and the influ-
ence of interest rates on housing development). The determin-
ing factors of water use are not all beyond the control of water
managers. Numerous publications have appeared assessing
the possibility (and subsequent successes and failures) of ma-
nipulating the water use values appearing in Figure 1 through
pricing and conservation measures (see, for example, Howe
and Linaweaver [1967], Davis and Hanke [1973], and Carver
and Boland [1980]). Carver and Boland [1980] report that
seasonal price elasticities of water use for Washington, D. C,,
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are “not significantly different from zero.” Their results con-
trast with those of Howe and Linaweaver [1967] in which a
seasonal price elasticity of —1.6 is reported. Carver and
Boland note that “the elasticity of seasonal water use may
have fallen in the WMA during the interval which separates
the two studies (1963-1969). Present attitudes toward the envi-
ronment and resource conservation differ considerably from
attitudes of the early 1960s.” The complex interaction of
changing attitudes, prices, and interest rates all contribute to
the random fluctuations over time of mean water use.

Parameter estimation and forecasting procedures developed
for the random mean model are nonstandard (compare, for
example, Salas-LaCruz and Yevjevich [1972] and Maidment
and Parzen [1984]). A notable feature of the parameter esti-
mation procedure is inclusion of a “state estimation” step (for
a similar estimation procedure, see Smith and Karr [1985]).
Model structure dictates that the key step in producing a
water use forecast is an updating step in which a revised esti-
mate of current mean water use is produced (updating algo-
rithms for water use forecasting models are also considered by
Kher and Sorooshian [1986]).

Contents of the sections are as follows. Model development
is the topic of section 2. In section 3 we develop estimators for
unknown parameters of the model. State estimation tech-
niques necessary for implementing the forecast system are also
developed in section 3. The forecast system is applied to
WMA water use in section 4. A summary and conclusions are
presented in section 5.

2. MOoODEL DEVELOPMENT

In this section we present a model for daily municipal water
use. We denote daily water use on day ¢ of year i by X{t). A
year consists of T = 7J days (the number of weeks in the year
is J). To facilitate modeling day-of-week features of water use,
the first day of each year is taken to be a Sunday. In section 4,
for example, a model for the period May-September is devel-
oped; the first day of the year is taken to be the first Sunday in
May.

The random mean water use for day t of year i is assumed
to be the product of two terms: Y, the random mean daily
water use for year i and m(r), the “unit demand function,”
which does not vary from year to year (we adopt the notation-
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Fig. 1. Mean daily WMA summer water use, 1974-1986.

al convention that uppercase symbols refer to random pro-
cesses and random variables, e.g., Y, while lowercase symbols
are used for deterministic functions and parameters, e.g., m(t)).
The random variables {Y;} are assumed to represent structural
attributes of the service area that vary slowly over time and
interact in complex fashion. These attributes .aay include the
price of water (and price history), total service area con-
nections, plumbing code provisions, and customer income,
among many others. The actual mean daily water use for year
i will differ from Y, due to the influence of random factors,
such as climatological conditions, which operate on a rapidly
fluctuating time scale relative to the factors which influence Y,
The random variables {Y;} are not necessarily independent or
indentically distributed. Indeed, trend and correlation are
likely to be important features of the process. Distributional
assumptions are not made on the random process {Y;}.
The model is specified by

X0 =mOY, +a[X(t — 1) = mt = DY] + Y,'240) (1)
where

E[X(0Y] = m1)Y, @

E[(X (1) — m()Y)*|¥] = vY, €)

a is a real-valued parameter, v is a nonnegative parameter, and

T
mit) = [E[X 0]V T~ ¥ E[X{k)] 4
k=1
Equation (2) states that conditional on Y; (that is, if we know
Y}, m(t)Y, is the mean of X (t); equation (3) states that vY; is the
conditional variance of X (¢).

The error process {A(t)} is assumed to be an independent
and identically distributed sequence of Gaussian random vari-
ables, with mean zero and variance s*. The error process is
also assumed to be independent of {X (1)} and {Y;}.

It foilows from (1) and (3) that the conditional variance
parameter v must satisfy the equation

v=a% +s? (5)

1 1 1 L 1 L !
41980 4981 1982 1983 1984 1985 1986 1987

Year

The summer season extends from May through September.

implying that for |a] < 1,
v=s/(1~a% (6)

Furthermore, it follows from (1) and the Gaussian assumption
on {A(t)} that conditional on Y, X (t) has a Gaussian distri-
bution with mean m(t)Y; and variance (s%/(1 — a?))Y;; we will
write

X{) 2 N(m()Y, [s*(1 — a?)]Y) )

We include ‘a lagged water use term in our model to reflect
persistence in daily water use. Persistence may result from
several causes, including limitations of the distribution system
and meteorological conditions. To the extent that there is per-
sistence in meteorological conditions that affect water use, this
persistence is translated to water use. We do not directly in-
corporate meteorological variables in our model due to diffi-
culty in forecasting these variables.

The unit demand function at time ¢, m(¢), is the ratio of
mean water use on day t to mean daily water use over the
course of the year. The unit demand function does not vary
from year to year even if long-term trend in mean water use is
present. This assumption implies that although mean water
use may exhibit trends over time, seasonal and day-of-week
structure of water use do not.

We denote the J weekly average values of the unit demand
function by q,, - - -, q,, that is,

9

;=7 Y mIG—-1+0

=1

j=1J @®

Structure of the unit demand function is determined by one
final assumption. We assume that day-of-week coefficients p,,
-++, p,exist such that

‘m(t) = q;px for7j—1)+k=1t 9)

Mean daily water use can vary by day of week; day-of-week
effects cannot, however, vary seasonally or from year to year.

1] R T g A
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We denote the water use data set available on day ¢ of year
n by

H)={X{k)i=1,n— 1;
k=l,'--,T;X,(l),'--,X,(t)} (10

The data set H,(t) contains n —1 consecutive years of com-
plete daily water use data and the first ¢ days of data for year
n. For a random variable X we use the notation E[X|H ()] as
shorthand for the conditional expectation of X given {X(k);
i=1,,n—1Lk=1-,T; X(1) ", X, (0}

The model is described in the Introduction as a conditional
autoregressive process (more specifically, an autoregressive
process with random mean). It follows from (1) that

E[X,(t + DIH,(@0). Y] = E[X,(¢ + DIX,(0). V]
= mit + DY, + a[X, (0 —m(Y,] (1D

so that conditional on Y,, the process {X,} has autoregressive
structure. The model is not, however, an autoregressive pro-
cess. It is not even a Markov Process; note that

E[X.(t + DIH, 0] # ELX (¢ + DIX,(0)] (12)

Intuitively, the left side of (12) differs from the right because
the data set H (t) contains information about the random (and
unknown) mean Y,, as well as the correlation information con-
tained in the previous day’s observation X (t). This point is
further illustrated in deriving the forecast equations below.

The forecast that we will use on day t + 1 for water use
on day t + k is the conditional expectation of water use on
day t+k given observations up to and including day
t, E[X (t + KIH 0] The conditional expectation is obviously
a function of the data in H(t). It is, perhaps most notably, that
function of the data which minimizes the expected squared
error with X (¢t + k). The following result tells us how to con-
struct our forecasts.

E[X,(t + KIH (0] = a"X.(0)
+ [mit + k) — am@JE(YH 0] (13)
The result can be proven as follows. For k = 1,
E[X,(t + DIH(1)]
= m(t + DE[YJH 0] + a{X,(1) — m(tELY,|H (0]}
+ E[Y,'24,(t + DIH, @]

“~ = m(t+ DELY,H®)]

+ a{X (1) — m(HELY,|H, (0]}
+ E[Y,V2H (01E[A4,(¢ + DIH,0)]
= m(t + DE[Y,JH (0] + aX,(1) — am)ELY,IH (1]
= aX, (1) + [m(t + 1) — am(O]IELY,H ()] (14)
Assume the result is true for k — 1.
E[X(t + KNH ()]
= m(t + K)E[Y,|H (1)}
+ a{E[X,(t + k — DIH, 0] — mlt +k — DELY,IH, (01}
+ E[Y,'2A(t + KIH (0]
= m(t + KE[Y,\H,(1)]
+a{@d ' X (1) + mit + k— VE[Y,|H ()]

— & 'm()ELYJH,(0)] — mlt + k — DELY,|H, 0]}

= a*X 1) + [mit + k) — a*'m(D]ELY,IH (1] (15)
The result follows by induction.
Note that
E[X(t + KIH, (0] = m(t + HELYH,(1)] (16)

for “large™ k. Equation (13), and especially (16), emphasize our
interest in accurately modeling mean water use (see also
section 4). It follows from (13) that for short forecast lead
times (roughly, 1-3 days) the estimate of mean water use
(mit + K)E[Y,JH (0]) is an important component. It follows
from (16) that for “long” lead times the forecast is virtually
identical to the estimate of mean water use.

To conclude this section we note that in some situations it
may be desirable to allow the parameters a, v, and s to depend
on time (as the unit demand function m(t) does). In this case,
{6), which relates the parameters a, v, and s, is changed to the
recursive equation

o) = a(t)*o(t — 1) + s(t)? a7n

The forecast equation (13) becomes

k
E[X (1 + k)H ()] ={_ [T at +J')] X0

ji=1

k

+ [M(t + k) - ( [T att +j))m(t)}E[Y.,IH 01 (18)
i=1

Extensions of the parameter and state estimation procedures

developed in the following sections to the extended model are

also straightforward but are not pursued.

It is also conceptually straightforward to extend the model
to a “conditional autoregressive moving average” or form. The
forecast equation (13), however, is not generalized in a
straightforward fashion. Computational tractability is a major
reason for restricting consideration to the conditional autore-
gressive model of (1).

3. PARAMETER AND STATE ESTIMATION

To implement a forecast system based on (13), we need to
estimate the unknown parameters m(t), a, and s and estimate
the unknown random mean water use Y,. The second problem
is one of “state estimation,” that is, the optimal prediction of
an unobserved random variable. Nearly always the optimal
predictor is (as in (13)) the conditional expectation of the un-
observable random variable given the observations.

Because the random mean process is treated in a non-
parametric framework, it is especially difficult to separate the
problems of parameter and state estimation. Our approach to
parameter estimation is to replace the random mean water use
Y, for each year i, by the state estimator

T
f,=T"' Y X4k (19)
k=1

and proceed as though no error were involved. In other
words, to estimate the parameters m(t), a, and s, we replace the
random variables Y,, ---, Y,_, by the sample means )RR
Y,_, and treat the random mean as known. We begin with the
unit demand function m(t).

From (9) it is clear that we need to estimate the weekly
coeflicients q,, -, 4, and day-of-week coefficients py, ***» Py
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Based on (4), (8), and (19), we choose our estimator of the
weekly demand coefficients to be

a=1 7
G=n—-1D""' Y [7“ > XA?(f—1)+k)/?:] (20)

i=1 k=1
j=1,--,J

The estimator 4, is the average value of “scaled” daily demand
for week j, with daily values scaled by the average daily
demand for the year.

Our estimators of the day-of-week coefficients are given by

n—-1

J
P=(r—1"" ¥ [J" T X(G-D+ k)/(tijf'a)]

i=1 i=1

P2))

k=17

The estimator of the Monday day-of-week coefficient, for ex-
ample, is the average of all Monday values; each value must
be scaled by the product of the estimated weekly coefficient g,
and yearly sample mean {. Tt is straightforward at this point
to construct our estimator for the unit demand function. From
(9) we have

m(t) = §;p, for7(j— D+ k=t (22)
Centered water use values X (1) are given by
X=X - @7, 23

Our estimator for the autoregressive parameter a is given by

n—-1 T n-1 T
d= :,:l Y XX (- 1)/ Y Y X

=2 i=1 t=2

(29)

The estimator 4 is a standard least squares estimator except
that n‘t(t)?, is a state estimator for the unknown random mean.
The estimator for the standard error coefficient s is given by

n=1 T
g=(-1)"" Y (T=D" ¥ [XO-aX - DID]
i=1

i =2
(25)

We now turn our attention to the state estimation problem
of computing E[Y,|H,(t)]. Because {Y} is treated in a non-
parametric framework, we will not be able to explicitly com-
pute the conditional expectation of Y, given H,(¢). As is often
the case in state estimation problems (see, for example, Karr
[1986]), we will retreat to estimators that are linear combi-
nations of our forecast data (or nearly so). The estimator of
E[Y,|H ()] will be denoted by M, (1).

In constructing the estimator M,(t) we wish to exploit struc-
ture of the data set H (t), which divides naturally into two
components: data from previous years H,_(T) and observa-
tions from the current year X (1), -+, X (t). To forecast mean
water use it is natural to condense information from previous
years to the sample means #,, ---, ¥,_,. Similarly, observa-
tions for the current year are condensed to the “partial sample
means” ’

=Y x.(k)/ T mik) (26)
k=1

k=1

Nonparametric trend techniques developed by Hirsch et al.
[1982] are used to forecast Y, from previous years’ sample
means, ¥, ---, ¥,_,. The forecast is of the form %,_, + b,
where b, is the Kendall slope estimator obtained from ) TR
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. _,. The Kendall slope estimator is the median value of the
slope random variables {S,;, i <j < n}, where

Sy=(%=-fi—-i) fori<j<n @n
Using (1) and (26), it is straightforward to show that
t -1
=Y+ d(:)[ ¥ m(k)] (X (0) — m(0)Y,)
k=1_
t -1 1t k
+ X."’l: ) m(k)] T Y damn @8
k=1 k=1 j=1
where
ap=73 d=(1-a*"Yl—-a -1 (29)
k=1
It follows from (28) that conditional on Y,
f,0) ~ N(Y, c()Y,) D)

where c(f) is a function of the parameters a, m(t), and s, which,
most notably, is decreasing in ¢. It follows from (30) that for
each t, T,(1) is an unbiased state estimator of Y, and that for ¢
greater than s, 7,(¢) is a better estimator than f’,,(s).

Based on the preceding discussion, we take our state esti-
mator to be

M. (1) = wn) T,(0) + (1 — wXT,_, + b)) 3y
where
wi)=1-[T+1- ty/T)? (32)

The weight function is chosen to have the following proper-
ties

O<wit <1 t=1,,T+1 33)
w(l) =0 (34)

wT +1)=1 (3%

w(T/2 + 1) > 0.50 (36)

On the first day of year n we have only observations from
preceding years, so all of the weight must be on preceding
years, that is, w(1) must equal zero. At the other extreme we
have all of the data from year n available. The assumption
that w(T + 1) equals 1 implies that year-to-year dependence in
the random mean process is weak. Specifically, the assumption
implies that for estimating Y, from H(T), previous years’ data
provide no further information once Y, is available. Equation
(36) implies that much of the information about Y, is available
at the midpoint of the year. Relatively less “new” information
about Y, should be expected as the year progresses. The
second half of the year, for example, contains less new infor-
mation than the first (provided, of course, that the first half is
observed).

4. APPLICATION OF THE WATER USe MODEL

The water use forecast system is used to schedule releases
from two water supply reservoirs located in the Potomac
River basin upstream of Washington, D. C. (see Palmer et al.
[1982] for a detailed discussion of water supply management
for the WMA). A large reservoir, located far from the WMA,
can provide water to the WMA with a travel time of approxi-
mately 5 days. Releases from a small local reservoir reach
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Fig. 2. Weekly demand factors for WMA water use for the 21 weeks beginning in May and ending in September.

water utility intakes within the day of release. The water use
model is developed for the summer season (May-September),
during which forecast information is needed for scheduling
water supply releases. ‘

For the WMA water supply system the large upstream res-
ervoir is operated to meet “average” water demand; the local
reservoir meets shortfalls arising from “extreme” demands.
Average demand is clearly a moving target. The estimated
Kendall slope estimator b, obtained from 1974 to 1986 WMA
water use data is 8 mgd/yr (mgd stands for million gallons per
day; 1 mgd = 5680 m? per day). The estimated weekly coef-
ficients (see Figure 2) obtained from (21) range from a mini-
mum of 0.92 at the beginning of May to a2 maximum of 1.06 in
mid-July, from which they decrease below 1 by the end of
September. For an annual mean water use of 500 mgd (the
1986 value for the WMA) the seasonal variation in mean
water use is 70 mgd (from 460 megd in early May to 530 mgd
in mid-July). The estimated day-of-week coefficients p,, ***, P,
(equation (22)) range from a maximum of 1.02 on Wednesday
to_a minimum of 0.97 on Sunday (the estimated day-of-week
coefficients, beginning with Sunday, are 0.97, 1.00, 1.01, 1.02,
1.01, 1.01, and 0.99). Differences in day-of-week water use
result in part from the fact that there is a larger population in
the service area during the week than on weekends (a signifi-
cant number of people work in the region served by WMA
water utilities but live outside of the area served by WMA
water utilities). For a weekly mean water use of 500 mgd the
range in mean water use associated with day of week is 25
mgd.

For scheduling an upstream release on day t, average water
use (for day t + 5) is estimated by it + SHM (¢). Tt follows
from (31) that the forecast is of the form

(e + SIM, (1) = rit + SHwO T, (0
+ (1 —wXY  +56)1 (37

To operate the small local reservoir, forecasts of 1-day-
ahead water use are required. To apply the forecast equation

(13), we need only specify the autoregressive parameter a. The
estimate obtained from (25) is 0.76. The forecast obtained from
(13) for 1-day-ahead water use is

X(t + 1) = aX, (1) + [t + 1) — aa@)IM, (1)
= 4aX (1) + [ + 1) — am(t)]
w0 + (1 —woX T, + 61 (38)

Figure 3 shows errors of 1-day-ahead forecasts for WMA
water use during the summer of 1986. Note that the errors are
weakly correlated and that variability of the estimators de-
creases as the year proceeds. The percent bias for 1986 1-day-
ahead forecasts is —0.1%; the standard error is 29 mgd.

5. SUMMARY AND CONCLUSIONS

A time series model of daily municipal water use is devel-
oped. Emphasis in model development is placed on long-term
trend, seasonality, and day-of-week effects. The model, which
is termed a conditional autoregressive process, can be inter-
preted as an autoregressive process with randomly varying
mean. The random mean process, which represents long-term
trend in mean water use, is treated in a nonparametric frame-
work. Conditional on the random mean water use, the model
reduces to a Gaussian autoregressive process with a modest
number of parameters.

Seasonality and day-of-week effects are captured in the
model through the unit demand function. The unit demand
function at time ¢, m(r), is the ratio of mean daily water use on
day t of the year to mean daily water use over the course of
the year. An important model assumption is that the unit
demand function does not vary from year to year, even if
long-term trend in mean water use is present.

An attractive feature of the water use model is compu-
tational tractability. The forecast equation derived in section 2
(equation (13)) can be easily implemented provided that two
estimation problems are solved. To implement the forecast
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Fig. 3. One-day-ahead WMA water use forecast errors for the summer of 1986.

equation, parameter estimators for the model parameters m(t)
and a are needed. Also, state estimators for the random (and
unknown) mean Y, are required. A notable feature of the pa-
rameter estimation procedure developed in section 3 is in-
clusion of a state estimation step. Parameter estimates for m(t)
and a are obtained after first applying a “detrending” pro-
cedure which is based on simple state estimators for the
random mean process. The state estimator that is developed
for use in the forecast equation is nonparametric and exploits
special structure of the water use data set.

Parameter and state estimation procedures are applied to
summer season water use in the Washington, D. C., Metropol-
itan Area. The estimation results confirm that long-term trend,
seasonality, and day-of-week effects are prominent features of
WMA water use. The water use forecast system developed for
the WMA is used to schedule releases from two water supply
reservoirs. A large upstream reservoir is operated to meet
“average” water demands. For operation of this reservoir the
state estimator of current mean water use (equation (37)) pro-
vides the necessary forecast information. One-day-ahead fore-
casts, obtained from (13), are used to operate a small local
reservoir, which covers shortfalls due to “extreme” water de-
mands.

A potentially useful extension to the forecast system in-
volves incorporation of precipitation data. This could be ac-
complished by expanding the model equation (1) to explicitly
include precipitation variables. An alternative is to incorpor-
ate precipitation variables into the random mean process {Y.}.
With the second approach, precipitation forecasts are not re-
quired for implementing a forecast system. Instead, observed
precipitation data are used, along with observed water use
data, to update the estimate of current mean water use.
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