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Statistical Modeling of Daily Rainfall Occurrences

JAMES A. SMITH

Interstate Commission on the Potomac River Basin, Rockville, Maryland

In this paper. likelihood-based inference procedures for discrete point process models are developed,
and a new family of discrete point process models for daily rainfall occurrences is proposed. The model,
which is termed a Markov Bernoulli process. can be viewed as a sequence of Bernoulli trials with
randomized success probabilities. Contained within the family of Markov Bernoulli models are Markov
chain and Bernoulli trial models. Asymptotic properties of maximum likelihood estimators of Markov
Bernoulli model parameters are derived. These results provide the basis for assessing standard errors and
correlation of parameter estimators and for developing likelihood ratio tests to choose among Markov
Bernoulli. Markov chain. and Bernoulli trial models. Inference procedures are applied to a data set from

Washington. D. C.

1. INTRODUCTION

Markov chain models have played a major role in modeling
wet-day sequences. Two of the most attractive features of
Markov chain models are the ease with which seasonality is
accommodated and availability of effective statistical inference
procedures for parameter estimation and model selection [see
Stern and Coe. 1984]. In this paper we propose a new family
of models for wet-day sequences. which we term Markov Ber-
noulli processes. A Markov Bernoulli process can be viewed
as a sequence of Bernoulli trials with randomized success
probabilities. Although Markov Bernoulli processes contain
Markov chain models. we are motivated less by ideas adopted
from the Markov chain literature than by ideas from the con-
tinuous point process literature. In this respect we follow the
approach of Foufoula-Georgiou [1985] in developing “discrete
point process” models of rainfall occurrences (see also
Foufoula-Georgiou and Lettenmaier [1986] and Gutiorp
[1986]).

An attractive feature of (some) continuous point process
models is that physical significance can be readily attributed
to model components. Models that have been introduced as
physically based rainfall occurrence models generalize Poisson
processes 1n one of two ways. "Poisson cluster processes™ [see
Karvas and Delleur.-1981] are constructed by distributing
rainfall events about a Poisson process of “cluster centers.”
Kavvas and Delleur have shown that components of a Pois-
son cluster process have a natural interpretation based on
frontogenesis: Cluster centers correspond to fronts. each of
which has a random number of “storm™ events associated with
it. “Cox processes™ [see Smith and Karr, 1983] can be viewed
as Poisson processes with a randomly varying rate of oc-
currence. For modeling rainfall occurrences the random rate
of occurrence has been interpreted as a “stochastic climatolog-
ical process.” In the Cox process model developed by Smith
and Karr the random rate of occurrence is related to the
frequency and duration of anticyclonic events.

The discrete-time analog of Poisson processes is Bernoulli
trials. Generalizations of Bernoulli trials. including Markov
chain models are typically based on a time series approach
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rather than the point process approach. One notes that much
of the literature on wet-day sequences (see Waymire and Gupta
[1981] for a review) is concerned with determining the appro-
priate order of a Markov chain model..much as the literature
on time series modeling of streamflow is concerned with deter-
mining the appropriate number of autoregressive terms in an
autoregressive moving average model. Our approach to model
construction is to generalize Bernoulli trials via the point pro-
cess approach. A distinguishing feature of the point process
approach is reliance on the “stochastic intensity™ for descrip-
tion and statistical analysis of models. For a model of daily
rainfall occurrences the value of the stochastic intensity on a
given day is the conditional probability of a wet day given the
preceding history of wet-dry days.

By analogy with Cox processes we generalize Bernoulli
trials by randomizing the sequence of success probabilities.
For the Markov Bernoulli process the sequence of random-
ized success probabilities is particularly simple: it is a seasonal
Markov chain which. for a given day of year, has two states.
More complex models of wet-day sequences can be construct-
ed by selecting more complex sequences of randomized suc-
cess probabilities. We illustrate in section 3 that a discrete-
time analog of Nevman-Scott models can be constructed in
this fashion. We also note in section 3 that the “Poisson clus-
ter” construction has no discrete-time analog. An attractive
feature of Cox processes is availability of statistical inference
procedures [Smith and Karr. 1985]. Smith [ 1984] suggests that
Cox processes are amenable to incorporation of seasonality.
These features provide ground for hope that Markov Ber-
noulli processes may possess the attractive features of Markov
chain models.

Development of procedures for parameter estimation and
model selection is also motivated by the point process ap-
proach. The key result is theorem 4.1. in which the log likeli-
hood function of a discrete point process is represented as a
stmple function of the stochastic intensity of the point process.
It follows from theorem 4.1 that lLkelihood-based inference
procedures can be used whenever the stochastic intensity can
be computed.

Contents of the sections are as follows. In section 2 we
introduce the general framework for a seasonal point process
model of daily rainfall occurrences. The stochastic intensity of
a point process is introduced and used to define Bernoulli
point processes and Markov chain point processes. Markov
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Bernoulli point processes are the topic of section 3. The most
important distributional resuit for Markov Bernoulli processes
is a recursive formula for computing its stochastic intensity
(theorem 3.1). Relationships with other discrete point process
models are derived and an important invariance property of
Markov Bernoulli processes is presented. In section 4,
likelihood-based inference procedures are developed for sea-
sonal point process models. In theorem 4.1 it is shown that
maximum likelihood estimators of Markov Bernoulli model
parameters are consistent and asymptotically normal. Fur-
thermore, it is shown that log likelihood ratios have a limiting
x? distribution. These results provide the tools for (1) esti-
mating parameters of Markov Bernoulli models, (2) assessing
standard errors and correlation of parameter estimators, and
(3) carrying out tests to choose among Markov Bernoulli,
Markov chain, and Bernoulli trial models. To conclude sec-
tion 4, inference procedures for Markov Bernoulli models are
applied to a data set from Washington, D. C.

2. DEFINITIONS AND NOTATION

Consider a sequence of nonnegative random variables Z, !,

v Z;' Z\% -+, Zg*, - with the interpretation that Z,'
represents total rainfall on day ¢ of year i. The total number of
days during the year is T (which we will take to be 366
throughout the paper). The point process of wet-day oc-
currences is specified by

Yio=UZ'>x) t=1,--.T i=12 - (1)

that is, Y(x) equals | if Z,' is greater than the threshold x:
otherwise. ¥'(x) equals zero. The threshold x is generally de-
termined by the nature of the application and or sampling
thresholds of the station being used. The counting process
t
N =Y Yix) t=1,-.T =12 (2)
s=1

provides cumulative wet days over the course of year i. The
occurrence times of wet days are denoted

T,'(x) = min {r: Y{(x) = 1} Ni(x) > 1
(3)
<

L) =min {r> T,_,x): Yix) =1} k< N/{(x)

The data set of wet day occurrences is denoted by the o al-
gebra

HKAx)=6{Y(x)is <t} ua{Vix)s=1,- Tj<i}

t=1,---, T i=12 - (4)

The data set #(x) contains data on wet day occurrences up
to and including day ¢ of year i. The precipitation threshold x
plays only a “supporting” role in model development. To sim-
plify notation, we will suppress dependence on the threshold x
unless explicitly stated otherwise. Thus Y,' will denote the
point process of wet days (larger than x).

The double indexing by year and day of year is used to
emphasize two aspects of rainfall occurrences that are of par-
ticular importance in developing statistical inference pro-
cedures. From year to year the random vectors of rainfall
occurrences (each with T components) are very nearly inde-
pendent and identically distributed (IID) copies of each other.
Slight year-to-year dependence arises by virtue of the fact that
rainfall early in one year will be related to rainfall at the end
of the previous year. By contrast, within a year there is not
only day-to-day dependence but also pronounced seasonal in-
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homogeneity. This contrast plays an important role in deter-
mining the form of statistical inference procedures developed
in section 4.

The stochastic intensity {4,‘} of a point process {Y,'} is de-
fined by

A=PY =1 ] =L T i=1,2, (5

The value of 4, is the conditional probability that day ¢ of
year i is a wet day given the history of preceding wet days.
Equation (5) contains the assumption that the probability of
rainfall on a given day does not depend on the preceding
history of rainfall amounts, if we know the preceding history
of wet days.

In section 4, statistical inference procedures based on the
stochastic intensity (5) are developed for discrete point pro-
cesses. Smith and Karr [1985] develop intensity-based infer-
ence procedures for continuous point process models of rain-
fall occurrences. It will be seen that motivation and mechanics
for using intensity-based inference procedures are much sim-
pler in the discrete case.

Utility of the stochastic intensity for inference problems
stems largely from the facts that (1) the stochastic intensity
uniquely determines the distribution of a point process and (2)
the likelihood function has a simple representation in terms of
the stochastic intensity (see theorem 4.1). We have for n vec-

tors of 01 values ' = (y,' . y;9) i=1;-.n
P = V= Y s Yil=y'
n T )
= n ” PIY =y Y =y Y= )
(=1 5=1
n T . o .
=T [T w'ad = (= pN =4 6)

1}
v
[

2L

Let pmap E = |1.---. T into the interval [0. 1]. The point
process | Y;'! is termed a Bernoulli point process with success
probability p if

Bernoulli Point Process

il=pl) t=1 T  i=12 7

Thus for a Bernoulli point process the value of the stochastic
intensity is deterministic. depending only on day of year. On
day t of any year the stochastic intensity equals the success
probability p(¢).

2.2, Markov Chain Poinr Process

Let g, and ¢, map E into the interval (0. 1). The point
process Y} is termed a Markov chain point process with
transition probabilities ,, and g, if

Al =qUoY, =l —golenl = Y _ 9 (8)

t=1.--.T i=12

The value of the stochastic intensity on day ¢ of year i is q,(t) if
the previous day was wet and (1 — g,(t)) if the previous day
was dry. In other words. ¢,(r} is the conditional probability of
a wet day given that the preceding day was wet and | — g(t)
is the conditional probability of a wet day given that the
preceding day was dry.

Note that (8) is not well defined for ¢t = 1. Clearly, we want

Y,

=1

x=YT1—1 (9)
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whenever ¢t = | (and i is greater than 1). For t = 1, (9) states
that the value of Y on the day preceding the first day of year i
is the value of Y on the last day of year i-1. To simplify
presentation of results, we will not explicitly use notation of
the form (9) whenever interpretation is clear from context.

3. MARKOV BERNOULL! PROCESSES

In this section we introduce a class of discrete point pro-
cesses which will be termed Markov Bernoulli processes. A
Markov Bernoulli process can be viewed as a Bernoulli point
process with randomized success probability. The randomized
success probability is of particularly simple form: it is a (sea-
sonal) Markov chain that alternates between two states. The
main result of this section is theorem 3.1 in which a recursive
formula for computing the stochastic intensity of a Markov
Bernoult process is presented. In subsequent corollaries. re-
lationships between Markov Bernoulli processes and other
families of discrete point process models are presented and an
important invariance property of Markov Bernoulli processes
is derived. At the end of the section we indicate how more
complex models can be constructed from randomizing the suc-
cess probabilities of a Bernoulli point process by a Markov
chain. In particular. we construct in this fashion a discrete
analog of the Neyman-Scott model. We begin by defining a
Markov Bernoulli process.

Let (¥} be a Markov chain point process with transition
probabilities g, and ¢, and let p be a function mapping E into
(0, 1]. The sequence of randomized success probabilities is
given by

X' =pn¥

t=1L- T i=12- (10

Note that on day  of any year the random success probability
can take either the value p(z) or zero. The point process | ¥,'! is
termed a Markov Bernoulli point process with parameters p.
4o. and ¢, if for all positive integers n and 0-1 vectors 1' =
R I R T

P{Y" =" o

n
i=1"s

Y= X i=1-,n}

~

P{Y =y1X,%
1

jam B
o

¥eX S+ 1=y, X=X ) (11

it

s

It follows from (11) that (1) the sequence of wet-dryv days is
conditionally independent given the sequence {X,'! of success
probabilities, (2) the conditional probability of a wet day.
given that X, equals p(2), is p(t), and (3) the conditional prob-
ability of a wet day, given that X, equals zero. is zero. The
main distributional result for Markov Bernoulli processes is
the following recursive formula for the stochastic intensity.

3.1. Theorem 3.1

The stochastic intensity of a Markov Bernoulli process with
parameters p, g,. and g, is given by

A= p0[1 = qo(0] + pgolt) + g,(1) — 1]

; Sl=pt=1 .
;l:Yx—l —(I—Yr—l)—m__l)"l—l] (12)
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Proof

A'=E[Y#,_.7]
= E{E[Y1X,' )¢, "}
= E[X ¢,
=pOPIX, = pa) ¥, _,'}
= pO(P{X, = p(t), X,_," = p(t — 1)|#,_,")
+ PIX =p), X,_,'=0l#,_,}]
= pO[P{X,'=p(0IX,_'=pe—= D}P{X,_ ' =p(t—D|#,_,"}
+ P{X, =pniX,_,' = 0}P{X,_ "= Olo¢,_,}]
= pn{q,(OP{X,_ "= pit — D|o#,_ "}
+ (1 = qolX1 = P{X,_," = p(t — D|o#F,_,'D]
= PO = qo(1) +(golt) +a,() = DP{X,_ ' = plr = DI, _,'}]
= pltNl = qo(t))
+ PUINGo(t) + ,(0) = DLY,_ "+ (b= ¥, )
(L= plt — P{X, ) = p(t = DIoF,_, )]
= PNl — golt) + pteXgolt) + g, (1) — 1)

(1= p{t— 1)) | ]
_——_/'l‘l

FT (13)

‘[YM‘-HI =Y.

The following two corollaries characterize relationships
with Bernoulli point processes and Markov chain point pro-
cesses.

320 Corollury 1

A Markov Bernoulli process with parameters p, g,, and q,
is & Bernoulli point process if and only if g, + g, — 1 = 0, that
IS goltt =g {)—1=0¢t=1.--.T.

33 Corollury 2

A Markov Bernoulli process with parameters p. g,. and q,
1s a Markov chain point process if and only if p = [, that is
py=1lr=1---.T.

Corollary | follows by comparing (12) with (7): the second
corollary follows by comparing (12) with (8). These results are
of particular importance in developing likelihood ratio tests
for model selection in section 4.

We now examine relationships between Markov Bernoulli
processes and discrete renewal processes. Importance of re-
newal processes for rainfall modeling stems in large part from
data analysis results. For numerous data sets it has been
found that correlation of interarrival times for rainfall oc-
currences (within a season) is very small (see, for example,
Smith and Karr [1983]). suggesting the plausibility of renewal
models.

The point process | Y, is a renewal process if the interarri-
val times are independent and identically distributed. For sim-
plicity we will denote the interarrival times of {Y,'} by U,, U,.
. The distribution of a discrete renewal process can be
specified by its probability mass function

fiky=PlU, =k} k=12 (14)
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or hazard function
h(k)=P{U,=k|Uj>k—1} k>2

(15)
k) =f(1) k=1
The two are related by
{
h{k)=——fk—f1 k=12 (16)
1= X f0
j=1

Importance of the hazard function is clear from the following
lemma [Karr, 1986].

34. Lemma

The stochastic intensity of a renewal process is given by
A= RV (17)

where h is the hazard function and [V,'} is the backward re-
currence time, that is. the time that has elapsed since the most
recent event.

3.5. Corollary 3

A Markov Bernoulli process with parameters p{ < ). 4,. and
4,. which do not vary with time of vear i1s a renewal process
with hazard function

1 —qg) l—(1=pyg
hik) = ol do *pi: 1 jl
p+l=phag+q,) [ =pl[l—(qgo+q, — LNl —p)]
UL~ pUg + g, — D] (18)
3.6. Proof

It follows from (12) that
A= hEH
where h is the solution to the first-order difference equation
WKy =p(l —qg) — (o + 4, — Xl —phtk — 1) (19)
with initial condition
n(l) = pq,

The solution to (19) is given by (18) (see, for example, Goldberg
[1958]).

3.7. Remarks

I If go + q, — | is greater than zero, h is a decreasing
function of k. If g4 + q, — 1 is less than zero. h is an oscil-
lating function of k. In particular, (1) is less than h(2) if 4o
+ g, — L is less than zero, implying that rainfall is more likely
two days following a wet day than the day after a wet day.
Recall that if g, + g, — | equals zero. the point process is
Bernoulli. We can thus view g, + ¢, — | as a measure of tem-
poral correlation of the point process.

2. In the case that the parameters p, g,, and q, vary with
time of year, it follows from (12) that

’;‘ti = hx( Vll) (20)

where the functions h, ¢t =1, ---, T are solutions to the

system of difference equations
hk) = pleX 1 ~qo(t) ~(qol) + g, (1) — IX1 ~ p(e)h, _ (k—1)
h(D)=p(n)g,()

(2D

Existence of solutions and general expressions for solutions
can be obtained from results in Goldberg [ 1958]. While (20)
does not provide a useful computational tool (in the way that
(18) does), it does indicate an alternative strategy for obtaining
“seasonal renewal models.” Instead of dividing the year into
homogeneous seasons and fitting separate renewal models for
each season. one introduces seasonality into a renewal model
(specified by its hazard function as in (17)) through the sto-
chastic intensity using the representation (20).

An attractive feature of Markov Bernoulli processes is in-
variance under random deletion (or p-thinning) of events. Co-
rollary 4 below states that if we randomly delete wet days
from a Markov Bernoulli model, we still have a Markov Ber-
noulli model. As discussed below. this property insures that
model selection is not too strongly tied to the particular pre-
cipitation threshold that is chosen. Before presenting corol-
laries 4 and § we define the “p-thinning” of a point process.
Let {Z,') be a Bernoulli point process with success probability
p. which is independent of the point process {Y'}. The point
process | ¥.'! specified by

=20 t=1-T i=12 (22

is termed a p-thinning of [ Y,'}. From (22) it is seen that the
p-thinning { ¥/ is constructed by randomly deleting events of
Yo an event of [Y') that occurs on day s of any vear is
retained with probability p(s) and deleted with probability
(1 — pts)). Corollary S below is virtually a paraphrase of the
definition of a Markov Bernoulli process. Corollary 4 follows
from the commutative property of p-thinning.

3.8. Corollary ¢4
The p-thinning | ¥) of a Markov Bernoulli process A

t
with parameters p. q,. and g, is a Markov Bernoulli process

with parameters gp. q,, and q,.

39, Corollary 5

The p-thinning of a Markov chain point process with pa-
rameters 4, and g, is a Markov Bernoulli process with param-
eters p. g,. and ¢,.

A common assumption in modeling daily precipitation is
that precipitation amount 1s conditionally independent of pre-
vious precipitation alues given that positive precipitation
occurs (see. for example. Stern und Coe [1984] and Woolhiser
and Roldan [1982]). that 1s

PiZ'<xZ}>0.2Z, ' .Z,"

=PIZ}<xZ >0 =H(x) (23)

where, for each r. H (x) is a distribution function on (0, x). In
this case, the point process of days with total precipitation
greater than x. [¥'(x)! is a p-thinning of the point process of
days with positive rainfall | ¥,0)}, with

P =1-Hix) t=1.T (24)

It follows from the preceding corollary that if the con-
ditional independence property (23) holds and if { ¥¥(x)} is a
Markov chain for some x > 0. then for any u not equal to x,
Y{(u) is not a Markov chain. On the other hand. if {Yix)}isa
Markov Bernoulli process for some x > 0, then {Y(x + u)} is
a Markov Bernoulli process for all u > 0. This invariance
property of Markov Bernoulli processes under p-thinning is
very attractive in light of (23).
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We conclude this section with a discussion of extensions to
the Markov Bernoulli model. At the beginning of the section
we noted that the Markov Bernoulli model can be viewed as a
Bernoulli point process with randomized success probabilities.
The random sequence of success probabilities {X,'} for a
Markov Bernoulli process is a simple Markov chain. By al-
lowing {X,} to be a more complicated Markov chain we
obtain a broad family of discrete point process models, includ-
ing discrete analogs tosNeyman-Scott models. The reason for
restricting the sequence of randomized success probabilities to
be a Markov chain is that the stochastic intensity of the re-
sulting models can often be computed from “filter equations”
analogous to (12).

A constructive definition of a discrete Neyman-Scott model
would procede along the following lines ({for notational sim-
plicity we consider a stationary model on the positive in-
tegers). Let {T,} be arrival times of a Bernoulli point process
on the nonnegative integers. representing “cluster centers.” Let
{N,} be a sequence of nonnegative integer-valued random
variables with N, representing the number of cluster members
associated with the cluster located at time T, We now attempt
to distribute cluster members about cluster centers. The prob-
lem we encounter is that unless N, equals zero or 1 for all i. we
cannot avoid the possibility of having more than one event on
a single day. One possibility for sidestepping this problem is to
count multiple events as one. Instead. we pursue a totally
different approach.

Smith and Karr [1985] show that a large class of Nevman-
Scott processes can be represented as Cox processes (that is,
Poisson processes for which the rate of occurrence is a
random process). The following result suggests a different ap-
proach for constructing a discrete Neyman-Scott model.

3.10. Lemma [Smith and Karr, 1985]

Let N be a Neyman-Scott process on [0, x) of the follow-
ing form: (1) the Poisson process of cluster centers is N : arriv-
al times are denoted T, (2) the distribution of cluster sizes is
Poisson with parameter a. and (3) the distances from each
cluster center to its cluster members are IID exponentially
distributed with parameter b. Then N is a Cox process direc-
ted by the Markov process

8
X(t) =exp (—b)X(0) + ab Y exp(—b(t ~ T) (29
i=1
The Neyman-Scott process N can be interpreted as a Poisson
process with randomized rate of occurrence given by the
Markov process (25).

By analogy with (25) we introduce the following definition
of a discrete Neyman-Scott model. Let {¥,} be a stationary
Bernoulli point process on Z, = {1, 2, -- -} with success prob-
ability p, arrival times {T;! and counting process {N}. Let

i
X, =bXy+ab ¥ b T

i=1

(26)
where a. b > 0,
a ¥ <
k=1

and X, is chosen to have the stationary distribution of the
Markov chain {X,]. A point process {Y,} on Z. is a discrete
Neyman-Scott process with parameters a, b, and p if for all
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positive integers n and 0-1 vectors (y,, -, y,) :
P{yn =y, Y, =y1X,120}
=[] P{Y,=ypJX} =[]y X, +(-yX1=-X) (@27
=1 t=1

Guttorp [1986] notes that the “number of discrete time
models of rainfall is rather limited.” He points in particular to
the need to “develop discrete time cluster processes.” In this
section we have illustrated a rather flexible approach for ac-
complishing this task. In the next section we turn our atten-
tion to the important problems of parameter estimation and
model selection with the hope that the attractive statistical
inference procedures available for Markov chain models can
be generalized for Markov Bernoulli models.

4. INTENSITY-BASED STATISTICAL INFERENCE

In this section we develop likelihood-based inference pro-
cedures for discrete point processes {Y,'}, establish asymptotic
properties for maximum likelihood estimators of Markov Ber-
noulli model parameters, and apply inference procedures to a
data set from Washington, D. C. The principal results are
theorem 4.1, which exhibits the log likelihood function of a
discrete point process as a simple function of the stochastic
intensity and theorem 4.2. which asserts that maximum likeli-
hood estimators of Markov Bernoulli model parameters are
consistent and asymptotically normal and that log likelihood
ratios have a limiting z* distribution. Theorem 4.1 tells us how
to estimate parameters: theorem 4.2 tells us how to assess
standard errors and correlation of parameter estimates and
how to select among competing classes of models. Theorem
4.2 guarantees that generalization of the Markov chain model
to the Markov Bernoulli model is not done at the cost of
losing the attractive statistical inference procedures described
by Stern and Coe [1984].

For the Markov Bernoulli model presented in section 3 it is
impractical to estimate all 37 parameters of the parameter
functions p. ¢,. and ¢,. For implementation of the model it is
necessary to parameterize p. ¢,. and ¢, in the form

plt) = fi(t. 0)

Gl =/t =1 T 0=(8, -0, (28)

q ) = [, 0)

where ¢ € ©® and © is a compact subset of R? Later in this
section we will discuss practical aspects of the parame-
terization (28). Now we are concerned with establishing con-
ditions under which asymptotic properties of maximum likeli-
hood estimators of Markov Bernoulli model parameters hold.
For this purpose we need to assume that the functions f,, f5,
and f; are continuous in ¢ and possess continuous derivatives
up to order 3. We now present a representation for the likeli-
hood function of a discrete point process depending on d real-
valued parameters. 0.

4.1. Theorem 4.1

The log likelihood function of a point process {Y,} with
stochastic intensity {4,'} taking values in (0, 1], given observa-
tions over n years is

n T

L®=Y ¥ Yiogi'+(1—Yhlog(l -4

i=1s=1

(29
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4.2. Proof

The result follows immediately from (6). Model parameters
“appear” on the right-hand side of (29) through the stochastic

intensity.
The score functions are defined by
OL(6) :
V.01, =, ae( j=1--.d (30)

J

It follows from (29) that

n T cA i
[U.0),=% ¥ (L;

i=1 s=1

) (4, =497 =4 (3D

The maximum likelihood estimator 6 is the solution to the
system of equations

U =0 (32)

The observed information matrix V() is defined by
V.(6)] CLA) 133)
HACHIE ) 33

The Fisher information matrix /(¢) is reasonably defined for
our model (see (38) and (39) below) by

S
[[(0)]],." = E[_( i :I

20,06,

{34

Before presenting the main theorem we give results for the
observed information matrix and Fisher information matrix.

4.3. Lemma |

The observed information matrix is given by

n T (:2/ i
V)], = — S =y
[ n( )]J‘k ig} S=Zl [69/891‘ 1A € ok
Caltéit 1 =24
- Ll ———/——z}( Y, =4
0, CO, (A1 — A
Lo Gafent it
+ Zl Zl 5; ) [4'(1 — ih] (35)
44. Lemma 2
The Fisher information matrix is given by
L éatent .
9], = El — == (A1 = i) ! (36)
LI, ,g, [59, 2, L =AY

Lemma 1 follows from direct calculation of {33) (using the
differentiability assumptions on f,, f, and f;). Proofs of lemma
2 and theorem 4.2 are sketched in the Appendix. We denote
below the true model parameters by 6,. As in theorem 4.1, the
subscript n is for years.

4.5. Theorem 4.2

The following properties hold for maximum likelihood esti-
mators of Markov Bernoulli process parameters.

P
6 — 0, (37
D
n' 30 — 6,) — N(O, I(8,)"") (38)
P
n=(0) — 1(8,) (39)
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D
AL(0) — L) — x,2 (40)

Practical significance of the theorem can be summarized as
follows. From (37) we are guaranteed that for sufficiently large
data sets, maximum likelihood estimators will, with high prob-
ability, be close to the true model parameters. Standard errors
and correlations of parameter estimates can be assessed using
(35), (38), and (39). Finally, (40) provides a tool for model
selection that is particularly useful when competing models
are embedded in one another (as, for example, Markov chain
models are embedded in Markov Bernoulli models).

Note that the form of asymptotic properties of maximum
likelihood estimators does not depend heavily on properties of
the Markov Bernoulli model. Precisely the same asymptotic
results ((37)440)) will hold in a much broader setting. Con-
ditions under which asymptotic properties will hold can be
obtained by mimicking conditions under which asymptotic
properties of maximum likelihood estimators for continuous
point processes hold (see Karr [1986], Section 9.2, or Ogata
[1978]). In effect, one needs three types of conditions: (1) the
stochastic intensity must be a “smooth” function of unknown
parameters. (2) dependence of the stochastic intensity on the
past must die out sufficiently quickly. and (3) the Fisher infor-
mation matrix must be invertible. Using conditions of this
type. one can derive asymptotic properties of maximum likeli-
hood estimators for a broad class of discrete point process
models. including the discrete Neyman-Scott model presented
in section 3.

We conclude this section by applying inference procedures
developed in this section to a 10-year record of daily precipi-
tation data (1971- 1980) from Washington, D. C. Our primary
tasks are (1) to estimate parameters of a Markov Bernouili
model and (2) decide whether a Markov Bernoulli model is
better than a Markov chain or Bernoulli trials model. Fur-
thermore, we want to carry out these tasks for a range of
precipitation thresholds. Below we present results for three
“wet day” thresholds: 0.01. 0.10, and 1.00 inches. Figure !
shows the unconditional wet day success probability by
season for each of the wet day thresholds. Seasonality is clear-
ly an important feature of the data.

Before implementing parameter estimation and model selec-
tion procedures we must parameterize the seasonal parameter
functions p(1). gol). and g, We will take our seasonal pa-
rameter functions to be of the form

i L h 2m> 9 ‘2mt
< f -— - —_— ——
exp N , 51N 366, +8; cos (366

f(.8,.6,.0,) = i e
l-exp<t ~8,:in{ =)+0
| - 3

where 6,, 8,, and 8, € R.

The following properties of the parameterization (41) are of
primary importance.

1. The parameter functions are “probabilities.” that is,

f{t,0,,8,.0,)€(0, 1) t=1,, T (42)

This condition is necessary because all of our parameter func-
tions are either “transition probabilities” or “success probabii-
ities.”

2. Forf,=6,=0,
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Fig. 1. Unconditional wet day success probability by season for
Washington. D. C. (for thresholds of 0.01. 0.10. and 1.00 inches).

exp 10,)

J.6,.8,.8,) = (43)

1 +exp |6,}

that is. the parameter functions do not vary with time of year.

3. For large positive values of 8, the parameter function is
close to 1: for large negative values of 6, the parameter func-
tion is close to zero. In other words.

lim f(.60,.0, 0,)=1 t=1.-.T (44)
0~ x

im f(.0,.0,,6)=0 (=1 --.T (45)
60— -

Using (41) for the Markov Bernoulli model we obtain nine

parameters, € = (0,. - -. 0,). specified by
ple) = fle. 8,.6,. 8, (46)
qolt) = fl1. 8,. 8. ;) (47;
q,(t) = flr, 0. B4, 0,) (48)

To estimate the nine parameters of the Markov Bernoulli
model. the likelihood function is maximized numerically using
the representation (29) for it (in terms of the stochastic inten-
sity) and the representation (12) for the stochastic intensity of
a Markov Bernoulli model. Initial parameter estimates are:
6, = a “large” positive value (see (44)), 0, = 0, = 0 (see (43))
and 0,-6, equal to maximum likelihood estimates of Markov
chain parameters obtained using the procedures described by
Stern and Coe [1984]. Parameter estimates for threshold
values of 0.01, 0.10, and 1.00 inches are given in Table 1.

From Table 1 it is seen that the estimated thinning function
p(r) is a decreasing function of precipitation threshold. The
Markov Bernoulli model is most similar to the Markov chain
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]
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Fig. 2. Estimated seasonally varying values of the “temporal corre-
lation™ g, + q, — 1 for thresholds of 0.01 and 1.00 inches.

for the smallest threshold value. For this threshold the thin-
ning function varies seasonally about a value of 0.88.

Recall from section 3 that a measure of temporal corre-
lation for the Markov Bernoulli model is g, + g, — 1. From
Table 1 is seen that temporal correlation decreases with in-
creasing threshold. For the 0.01-inch threshold. g, + ¢, — 1
varies seasonally about a value of 0.22; for the 1.00-inch
threshold. g, + g, — 1 varies about a value of 0.05 (see Figure
2).

Qualitative features of parameter estimates suggest the fol-
lowing dependence of model selection on precipitation thresh-
old. For small precipitation thresholds the Markov Bernoulli
model is similar to the Markov chain model. For large thresh-
olds the Markov Bernoulli model is indistinguishable from a
Bernoulli trials model. For "moderate™ thresholds, Markov
Bernoulli models are different (and superior) to both Markov
chain and Bernoulli trial models.

Likelihood ratio tests. based on (40) can be used to more
formally assess questions of model suitability. A likelihood
ratio test for model selection between Markov Bernoulli and
Markov chain models is obtained by replacing the “true pa-
rameter” 0, in (40) with maximum likelihood estimators of a
Markov chain model with parameters g, and g, specified by
{47) and (48). Recall from section 3 that a Markov Bernoulli
model with thinning function p identically equal to 1 is a
Markov chain. The distribution of the test statistic is approxi-
mately x? with 3 degrees of freedom. In similar fashion, a
likelihood ratio test is constructed for model selection between
Markov Bernoulli and Bernoulli trial models.

Table 2 contains log likelihood ratios (with approximate
significance levels in parentheses) for tests of Markov Ber-

TABLE 2. Likelihood Ratio Test Valies With Significance Levels
in Parentheses
TABLE 1. Markov Bernoulli Model Parameter Estimates for Wet
Day Thresholds of 0.01. 0.10. and 1.00 Inches Markov Bernoulli Markov Bernoulli
Versus Versus

Threshold 6, 9, 0, 6, 0, 6, 6. 6, 6, Markov Chain Bernoulli

0.01 21 -04 -02 10 -04 00 00 02 00 0.01 2.5(0.6) >20(>0.99)

0.10 16 —-02 -02 14 -03 00 -05 04 00 0.10 3.8(0.7) >20(>0.99)

1.00 -05 -03 -02 34 -03 01 -24 02 0l 1.00 <1.0(<0.1) <1(<0.1)







892 SMITH: STATISTICAL MODELING OF DAILY RAINFALL OCCURRENCES

noulli versus Markov chains and Markov Bernoulli versus
Bernoulli trials. For a threshold of one inch, selection of a
model more complex than a seasonal Bernoulli trials model is
clearly unsupportable. The Markov Bernoulli model is prefer-
able to the Markov chain model for both the 0.01- and 0.10-
inch thresholds. Preference for the Markov Bernoulli model is
strongest at the 0.10-inch threshold.

E]
S. SUMMARY AND CONCLUSIONS

The main points of the paper are summarized below.

. A new family of discrete point process models of rainfall
occurrences, termed Markov Bernoulli processes, is proposed.
A Markov Bernoulli process can be viewed as a sequence of
Bernoulli trials with randomized success probabilities. The
family of Markov Bernoulli processes not only contains
Markov chain and Bernoulli trial models, but also. both fami-
lies can be represented as Markov Bernoulli models via simple
parameterizations. Seasonality is easily accommodated in
Markov Bernoulli models, as is the case with Markov chain
models of wet-dry sequences. Unlike Markov chain models.
Markov Bernoulli processes are invariant under random de-
letion of wet days. Random deletion arises in modeling wet-
dry sequences when more than one precipitation threshold is
used to define a wet day. Markov Bernoulli models can be
easily generalized to more complex models of wet-day se-
quences by appropriate choice of the sequence of “randomized
success probabilities.” As an example, we present in section 3 a
discrete analog to the Neyman-Scott model.

2. Likelihood-based inference procedures are developed
for discrete point process models of wet-dry sequences. We
obtain asymptotic properties for maximum likelihood esti-
mators of Markov Bernoulli model parameters. In particular,
we show in theorem 4.2 that maximum likelihood estimators
are consistent and asymptoticaily normal and that log likeli-
hood ratios have a limiting y* distribution. These results pro-
vide the necessary tools for assessing standard errors and cor-
relation of Markov Bernoulli model parameter estimators and
for developing likelihood ratio tests for deciding whether
Markov Bernoulli models are better than Markov chain and
Bernoulli trial models._

3. Inference procedures developed for Markov Bernoulli
models are applied to a data set from Washington, D. C. We
present results for wet-dry sequences with precipitation thresh-
olds of 0.01, 0.10, and 1.00 inches. Results illustrate dependence
of model selection on precipitation threshold. For large pre-
cipitation thresholds there is little justification for resorting to
more complex models than Bernoulli trial models. For the
smallest threshold the Markov Bernoulli model is very nearly
a Markov chain. With moderate thinning, the Markov Ber-
noulli model diverges from the Markov chain model.

The inference procedures we present provide not only quan-
titative tests for model selection but also tools that can be
used to qualitatively evaluate significance of parameter esti-
mates. These tools are of particular value in situations where
physical interpretation is attributed to parameter estimates.
Precipitation modeling has increasingly moved in the direc-
tion of physically based models. As increasingly- sophisticated
models of rainfall are developed. it is important that devel-
opment of statistical tools keep pace.

APPENDIX

In this Appendix we sketch the proofs of lemma 2 and
theorem 4.2. The key to obtaining asymptotic results for

3

intensity-based inference procedures is that the sequence
{Y,' — 4} is a martingale difference series with respect to the
data set {#,'}, that s,
ELY =40, _]1=0 =1, T (AD
i= l' 2’ PN

The representation for the Fisher information matrix pre-
sented in lemma 2 follows from (A1) as follows. We have, from
(29) and (30), that

T
(680)]ju = = ¥ ELZMY,' = 4"

=1

Tores e
Bl 2 Ly =gy 2
+5§1 [c’G, Py (411 = 4,1 ] (A2)
where
220 &it it 1 -2
T B S SR e
C T emge, M A R e Ty (AY

depends only on observations in H,_, ' It follows that

T
UOu= - Y E{E[Z Y}

-
s=1

- ';'11"‘[3- 1 l]}

DRI

+s=£l E{é—%c‘—é[)"l“ —)-,[)]_'} (A4)
The lemma follows by noting that
E{ELZMY, — i, ']
= E{ZJENY, - 4N, ']} =0 (A9)

An important feature of Markov Bernoulli models is that

{4,'} has the same distribution as {4,'} for all i. This property

is used in defining the Fisher information and in the proof of
theorem 4.2, which we sketch below.

To prove asymptotic normality, we first take a Taylor series
expansion of the score function about §,,. We obtain

Unl0) = U (o) = ~V,(6*X6 — 6, {A6)

where 0* is on the line segment between ¢ and 8,. Substituting
the maximum likelihood estimator § in (A6), we obtain

= U0 = =V 0*X0 — 8, (A7)
Multiplying both sides by n ! * yields
nTlRUL0,) = [T V0 Int (6~ 6,) (A8)

To complete the proof of asymptotic normality, we need to
show that

no 0% — 1(6,) (A9)
and
nTll (8,) — N[O, I{6,)] (A10)
We begin with (A10). Setting
T CAN . ) :
Zi = Z _(«7 [/‘xx(l - "':l)]-l(y;. - ;‘Jl) (All)
s=1

we have, from (31), that

Udby) = Y 2, (A12)
i=1
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Note that Z, is a random vector of dimension d. Using com-
putations analogous to (AS), it is straightforward to show that

E[Z]=0 (A13)
E[Z);, = U(Bo)); 5 (A14)
E[Zizl]j.k = [o]j.k (A15)

for i different from 1. ,

Condition (A10) follows now from a standard central limit
theorem for stationary ergodic sequences (see, for example,
Karr [1986]). Similarly, consistency of the maximum likeli-
hood estimator follows from (A12). (A13), and the strong law
of large numbers for stationary ergodic sequences. By (A9) the
proof of asymptotic normality is complete if we prove consist-
ency of the observed information matrix as an estimator of the
Fisher information matrix. In proving lemma 2 we carried out
computations which show that

E[n™"V(0,)] = [116,)],, (A16)

The consistency result follows from lemma 1 of section 4 and
the strong law of large numbers for martingale difference
series using the martingale difference property of | ¥, — 4"}

To show that log likelihood ratios have a limiting y? distri-
bution, we take a Taylor series expansion of L (8) about the

maximum likelihood estimator 4, obtaining,
L0 =L(0)+0=0U (D=3 0*x0-0T  (ALT)

where 6* is on the line segment between 0 and §. Evaluating
(A17) at the true parameter 8, and using the fact the U (f) is
by definition equal to zero. we obtain

L(8,) = L(6) = —4(8, — O)V,(6*K6, — T (A18)
It follows that
—2[L(Bg) — L(D)] = n' %8, — O)[n~'V,(6%)]n' 36, — 6)T

(A19)
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The result follows from asymptotic normality and consistency
of the estimators §.
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