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Abstract—In this paper we investigate the effect of sampling density on the estimation of the covariance
and semivariogram for homogeneous, isotropic, random fields. Two methods based on the ;east-squares
principle. and a third method known as the Minimum Interpolation Error method are sgudled whep the
analytic form of the covariance or semivariogram model is known a priori. The analysis is e}gcomphshed
through a sindle realization simulation experiment which is felt to represent the type of conditions usually -
encountered in real world environmental and geophysical field problems. The Turning Bands method is
used to generate the field at randomly distributed sampling points in a fixed field for three types of
correlation structure: exponential, Bgssel. and Gaussian models. The performance of the three estimation
methods is evaluated for varying sampling densities and correlation distances. The main resuits are: the
least-squares methods work best for preserving the pattern of correlation in most situations examined: fO{
a domain of fixed size, the ratio of the correlation distance to the length scale of the field is a measure of
the “information™ contained in the field, and when this ratio exceeded x0.2 the statistics of the process
became inaccurate. On the other hand, when this ratio is <0.2 reasonable estimates for the mean and
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variance were determined even for small sampling densities (& 25-50). The implications for practical

problems are discussed.
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INTRODUCTION

The analysis of geophysical phenomena as random
field now has become a widely used method for
‘characterizing spatial data. In groundwater hydro-
logy the research of Gambolati and Volpi (1979) and
Kitanidis (1983) are exampies of spatial character-
ization and interpolation of hydraulic properties in
porous media. The work of Chua and Bras (1982) and
Creutin and Obled (1982) provide other examples
applied to the study of rainfall fields. Another area
where characterization of field scale variability has
emerged as a critical problem is transport of contami-
nants or tracers in groundwater systems. Theories of
multidimensional ~dispersive 'mixing have been
proposed recently that suggest the variance and corre-
lation structure of permeability is an essential element
of the dispersion process. The work of Matheron and
deMarsily (1980), Gelhar and Axness (1983), and
Neuman. Winter, and Neuman (1987) stand out in
this area. This research has stimulated a number of
field experiments (e.g. MacKay and others, 1986), to
test the validity of the proposed theories. In each
situation the ability to estimate accurately the correla-
tion structure and statistical properties of the porous
medium from sampled field data is required.

For many applications the problem of sparse data
limits our ability to make meaningful estimates of the
statistics of the field or its correlation structure. Re-
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sults from time-series analysis offer some guidance to
this question. for example Jenkins and Watts (1968. p.
53) state, . . . the length T of the record determines
the extent to which peaks in the Fourier transform (of
the autocovariance function) may be distinguished.
On the other hand, the sampling interval A determines
the maximum frequency (Nyquist frequency) which
can be detected.” Thus, it has been determined that
the record length (or size of the domain). and the
average sampling interval (or sampling density) are
interrelated: and given some information about the
system at hand. an experiment actually can be de-
signed for a desired resolution and accuracy by con-

‘trolling T and A.

For spatially random processes ticse same con-
siderations certainly are valid, however, unlike time-
series analysis we have less control over the experi-
ment, because the domain may be fixed by nature (e.g.
a soil type or geologic strata), and the sampling den-
sity limited by economic considerations.

In this paper we examine the question of estima-
tion of correlation structure for two-dimensional, sta-
tionary, random fields, as a function of sampling
density for a domain of fixed area. Our approach has
been to conduct a fully controlled simulation experi-

. ment to determine the behavior of estimators for the

mean, variance, covariance, and semivariogram
under changing sampling density and correlation
length. In this situation the sampling scheme is taken
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to be uniformly random. Although we recognize that
under certain conditions there can be more efficient
sampling schemes (Ripley, 1982), the assumption is
justified here based on practical considerations such
as: (a) many existing networks can be described as
approximately uniformly random distributed; and (b)
as has been pointed out by Masry (1971), the recon-
struction of spectral and covariance estimators for

time series which minimize aliasing, is accomplished -

more efficiently by random sampling schemes. The
drawback to random sampling schemes, of course; is
the computational difficulty of estimating second-
order structure functions from scattered data. How-
ever, because scattered data is a common feature of
field problems, this will be the main concern of the
paper. .
In the experiment to follow we limit our consider-
- ations to stationary or more correctly, homogeneous
random fields, in two-dimensional space with isotro-
pic correlation structure. The experiment is conducted
by generating a single realization of the random field
for a specified number of sampling points via the
Turning Bands method (Mantoglou and Wilson,
1982). From each realization the parameters of a
specified correlation structure are estimated using one
of three methods. The first two estimation methods
are variations of the least-squares technique, and the
third method is based on the Minimum Interpolation
Error method (Bastin and Gevers, 1985). In each
-situation the form of the theoretical covariance or
semivariogram is assumed to be known a priori. Ex-
tension of the analysis to model identification is left
~ for future work.
Because the functional form of the true covariance
.of the underlying process and its parameter values are
known, we can compare the performance of our esti-
mators with respect to this true covariance. The pro-
blem of inferring the covariance of the process from a
single realization is of practical interest if the esti-
-mated covariance is to be used in simulation:type
studies. However, the estimators presented here also
can be used to estimate the realization-specific cova-
riance.

BASIC DEFINITIONS

A random process Z(u) is defined over the domain
Q c R with z(u) representing a single realization of
the processand u = (v, ¥) denotes location in Q. The
mean of the process Z(u) is given by

E{Zw)} ue Q ‘ e))

where £{-} is the expectation operator. The variance
of Z(u) is

cu) = Var{Z(w)} = E{[Z(u) — s} (2)

and the covariance between two points u, = (x,, y,)
and'u, = (x,, J) is defined as

uu) =

Cov(u,, hz) =

3

E{(Z(u,) - HEONZ () — p(uy)}.

From the geostatistics literature the semivariogram is
defined as ‘

7, u,) = Var{Z(u,) - Z(uy)}. @)

The field Z(u) is said to be homogeneous statistically
(or second-order stationary) and isotropic if the mean
is constant and

Cov(u,, u,) = Cov(u, — u,) = Cov(r) = ¢(r)

(%)

where

r = u — u,.

This implies that the covariance function depends
only on the distance between the points and not on
direction in the field.

Journel and Huijbregts (1978) &nd Mantoglou and
Wilson (1982) give several forms of covariance func-
tions used in geophysical analysis. The following are
adopted in this study:

(1) Exponential

c(r) = o'exp(—Br) r > 0and B = 0.(6)
(2) Bessel-type
co(r) = azBrKl(Br) r =0 @)

where K, () is modified Bessel function of second type
of order 1.
(3) Gaussian-type

or) = c'exp(—BF) r > 0. (8

In each situation the parameter.3 is proportional to
the inverse of the so-called “correlation scale” of the
process. which in practical terms is a measure of the
distance over which the process is correlated. We will
refer to B as the correlation parameter and B~' as the
correlation length. Figure 1 illustrates the covariance
models used in the study. :

Covariance function
1.0

1 = Exponential -
2 =Bessel
3 = Gaussian

08 -

06k

c(r)

04 —
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Figure 1. Covariance functions used in simuiation study.
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It can be demonstrated (Journel and Huijbregts,
1978) that for homogeneous fields the semivariogram
and the covariance are related

wr) = o0) = c(r) 9
or in terms of the correlation function o(r)
o) = 1 = [p(r)/c(0)}. (10

It follows from Equations (9) and (10) that for a
statistically homogeneous field, the semivariogram y
corresponding to Equations (6)=(8) is given by

2(r) = o[l —exp(—=Br} B > 0 r = 0

(11)
() = ¢l — BrK(Bn] r =2 0 (12)
") = o[l —exp(—=BA)] r = 0. (13)

The main objective of this study then is to estimate
parameters of the covariance or semivariogram from
a single realization of the field. for variable sampling
densities.

ESTIMATION OF THE FIELD STRUCTURE

In reality a random field is sampled at a discrete
number of locations in space. Ideally, one would
prefer to have a number of realizations of this field,
however, in most instances this is not possible. Thus,
to be able to estimate the parameters of the field and
taking advantage of the underlying theory, we make
the operational assumption that the statistics of a
single realization are approximately the same as those
of the underlying random field.

At this point we construct the estimators of the
field sampled at z locations. Let U = {u;, t, . . u,}
be a set of n sampling points in R with z(w;) fori = 1.
.. .. n being the corresponding values of the realiza-
tion. These points are taken from a random. uniform
distribution in the region Q < R*. It is assumed
throughout the paper that the observations z(u;) are
error free, The mean p of random field Z now can be
estimated as

. 1 ¢ )
po= =Y zuw) (14)
ni=i )
and the variance ¢° as
- 1 Z N
& = — Z {z(u) — iy (15)
- 1/a )

In this paper, estimation methods of field cova-
riance or semivariogram functions are based on two
different approaches. The first approach requires con-
struction of the empirical covariance (or semi-
variogram) which then is approximated by a par-
ticular model. The second approach is direct in that
no empirical statistics of the covariance are required
and the parameters of the assumed model are esti-
mated directiy from the sample points.

In the first approach we construct the empirical
covariance (or semivariogrami) by looking for all pairs
of data points (u;, u;) separated by distance r, + A,
fork = 1, ... K, where K is the number of intervals
for which we want to compute the empirical correla-
tion structure. Then, for all the pairs we form the.
empirical covariance:

qm)=522mm—mmw—m
) k i J.

Vi j: u—w € {re— A+ A}
(16)

where n, is the number of pairs satisfying the con-
dition given in Equation (16). Similarly the empirical
semivariogram is:

1 3
wlr) = n—zz =) — (@)
ki j

Vo{ijo o w—w € {ry, — Aore + MO}

(17

. As we can see from Equation (17), computation of the

variogram does not require the knowledge of the
mean. The consequences of this fact will be discussed
subsequently.

The parameters of a particular covariance (or
semivariogram) function given by Equations (6), (7),
or (8) can be obtained by minimization of

K
Z [e(r) — c(r)f

k=1

(18)

with respect to the vector of parameters a = {B>.
Similarly for the variogram. minimization of
K
Y b — wlnlf (19)
k=1,

yields estimates of parameters for the semivariogram
models as given in Equations (11), (12), and (13).

The basic question that arises from implementa-
tion of this scheme is how to select r,-.and A. The
interval (r — A. r + A) should be small enough to
minimize the smoothing effect introduced by aver-
aging overall pairs included in it. and large enoughso
that sufficient number of pairs n, are available to
obtain reliable estimates of ¢, (r,) or y,(r). This can
be a critical problem particularly at small lag distan-
ces if the covariance (or semivariogram) is to be used
for interpolation of the field. Unfortunately, because
the average number of pairs in each interval is propor-
tional to the distance, there may be a problem obtain-
ing enough data at small distances. Journel and
Huijbregts (1978) suggest that at least 30-50 pairs
should be used.

In this study we investigated two different appro-
aches for settling r and A.

Scheme 1. It is assumed that:
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(I)reyy —re = constant k& = 1,...,K—1.

l n
@Qr = —Zmin(d,-,:j = 1,..
n

i=]

wnyj # i)
Whe’re dy is the distance from point u, to point u;.
3)A = )2

(4) K is fixed (usually K = 10-15).

In other words r, is an average of the minimum

distances between the points in the field, and for this_

example all the intervals are equal. In this scheme we
do not have any control of the number of pairs n, for
k-th interval.

Scheme 2. This method is based on the following
assumptions:

MDr = min{rk:nk(fk) > N*} fork
= 1.....K ‘
@D r = 2 oro— o, fork
=2 ...K—1
G)A, = rf2 fork = Lo . K
(49) K = min {Kmn,min {k: Zk: r. = D*
i=1

fork = ..., Km;,}}

where D* is one-half of the maximum distance in €,
Kooy 18 fixed (K, = 10-15), and N* is the minimum
required number of pairs, the same for each interval.

We can describe this method in the following way.
Each interval length is minimized with the restriction
that it includes a minimum number of pairs (not less

than N*). Subsequent intervals are at least as large as .

each previous one, and the total number of intervals
is such that is covers no more than one-half of the
maximum distance in Q.

Once the empirical covariances (or variograms)
are computed we need to fit a selected model as in

Equations (6). (7). or (8) using Equations (18) or (19).

As was mentioned earlier, we will use the correct
model (i.e. the one from which the field was
generated) to determine the effect of sampling density
on the estimation of the correlation in the field.

The second approach to estimate the field cova-
riance (or semivariogram) is a direct method which
does not require computation of empirical functions.
The method is known as the Minimum Interpolation

* Error method and is described by Ripley (1981), Lebel
and Bastin (1985), and extensively discussed by Bastin
and Gevers (1985). It is a cross-validation-type me-
thod where each data point is withheld in turn and its
value is interpolated from the neighboring point.
Formally, it can be stated as:

min Z {:(u,)» — Zu;, a)}” (20)
a

where Z(u;, a) is an interpolated value of field Z at the
point u;. It also is a function of parameters a (in our
situation a single parameter B) through the cova-
riance (or semivariogram) model and can be ex-
pressed as:

J
i, a) = Y xz(u)

. -j=i . .
2D
The weights a; in the linear estimator of Equation (21)
can be determined by minimizing the variance of 3

(e.g. see Journel and Huijbregts, 1978) under nonbias
condition:

fori = 1,...,nandj # i

2% =L (22)
j=1
This leads to the system:

Cov(u,, u;) .. .. Cov(u,.u,) l' -y

Cov(u,, u,) Cov(u,, u;) 1 ’ 1,
1 R 1 0 i .
= |Cov(uy, u;) (‘23)

Cov(uy, u,)
| ;

where u 1s a Lagrange multiplier. and i = 1. ..., n.

The number of neighboring points. J, is selected
arbitrarily, however, the points should be those with
the highest correlation with the estimated point, that
is in the situation of isotropic fields. those closest. In
our study, J was fixed and equal to 4. Later we will
discuss some of the consequences of this assumption
in more detail. At this point note that the direct
method described here becomes expensive computa-
tionally if there are many data points. Also, the
criterion of Equation (20) is not objective because it
may be dominated by a few data points that are

-difficult to predict because of their isolation (Ripley,

1981).

GENERATION OF THE RANDOM FIELD

In generating a random field it is first necessary to
select a sampling scheme. In the time-series context,
Masry (1971) has pointed out that regular uniform
sampling may be inadequate for a unique recons-
truction of the spectrum or the covariance structure
from sampled data. Rather, he demonstrates that ran-
dom sampling is a more fruitful approach, and goes
on to suggest a number of possible schemes. It seems
reasonable that random sampling is appropriate for
multidimensional fields as well, and without the be-
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Figure 2. Generation of 2-D random field from [-D process along lines ..

nefit of a rigorous justification we adopt one such

_approach here. We use a random sampling scheme

where the coordinates x; and y; of points u, = (x;, ¥,),
for i=1, 2, ... n are drawn from the uniform
distributions U(X, 0) and U(0, Y) over the rectan-
gular region Q with area X - Y. The second step is to
generate values of the random process z(y;) at each
location in the field, «;, i = 1,2, .. ., n. This is done
using the Turning Bands Method (TBM), a name
coined by Matheron (1973). Mantoglou and Wilson
- (1982) derive the TBM equations for the two-dimen-
sional situation, which is recounted briefly here. The
basic idea is to.transform a stationary, two-dimen-
sional random field into the sum of a series of equi-
valent one-dimensional line processes. According to
Mantoglou and Wilson (1982), independent realiza-
tions of the line process ¥, with mean u and cova-
riance c¢,(t), are generated along L intersecting lines
(see Fig. 2). For each location u,, z(u;) is estimated
from '

o~

1

() = —= ¥ 4
() N (29
where L is the total number of intersecting lines.
Mantoglou and Wilson provide details of the trans-
formation between the covariance of the line process

¢,(t) and the general two-dimensional field.
The actual generation of the line process is accom-
plished here using the spectral method of Shinozuka

and Jan (1972) from the expression

Y0 = 2 Y (@bl cos @1 + B)29)
k=1

where s, (w;) is the spectral density for the covariance
¢,(t). The spectrum is discretized into m components
of central frequencies w,, k = 1, ... m with: the
increments w, — w,_, = Aw independent of k. @,
are independent random phase angles, uniformly dis-

tributed on the interval <0. 2n). The frequency w, is
the sum of w, and a small random frequency éw,
uniformly distributed. on (—Aw’/2, +Aw’/2) with
Aw;, <€ Aw. The addition of this small random fre-
quency is to avoid introduction of periodicities in the
result.

The spectral densities which correspond to Equa-
tions (6), (7), and (8) along an arbitrary line in the field
are given by '

(1) Exponential

s ® :
si(w) = 3 m (26)
(2) Bessel-type
N 1)
si(w) o m (27)
(3) Gaussian-type »
sw) = iz exp(—w’/4B?). (28)

4B

The expressions along with Equations (22) and
(24) are used to generate the field for a specified
sampling density. :

SIMULATION RESULTS

Performance criteria

Because we assume that the covariance function is
known, the objective is to estimate the parameters of
each generated field, namely the mean, variance, and
correlation scale. Then we determine the performance
of each estimator relative to the original process as a
function of sampling density. The performance of the
mean and variance estimators is straightforward be-
cause the original process has u = 0 and ¢ = 1.
Although the parameter B for each process is propor-
tional to the inverse of correlation length 8~ {length],
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Mean and variance Bessel—typs model
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Figure 3. Estimates of mean and variance vs sampling density for Bessel correlation model. ®—Variance
i estimate; O0—mean estimate.

it is convenient in this example to use (B — B) as our
performance measure, instead of 8~' — B~', where
B is the estimate and B is the true value.

Some practical results

For this experiment we generated realizations of
Z(u;), for n = 25, 50. 100, 400, 800, and 1000 points
in a field Q of 100 x 100 units. The shape parameter
B was specified as 0.025, 0.05, 0.10, and 0.20, which
corresponds to length scales of 40, 20, 10, and 5 units.
Although it is not necessary for the Turning Bands
Method, fixing the size of the field at 100 x 100 units
allows us to examine the effect of domain size on the
estimators. For many practical problems the observed
field itself may be fixed arbitrarily, either from physio-
graphic or economic considerations (e.g agricultural
field soils, physical boundaries, or landforms which
are too extensive and thus too expensive for detailed
field investigations, or because the domain is simply
unknown prior to sampling).

Figure 3 illustrates the effect of sampling density

on the mean and the variance estimates for realiza-
tions generated from the Bessel-type correlation
model as shown in Equation (12). The mean and
variance estimators for the Gaussian and exponential
models show similar behavior. For the situation of
large B (0.10, 0.20) or small correlation lengths B!
(20, 5) both the mean and variance estimates converge
to the expected values as n gets large. However, for

small values of B (0.025, 0.05) or large correlation
lengths (40, 20) the performance of the estimators is
poor with larger errors in the mean or variance and no
clear convergence as n gets large. Similar resuits were
observed for the exponential and Gaussian models.
Although we determined no differences in estimating
the mean and variance between the random field
models under consideration, it became clear that the
critical factor in parameter estimation was the degree
of correlation in the field. In the situation of short-
range correlation (large B), the first two moment
estimators performed well, whereas for long-range
correlation (small B) the estimators demonstrated a
poorer performance. An explanation of the poor per-
formance of the estimator for long-range correlation

~may be determined from sampling theory in time-

series analysis, where it is well known that a precise
reconstruction of the covariance or spectrum and thus
the variance of the process, is not possible when the *
decorrelation time (B~! in our situation) approaches
the length of the record (length of record L ~ ./area
in our example). The problem is that by fixing the size
of the -sampled field for a process with continuous
covariance, information from frequencies in the re-
cord @ > 4n/L are lost in the estimation. How large
an impact this has depends on the correlation scale of
the process. Figure 4 illustrates this result for sam-
pling densities of » = 100 and 1000 for each of the
correlation models used. As long as the length scale
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B~!did not exceed 20% of the length scale of the field
(L = 100 units), reasonably good estimates of the
variance could be determined even for sample sizes of
25-100. However, when B ~' was 40% of the field size.
even sampling densities of 1000 random points show-
ed poor estimator performance.

Estimating the shape parameter B

The shape parameters for each covariance and
semivariogram model [Egs. (6)<(8) and (11)<(13)] also
were estimated as a function of sampling density using
the three methods outlined earlier: (a) a least-squares
method where the lag interval is fixed and thus the
number of pairs per interval is arbitrary, (b) a least-
squares method where the lag interval is selected so
that there are a minimum number of pairs per inter-
val, and (c) a direct estimation approach known as the
Minimum Interpolation Error method. Figures 5. 6.
and 7 summarize the results of the numerical experi-

.ment. :
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) x .X
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Figure 5. Shape parameter error B — B vs sampling ‘density for Gaussian-type correlation model.
O—Least-squares method 1: ®—least-squares method 2; x—Minimum Interpolation Error method.



120 ’ W. F. Krajewski and C. J. DUFFY
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Figure 6. Shape parameter error 8 — B vs sampling density for the Bessel-type correlation model.
O—Least-squares method 1: ®—least-squares method 2: x—Minimum Interpolation Error method.

The first observation we can make is with regard to
the estimation of B from the covariance [Egs. (6)<8)]
or the semivariogram [Egs. (11)~(13)] models. Be-
cause the covariance requires a priori knowledge of
the mean we might expect bias in this additional
information to affect the estimation of B. However,
for our experiments there was almost no difference
between the B estimates from the covariance and the
semivariogram models, and this result seems to be the
situation whether the original field was Gaussian,
Bessel, or exponential in structure. This would suggest
that for the homogeneous (stationary) fields examined
here, there is no practical disadvantage to using either
the covariance or semivariogram to estimate correla-
tion structure even though the covariance requires the
estimation of an additional parameter. Of course this
experiment says nothing about parameter estimation
for nonstationary fields, or for weaker stationary
assumptions such as stationary increments.

A second observation is that. for the exponential.
Gaussian, and Bessel correlation models, the least-

square methods for estimation of B consistently con-
verge (B — B — 0) as sampling density increases.
Whether we used a constant lag interval (arbitrary
number of pairs) or a variable lag interval (minimum
number of pairs) made no discernable difference in

~ estimating B. The Minimum Interpolation Error

method (MIE) as applied here produced mixed re-
sults. In the Gaussian situation (Fig. 5), the B estimate
diverged for several examples (B = 0.05., 0.025) as
sampling density became large. For all three models
MIE had a tendency to oscillate about the true value,
whereas the least-square method demonstrated a
monotonic convergence with increasing sampling
density. Such behavior can be explained here by the

" way in which we implémented MIE method. We in-

cluded only four closest predictors [/ = 4 in Eq. (21))].
For high sampling density the correlation scale of the
field is observed through these closest points only.
Therefore, the behavior of the correlation models
near the origin (Fig. 1) becomes critical with respect to
the method’s ability to distinguish between various
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Figure 7. Shape parameter error 8 — B vs sampling density for exponential-type correlation model.
O—Least-squares method 1: @—Ileast-squares method 2; x—Minimum Interpolation Error method.

correlation scales. This effect is apparent in Figures
5-7 where the model with the smoothest behavior
near the origin (Bessel) gives the worst results for
higher sampling density. According to Bastin and
Gevers (1985) the MIE method can be improved via
the maximum likelihood approach. however, a distri-
bution assumption on the errors B — B must be
made. In general our results suggest that the least-
square techniques provide a “better” estimate of the
correlation parameter B, or in other words the pattern
of correlation is preserved most accurately.

SUMMARY AND CONCLUSIONS

A single realization simulation experiment was
conducted to determine the effect of sampling density
on the estimation of correlation structure in a homo-
geneous and isotropic random field. For a sampled
field of fixed size the estimated variance is affected
apparently strongly by the magnitude of spatial corre-

lation relative to the size of the field itself. When the
ratio of correlation length to field size exceeded B~'/L .
=~ 0.20, the estimated variance became inaccurate
even for large sample size (n = 1000). Conversely,
when this ratio was < 0.20 the estimated variance of
the field was close to the true value even for relatively
small sample size (n = 25-100). The effect of long-
range correlation on field sampling problems where
the domain is fixed arbitrarily in size (e.g. soil survey
in agricultural lands, resource reserve estimation. etc.)
could be dramatic; because the basic statistics of the
overall process would not be estimated accurately
regardless of the number of samples. The implication
of long-range correlation to Monte Carlo experiments
where parameter fields are generated may be more
critical. For example there has been interest recently
in evaluating the impact of spatial variations in per-
meability on hydraulic head in aquifers (Smith and
Freeze, 1979; and others). In this situation the
generated parameter field is used to assess the mean.

- variance, and correlation structure of the hydraulic
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head. Because the filter used is of the “‘low-pass’ type,
the output process head, naturally will have a longer
correlation length scale than the input process, perme-
ability. If the correlation structure of the input is not
selected carefully, the moments and correlation of the
output process will not be estimated accurately no
matter the number of points in the generated field.

For the homogeneous example, estimation of the
correlation parameter B as a function of sampling
density indicated no difference in using either the
covariance or variogram estimators. Both estimators
produced nearly identical results. However we would
not expect this to be the situation for nonstationary
fields where the mean or trend must be estimated as
well. .

The study performed here has shown the useful-
ness of simulation type experiments for investigation
of random fields. It has provided some quantitative
background for the qualitative problem of structure
estimation well known from mathematical and statis-
tical analysis. Similar studies on model identification
and nonstationary estimation are planned as a natural
extension of this work.
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