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Estimating the Upper Tail of Flood Frequency Distributions

JAMES A. SMITH

Interstate Commission on the Potomac River Basin, Rockville, Maryland

Procedures for estimating recurrence intervals of extreme floods are developed. Estimation procedures
proposed in this paper differ from standard procedures in that only the largest 10-20% of flood peaks
are explicitly used to estimate flood quantiles. Quantile estimation procedures are developed for both
annual peak and seasonal flood frequency distributions. The underlying model of flood peaks is a
marked point process {7}‘. Z,'}, where 7;.‘ represents time of occurrence of the jth flood during year i and
the mark Z' represents’ magnitude of the flood peak. Results from extreme value theory are used to
parameterize the upper tail of flood peak distributions. Quantile estimation procedures are applied to the
92-year record of flood peaks from the Potomac River. Results suggest that Potomac flood peaks are
bounded above. The estimated upper bound is only 20% larger than the flood of record.

1. INTRODUCTION

The classical approach to flood frequency analysis is to
treat the sequence of instantaneous annual peak discharges
over a period of n years, Y, - --, Y, as independent and identi-
cally distributed (IID) random variables with distribution
function F. We are primarily concerned with estimating quan-
tiles of F,

Q(a) = inf {x: F(x) > a} x e [0, i] 1)

where x is typically very close to 1; the value of the 100-year
flood, for example, is given by Q(0.99). In the classical frame-
work quantile estimators are obtained after first estimating all
of the parameters of F. If, for example,

A\
F(x)=1—exp{—<x6#)} Q)

is the Weibull distribution, the maximum likelihood estimator
of Q(=) is given by

0@ =i + [ —log (I — x)]*"* (3
where j, 6, and k are maximum likelihood estimators of the
parameters of F obtained frem Y,, ---, Y..

The procedures we present for estimating quantiles of flood
frequency distributions are motivated by DuMouchels [1983]
suggestion to “let the tails speak for themselves.” In practice,
this\\sgggestion means that only the upper order statistics
should be used to estimate the upper tail of a distribution.
Similar approaches have been proposed for flood frequency
analysis. Prescott and Walden [1983] propose that parameters
of a specified flood frequency distribution F should be esti-
mated by censored maximum likelihood with censoring ap-
plied so as to retain the upper order statistics of the annual
peak sample. Procedures presented in this paper for flood
frequency analysis are closely related to censored maximum
likelihood methods; there are, however, fundamental differ-
ences.

The quantile estimation procedures proposed in sections 3
and S differ from censored maximum likelihood methods in
that we do not specify 2 parametric form of the annual peak
distribution F. Instead we use results from extreme value
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theory to specify a parametric form for the “tail distribution,”
F ) = P{Y,—u < )IY, > u} )

Our procedures will use the largest 10-20% of observations to
estimate the tail distribution F,.

Connections between extreme value theory and flood fre-
quency analysis have been close. In Statistics of Extremes,
Gumbel [1958] suggests that annual flood peaks, by virtue of
their representation as the maxima of numerous loosely con-
nected events, should follow one of the extreme value distri-
butions. Extreme value theory is not, however, used in this
paper to specify the annual peak distribution, but rather to
specify the tail distribution (4). The main result we use is due
to Pickands [1975]. He shows that under certain assumptions
on F (see section 2) the tail distribution (4), for sufficiently
large u, can be accurately approximated by a generalized
Pareto distribution. Utility of this result for problems of flood
frequency analysis is suggested by Smith [1984]. Pickand's
result forms the basis of quantile estimation procedures pre-
sented in sections 3 and 5.

Bryson [1974] proposes that different types of upper tail
behavior can be distinguished from the conditional mean ex-
ceedance (cme) function:

M(u) = ECY, — u| Y, > u] (5)

The conditional mean exceedance M(u) is the average amount
by which an annual peak exceeds a threshold u given that it is
larger than wu. It follows from Pickand’s theorem that there are
three possible types of upper tail behavior that the cme func-
tion can exhibit (1) an unbounded “thick-tailed™ distribution
has cme function that is approximately linearly increasing in
the upper tail, (2) an unbounded “thin-tailed” distribution has
constant cme function in the upper tail, and (3) a bounded
distribution has cme function that is approximately linearly
decreasing in the upper tail. Figure 1 shows the estimated cme
function for instantaneous annual peaks of the Potomac River
(1895-1986). Note that beyond 200,000 cubic feet per second
(cfs) (1 cfs = 0.283 m?/s) (there are 9 larger floods) the cme
function appears to be linearly decreasing suggesting that Po-
tomac flood peaks are bounded; we return to this topic in
section 3. - B _

Two quantile estimation problems are considered in this
paper. The topic of section 3 is quantile estimation for the
upper tail of the annual peak distribution. In section 5, sea-
sonally varying quantile estimators are developed. Interest in
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Fig. 1. Conditional mean exceedance function for annual flood peaks of the Potomac River. One cfs = 0.283 m?/s.

time-varying flood frequency estimation stems in part from
reservoir regulation problems in which it is desired to allow
conservation storage for flood protection to depend on sea-
sonally varying flood risk (see, for example, Smith and Karr
[1986]). For both estimation problems the underlying prob-
ability model for flood peaks is a peaks over threshold (partial
duration series) model, which is presented in section 2. Both
quantile estimation procedures are applied to instantaneous
flood peak data for the Potomac River.

To motivate and support assumptions made in developing
quantile estimators, results are presented in section 4 which
characterize relationships between annual peak distributions
and seasonally varying flood peak distributions. Section 4
serves to link problems of seasonal and annual peak quantile
estimation. Results from this section are of independent in-
terest in assessing the role of seasonal mixture distribution
models (see, for example, Waylen and Woo [1982] and Ley-
tham [1984]) in flood frequency analysis. In theorem 1 a gen-
eral representation for the annual peak distribution of a sea-
sonal mixture model is presented. Subsequent corollaries and
examples illustrate pitfalls and insights that can be obtained
from seasonal mixture models.

2. DEeFINITIONS AND NOTATION

The times of occurrence of flood peaks, that is, exceedances
of a discharge threshold u,, are modeled as a point process on
the interval [0, 1]. Time O corresponds to the beginning of the
year (which we take to be October 1) and time ! corresponds
to the end of the year (September 30). Denote by Ni(1) the
total number of flood peaks during year i and for N(1) non-
zero denote the occurrence times by T,% ---, Ty, and the
flood magnitudes by Z,°, -+, Zy,,," The counting processes
{Nt),t € [0,1],i=1,2,---} are defined by

Ni(t) =0 N(l)=0ort<T, (6a)
Nit)=n Ti<t<T,, (6b)
N = N(1) 2Ty, (6¢)

We assume that the “marked point processes™ {(T", Z%), i = 1,
2, ---} are IID (see Karr [1986] for additional definitions and
results concerning marked point processes). Related point pro-
cess models of flood peaks are presented by Todorovic and
Zelenhasic [1970], Gupta and Duckstein [1976], and Karr
[1976].

The sequence of annual peaks can be obtained from the
marked point process as

Y=max {Z}j=1,---, N(1)}
Y,=0

i

Ni(1)>0
Ni(l) =0

It follows from the IID assumption on {(T%, Z%)} that annual
peaks are IID. We denote their common distribution function
by

F(x) = P{Y, < x} x>0 (8)

We are particularly interested in estimating attributes of the
upper tail of F. An important attribute of the upper tail is the
upper bound of F

xp =sup {x: F(x) < 1} 9

with interest focusing on whether x; < + o or x; = + 0. If
xg is finite we are quite interested in estimating it. The quanti-
le estimation procedure we present in section 3 yields an esti-
mator of the upper bound in the case that F is bounded.

We conclude this section with the necessary background
material from extreme value theory for development of quan-
tile estimators. A detailed treatment of extreme value theory
with numerous engineering examples can be found in the
work by Leadbetter et al. [1983] (see also Gumbel [1958] and
de Haan [1976]).

Let Y, Y,. --- be IID random variables with common dis-
tribution F. Denote the maxima of the first n by

M, =max(Y,, .-, Y) (10)

~

(The annual peak notation Y, and F is used intentionally to
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suggest that the natural way to introduce extreme value
theory into flood frequency analysis is through the tail of the
annual peak distribution, not the maxima of peaks within a
year.) According to the central result of extreme value theory,
the extremal types theorem, if a nondegenerate limit distri-
bution A exists such that

limP{a,” '(M, — b,) < x} = lim F¥a,x + b,)

n—o® n—co

= A(x) (1

for appropriate scaling sequences a, > 0 and b, then A must
be one of the three extreme value distributions.

The three extreme value classes can be represented in terms
of the generalized extreme value distribution as

Alx|p, 0, k) = exp {—[1 — ko™ }{(x — w)]'"*} (12)

where k(x — p) < 0, 6 > 0, and u € R. The three extreme value
classes are distinguished as follows:

extreme value type I: k=0 (13a)
extreme value type II: k > 0 (13b)
extreme value type III: k < 0 (13¢)

If (11) holds for a distribution F it is said to belong to the
extreme value domain of attraction of A. Practical importance
of the extremal types theorem derives from the fact that vir-
tually all continuous “textbook™ distributions have an extreme
value domain of attraction.

The conditional exceedance distribution of F is defined, for
u < xg, by

F(u + y) — F(u)

= ySxe—u  (19)

F0) =

For a fixed threshold u the conditional exceedance distri-
bution F(y) is the conditional probability that Y, is less than
or equal to u + y given that it is larger than u, that is,

FW=P{Y,<u+ylY,>u} (15)

Closely associated with conditional exceedance distri-
butions is the generalized Pareto distribution

Gla, k=1~ —ke 'y)* k%0
1 —exp {—a7 'y} k=0 (16)

where 0 > 0 and k € R. If k > 0, G has an upper bound given
by

xg = ok™! ()]
The density of G is given by
gylo, k) =0"(1 — ke~ ty*7'- D k#0
=0"'exp {—o" 1y} k=0 (18)
The distribution F has “generalized Pareto tail” [Pickands,
1975] with parameter k if .
lim inf sup |F(y)— G(ylo, k) =0 (19)

u—=xy O<og<w O€y<m
In words, F has a generalized Pareto tail if its conditional
exceedance distribution can be approximated accurately by a
generalized Pareto distribution. Importance of the generalized
Pareto distribution stems from a theorem of Pickands [1975],
which states that a distribution function F has generalized

Pareto tail with parameter k if and only if it has extreme value
domain of attraction with parameter k. Because most continu-
ous textbook distributions have an extreme value domain of
attraction, it follows from Pickand's result that most continu-
ous textbook distributions have generalized Pareto tails.

3. QuaNTILE ESTIMATION FOR ANNUAL PEAK
DiISTRIBUTIONS

A number of quantile estimation procedures have been pro-
posed which are based on Pickand’s [1975] theorem. In this
section we present and apply a quantile estimation procedure
due largely to DuMouchel [1983] and Smith [1984], which is
particularly well suited to flood peak data. The fundamental
idea behind the method is that a discharge threshold u can be
chosen such that the generalized Pareto approximation of
Pickand’s theorem holds as an equality for floods larger than
u, that is,

P{Y,—u < x| Y, > u} = G(x) (20)

where G is the generalized Pareto distribution (16).
The quantile function of F can be obtained from (20), and
(14) for 2 > F(u) as

a - F(u)) @1

— -1
Qa)=u+G (I—F(u)

Further, using (21) and (16) for k # 0,

a\k
0@) = u + ak"[l -(1 > “) ] 22)

where p = | — F(u). To obtain an estimator of Q(x) we must
first estimate the parameters p, o, and k.

To estimate p we note that the 0-1 random variables
{(Y;>u),i=1,2 -} is a sequence of Bernoulli trials with
success probability 1 — F(u). We estimate p by

F=nt YUY > ) (23)

i=1

Let A denote the random number of annual peaks larger than
u and for i > 0 define

P=min{Y,—uw: Y, —u>0,i=1--,n} (24)
V=min{Y,—uw: Y,—u>7¥_,i=1-",n (25
for 1 <j < A. The random variables ?,, - - -, ¥, are the ordered

exceedances of u and by (20) comprise the order statistics of a
random sample of size A from G. We can estimate ¢ and k
from the log-likelihood function

Lio. k) = Y log g (¥]o. k) (26)

i

where g is the density of the generalized Pareto distribution
(18). We denote the estimators ¢ and k. The estimator of Q()

becomes
&
Q(a)=u+5k—l[1-<l;“):| i)

For k> 0 we obtain the following estimator for the upper
bound of F,

Rp=u+6k™t - (28)

Smith [1985] shows that for k <3 standard asymptotic
properties hold for maximum likelihood estimators of gener-
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alized Pareto parameters. Denoting the “observed information
matrix” by V,(k, o), the “Fisher information matrix” by I(k, a),
and the true parameters by k, and o, we have

Ed
(k, 8) = (ko, a)

(29
9

AY2[(K, ) — (ko, 00)] — N(O, I(ky, 60)™ ") (30
»

ATk, 6) — ko, o) (31)
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The estimated value of k is quite large, resulting in an esti-
mated upper bound close to the flood of record. If we are to
conclude from this evidence that Potomac flood peaks are
definitely bounded we are on shaky ground. The standard
error of k obtained from the observed information matrix
(using equation (32)) is 0.49. Considering the standard error of
k we cannot rule out any form of upper tail behavior. The
Fisher information matrix provides some insight into the
“error of estimation” problem for upper quantiles. From (30)-
(33) we have, conditional on 7,

where k= ko~ N@©, A~ }(1 = ko)?) (34)
L &% log (g(¥] 0, k) Z 8 log (g(¥i10,k)) 4 log (9( Tl o, k)
V(k *a)= _ i=1 5kz i=1 ok o 32
alks i 2 log (g(T;] 0. K)) 0 log (g(T | o, K)) i 32 log (g(T,| o, k)) G2)
P éo ck i1 do?
TN N
-1 (1 —k? ol =k Substituting £ into the right-hand side of (34) yields a standard
Ik, o)™ ' = (33) . . . .
ol —k) 2631 — k) error estimate that is smaller than that obtained using the

Computation of (32) from (18) is straightforward. Note that
the index 7 is random. The results (29)-(32) rely on limit theo-
rems for random sums of random variables [see Serfling,
1980].

From (29) it follows that if sufficient data are available,
maximum likelihood estimators of k and ¢ will be close to the
true parameter values. Standard errors of parameter estimates
can be assessed using (30)-(32). From (30) it is seen that the
asymptotic distribution of (£, 6) is bivariate normal with co-
variance matrix equal to the inverse Fisher information
matrix. From (31) it follows that the observed information
matrix evaluated at the maximum likelihood estimators is a
consistent estimator of the Fisher information matrix. In (32)
we present the form of the observed information matrix for
the generalized Pareto distribution. Knowing the asymptotic
joint distribution of (k, 6) we can compute the asymptotic
distribution of functions of (£, §), such as ((x), using theorem
3.3A in the work of Serfling [1980].

In practice, two approaches have been used for specifying
the discharge threshold u above which the generalized Pareto
approximation is assumed to hold. One can specify a priori a
fixed percent of the largest observations; DuMouchel [1983]
suggests 10%. Alternately, one can use graphical tools such as
the conditional mean exceedance plot as a guide in specifying
the discharge threshold. Recall that in the upper tails the con-
ditional mean exceedance plot is approximately linear.

For Potomac annual peaks the two approaches yield simi-
lar thresholds. Note in Figure 1 that the conditional mean
exceedance plot has a sharp change in slope in the vicinity of
195,000 cfs beyond which it is approximately linearly decreas-
ing. There are 10 annual flood peaks larger than 195.000 cfs in
the 92-year record so a threshold of 195,000 cfs yields approxi-
mately the largest 10% of the observations (Table 1 contains a
listing of the annual peak values).

Estimates of the generalized Pareto parameters (from equa-
tion (26)) for the 10 exceedances of 195,000 cfs are £ = 0.38
and d = 146,000. Most notably the estimate of k is positive
indicating that floods are bounded above. The estimate of the
upper bound from (28) is 579,000 cfs. The estimated upper
bound is only 20% larger than the flood of record (480,000
cfs).

observed information matrix (and, in fact, biased low: see Pre-
scott and Walden [1983]). For /i = 10 and k = 0.38 (34) yields
a standard error estimate of 0.19. From the optimistic stan-
dard error estimate of (34) we obtain the pessimistic result that
- must be greater than 10 to conclude that an estimate of 0.38
is more than 2 standard errors from 0. If we are using the
largest 10% of floods this implies that more than 100 years of
data are needed to conclude with modest certainty that floods
are bounded. The situation is, of course, much worse using the
appropriate standard error estimates obtained from the ob-
served information matrix. (Hosking [1984] and Hosking et al.
[1985] present related discussions of tests for different forms
of upper tail behavior of annual peak distributions: see also
Shen et al. [1980].)

As will be seen below accepting estimates of k different from
0 (both positive and negative) leads to “extreme” quantile esti-
mates. A middle ground approach to upper tail quantile esti-
mation, which, in practice, will always be supportable in light
of the error of estimates problem outlined above, is to specify
k = 0. Recall that for k =0 we obtain an exponential upper
tail. Using the generalized Pareto procedure with k specified
to be 0 and a threshold of 195,000 cfs we obtain ¢ = 110,000
yielding as quantile estimator,

N [ — =«
Q(1)=u—a‘log< ~ )
p

1 —_
= 195,000 — 110,000 log (——“) (35)

0.11

Do we obtain qualitatively different results if the entire

sample is used to estimate upper tail quantiles? We give a

qualified answer below. The 92-year record of annual peaks

was used to estimate parameters of the generalized extreme

value distribution using the maximum likelihood estimation

procedure of Prescott and Walden [1980, 1983]). The parame-

ters estimates are 4 = 90,800, ¢ = 41,000, and k = —0.42; the
quantile estimator is given by

Ox) = 4 + 6k™'[1 — (~log 2] (36)

The large negative value of £ indicates that Potomac flood

peaks have thick unbounded upper tails.
Table 2 shows estimates of the 100-, 1000- and 10,000-year
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TABLE 1. Instantaneous Annual Flood Peaks for the Potomac
River at Point of Rocks
Flood Peak,

Year cfs
1895 66,800
1896 56,000
1897 204,000
1898 127,000
1899 128,000
1900 57,000
1901 161,000
1902 219,000
1903 110,000
1904 44,500
1905 71,400
1906 81,300
1907 119,000
1908 152,000
1909 83,000
1910 168,000
1911 106,000
1912 95,400
1913 139.000
1914 73,900
1915 139,000
1916 124,000
1917 123,000
1918 127,000
1919 80,500
1920 109,000 .
1921 88,800
1922 78,800
1923 40,700
1924 277,000
1925 89,000
1926 60,500
1927 89,900
1928 145,000
1929 180,000
1930 110,000
1931 36,800
1932 158,000
1933 123,000
1934 36,700
1935 128,000
1936 480,000
1937 310,000
1938 175,000
1939 124,000
1940 93,600
1941 69,000
1942 125,000

~ 1943 418,000
1944 70,300
1945 139,000
1946 53,100
1947 42,100
1948 97,000
1949 132,000
1950 64,700
1951 128,000
1952 127,000
1953 118,000
1954 109,000
1955 214,000
1956 60,000
1957 69,200
1958 72,000
1959 55,700
1960 124,000
1961 102,000
1962 116,000
1963 125,000
1964 87,000

TABLE 1. (continued)

Flood Peak,

Year cfs

1965 97,800
1966 71,300
1967 144,000
1968 " 76,800
1969 . 27,800
1970 92,100
1971 86,400
1972 347,000
1973 106,000
1974 132.000
1975 181,000
1976 109,000
1977 193,000
1978 139,000
1979 178,000
1980 69,500
1981 41,900
1982 92,000
1983 115.000
1984 199,000
1985 84,700
1986 307,000

The drainage area of the Potomic River at Point of Rocks is 9651
m?. One square mile equals 2.590 km?; 1 cfs = 0.283 m?/s.

floods from (1) generalized Pareto procedure (equation (27)),
(2) the generalized Pareto procedure with k = 0 (equation
(35)), and (3) the generalized extreme value distribution (equa-
tion {36)). The range of the three estimates for each return
period is striking. The estimate of the 10,000-year flood from
the generalized extreme value distribution is an order of mag-
nitude larger than the estimate from the generalized Pareto
procedure. Note that the generalized Pareto procedure with
k = 0 provides “middle of the road™ quantile estimates.

To conclude this section we examine sensitivity of gener-
alized Pareto quantile estimates to the thinning threshold wu.
Table 3 contains parameter and quantile estimates (with stan-
dard errors in parentheses) for threshold values ranging from
120,000 to 190,000 cfs. Note that the estimate of k switches
from positive to negative in the vicinity of 170,000 cfs. The
most striking features are the results for 120,000 cfs (for which
there are 40 exceedances). The estimate of k (—0.53) is smaller
than the estimate obtained from the entire sample for the
generalized extreme value distribution. With reference to
Figure 1, there appear to be three distinct segments to the
conditional mean exceedance function. Below 120,000 cfs (in-
volving the smallest 52 floods) the cme function is decreasing.
There is a sharp change in slope around 120,000 cfs and the
cme function is increasing from 120,000 to 195,000 cfs. For the
largest 10 floods, the cme function is approximately linearly
decreasing.

It is clear that censored maximum likelihood applied to the
largest 50-90% of observations will give radically different
quantile estimates than the generalized Pareto procedure ap-
plied to the largest 10% of observations. A fundamental prob-
lem for estimating recurrence intervals of large floods is deter-
mining how much of the annual peak sample is relevant to the
upper tail.

"4, SEASONAL MIXTURE DISTRIBUTION MODELS

In this section we examine relationships between annual
peak and seasonal flood peak distributions. This section serves
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TABLE 2. Quantile Estimates for Generalized Pareto Procedure
GP 1, Generalized Pareto Procedure with k = 0, GP 2, and
Generalized Extreme Value Distribution

Recurrence
Interval,
years GP1 GP2 GEV
100 425,000 451,000 652,000
1,000 515,000 704,000 1,728,000
10,000 553,000 958,000 4,556,000

GEYV, generalized extreme value.

to link the problems of annual peak quantile estimation of
section 3 and seasonal peak quantile estimation of section 5.
Results of this section are pertinent to both problems.

Recall from section 2 that {T}', Z,'} is the marked point
process of flood occurrence times and magnitudes. We will
denote the seasonal distribution of flood magnitudes by

H(x|t)=P{Z} < x| T} =1t} x>0 37

that is, H(x|t) is the conditional probability that a flood mag-
nitude is less than or equal to x given that it occurs at time ¢
during the year (¢ € [0, 1]). Similarly, we define the seasonal
conditional exceedance distribution by

Hu(x!t)=P{Zji_qu'Zji>u, T-i=[}

J

(38)
Closely associated with the seasonal conditional exceedance
distribution is the point process of flood peaks larger than u,
which is defined by
Ni@)
Nio=Y UZ; > u)

j=1

te {0, 1] 39

The following theorem and corollaries characterize relation-
ships between the annual peak distribution F and seasonal
peak distributions H(x|r). Proofs are given in the appendix.
4.1.

If {N'} is a Poisson process with intensity function A(f) then

Theorem 1

1
F(x) = exp {-—J‘ A1 — H(x|s)] ds} x>0 (40)

For development of quantile estimators we would like to
accomodate the possibility that the point process {N'‘} may
not be Poisson. Cervantes et al. [1983] and Smith and Karr
[1986] have shown that peaks over threshold records may
exhibit clustering if small to moderate floods are included.
Validity of the Poisson assumption for large floods, however,
is supported by considerable empirical evidence [ Todorovic,
1978], as well as theoretical arguments based on the Poisson
limit theorem [Cinlar, 1972). Because we are only interested in
the upper tail of flood peak distributions there is a simple way
of modifying (40) to account for the possibility that floods
above u, are not Poisson: we raise the (arbitrary) base level u,
to a sufficiently high threshold u and consider only the tail
distribution F,. The follow{ng corollary provides the necessary
modifications. g

4.2. Corollary !

If for some u > ug, {N,'} is a Poisson process with intensity
function 4,(r) then ) -

1
F (x) = exp {—j A1 = H (x]|9)] ds} x>0 (C38)
o
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4.3. Example |

If we take flood magnitudes to have a seasonally varying
exponential distribution

H(x|t) = | —exp (—B(t)x) 42)
it follows from theorem 1 that
1

F(x) = exp {—: J. As) exp (— B(s)x) ds} 43)
0

If B(¢) = B for all ¢, so that the only seasonal variation is in the
intensity function i(t), we have

1
F(x) = exp {—exp[—ﬂx + log(f 1(5)‘15)]} x20 (44
0

Thus F has a (truncated) Gumbel distribution. Note that

1
F(0) = exp {—J A(s) ds} -
0

= P{N(1) = 0} (45)

“Truncation™ at 0 thus accounts for the probability that no
events occur during the year.

A compelling reason for using the generalized Pareto pro-
cedure for annual peak quantile estimation is that it is very
difficult to specify the correct parametric form of the annual
peak distribution. Theorem 1 and corollary 1 illustrate that
seasonality plays an important role in determining the com-
plexity of parametrizing annual peak distributions.

We now consider relationships between the upper tail of the
annual peak distribution F and the upper tails of H(x|¢), t €
[0, 1]. We assume that for each ¢, H(x|t) has an extreme value
domain of attraction; we denote the generalized Pareto tail
parameter by k(). The following result characterizes depen-
dence of the annual peak tail on seasonal tails that have dis-
tinct “seasons.” (Note that we use the term “uppertail” in this
discussion in the sense of (19).)

44. Corollary 2

If there exist disjoint intervals A, and 4, such that A, U
A, =[0,1] and

fon

H{x{t) = H,(x) te A,
= H,(x) te A, (46)
k(t) = k, ted,
=k, te A, (47)
TABLE 3. Generalized Pareto Estimates for Varying Thresholds
Threshold
(No. of .
Floods) k ¢ 0(0.99)  0(0.999)  §(0.9999)
190,000 022 122,000 422,000 548,000 623,000
(1) (0.49) (70,0000 (54,000) _ (182,000)  (355,000)
182,000 0.20 120,000 422,000 555,000 640,000
(12) (0.45) (64,000) (57,000 (189,000)  (370,000)
176,000 0.02 95600 424,000 625,000 817,000
(13) (0.49) (54.600)  (76.000) (340,000)  (823,000)
150,000 -0.08 81,200 427,000 687,000 997,000
(19) (0.40) (33,0000  (89,000) (365,000)  (943,000)
120,000~ ~=0.53 335000 521,000 1,620,000 5,320,000
(40) (0.28) (10,300) (213,000) (1,520,000) (8.476,000)

Standard errors computed from the observed information matrix
are given in parentheses.
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Fig. 2. Seasonal distribution of Potomac flood peaks larger than 150,000 cfs. Numbers shown are year of flood. One
cfs = 0.283 m3/s.

then F has generalized Pareto tail with parameter k specified
as follows: (1) if k; > 0 and k, > 0 and xy, > x,, then k = k;
and (2)if k, < k, and k; < Othen k = k,.

The main point of corollary 2 is that if flood peak distri-
butions vary seasonally then the upper tail of the annual peak
distribution depends only on the season with the “thickest
upper tail.” Corollary 2 can be generalized to an arbitrary
number of seasons. If, for example, there are m seasons all with
finite upper bounds, then the tail parameter of the annual
peak distribution is determined by the season with the largest
upper bound. If any of the seasons is unbounded, the annual
peak tail is determined by the season with the smallest tail
parameter.

Figure 2 shows time of occurrence and magnitude of all
Potomac floods larger than 150,000 cfs. A notable feature is
that the three largest floods are separated (seasonally) by at
least 3 months and are similar in magnitude. A traditional
“model” of floods for the northeastern United States (see, for

‘example, Benson [1962]) holds that winter/spring is a season

of numerous floods of small magnitude (often dominated by
“snowmelt floods”), while summer/fall is a season of infrequent
large floods (often dominated by “hurricane foods™). The larg-
est Potomac flood occurs, however, during “snowmelt season”
(March 1936). The second largest flood (October 1942) occurs
during “hurricane season™ but is not a hurricane flood. The
third largest flood (June 1972) is a hurricane flood but occurs
months before the peak of hurricane season.

Because the largest floods are spread throughout the year
and are of comparable magnitude, there is little justification
for concluding from the data that the seasonal peak distri-
butions H(x|t), t € [0, 1], differ in the upper tail. In light of
corollary 2 we can either assume that (1) the importance of
seasonality diminishes for extreme flood magnitudes or (2) we

that estimating return intervals for floods larger than the flood
of record is virtually impossible.

As a final comment on Figure 2 we note that all Potomac
floods larger than 150,000 cfs are annual peaks. The largest
peak over threshold flood that is not an annual peak has a
magnitude of 132,000 cfs. There are 26 annual peaks larger
than 132,000 cfs. It follows that annual peak data contain
virtually all of the information about the upper tail of annual
peaks and seasonal flood peak distributions.

5. ESTIMATION OF SEASONAL QUANTILES

The main topic of this section is development of an esti-
mation procedure for seasonal flood quantiles. Interest in sea-
sonally varying flood frequency estimates stems in part from
reservoir regulation problems in which it is desired to allow
conservation storage for flood protection to vary seasonally in
response to seasonally varying flood risk. Smith and Karr
[1986] develop seasonally varying flood frequency estimators
which incorporate covariate information such as snow pack
and soil moisture storage. Their approach is designed for the
central portion of flood frequency distributions and is not
directly applicable to upper tails. Interest in this section, as in
the entire paper, is strictly with the upper tails.

Our first task is to define a seasonally varying quantile
function Qa), t € [0, 1]. Intuitively, Q, should be the quantile
function of a distribution F, that is the product of two terms
(1) the conditional distribution of flood magnitudes at time ¢,
H(x|t), and (2) the probability of a flood at time t. A direct
distributional approach to defining Q, runs into trouble with
the second term. As will be seen below, the natural approach
for dealing with seasonal quantiles is the point process ap-
proach.

Recall that {N'} is the point process of floods larger than

have too little data to-assess seasonal features of extreme flood —the base level u,. Its intenisity function is defined by

magnitudes. Assumption 1 is consistent with the available
data for the Potomac, while assumption 2 is immune to judge-
ment from data. If we accept assumption 2 we must also admit

At) = lim G)P{N‘(r +s5) — Ni@t) =2 1} (48)

510
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Fig. 3. Estimated seasonal rate of occurrence for Potomac floods larger than 150,000 cfs. (1 cfs = 0.283 m?¥/s).

The point process {N,’} is the point process of all floods larger
than u (u > up); its intensity function is denoted A(r). The
quantile function Q, can be defined as follows:

Q@ =inf{u:d(n<1—0a} a0, 1] a>1—A)

Note that A (t)~! is the “recurrence interval” at time ¢ of a
flood of magnitude u. We illustrate the definition for the peaks
over threshold model of Todorovic and Zelenhasic [1970].

(49)

5.1. Example 2

In the model of Todorovic and Zelenhasic [1970], N’ is
assumed to be a nonstationary Poisson process with intensity
function A(t). Flood magnitudes are assumed to be IID with

H(x{t) = 1 — exp (— Bx) (50

Thus flood magnitudes are exponentially distributed and do
not depend on time of year. In this case it is easy to show that
N,'is a Poisson process with intensity function

A1) = exp (—Bu)A(r)
(see, for example, Karr [1986]). It follows that

(51

1—«a

A

Qfa)=—p""log { } a>1-4@) (52)

Our seasonal quantile estimation procedure is based on the
following assumptions, which are supported for Potomac
flood peaks by arguments in section 4.

1. A threshold i can be chosen such that (1) N, is a Pois-
son process with intensity function i; and (2) the distribution
of flood peaks larger than 7 does not depend on time of year;
that is, :

- C Hixln=Hfx) (53
2. A threshold u > d can be chosen such that
H (x) = G(x|k, o) (54)

that is, a generalized Pareto approximation holds for flood
peaks larger than u.

5.2
Under the above assumptions,

Theorem 2

1 —a\*
Q‘(a)=u+ak"l:l—(. )] a>1— pift) 55)
oid0) PAL (
where
p=P{Z}/>ulZ}>q} (56)
5.3. Proof
The result follows from the fact that N,,,' is a Poisson
process with intensity function
Ays o) = pAD[1 — G(x)] (57

To implement (55) we must estimate the parameters p, &, o,
and 4,41), t € [0, 1], which we do as follows. By analogy with
(24) p is estimated by

(58)
X Tuzi>a

i=1 j=1

The generalized Pareto parameters k and o are estimated from
the exceedances of u precisely as in (26). We denote the esti-
mators, as before k and 6. The intensity function A(t) is esti-
mated using a maximum likelihood procedure [see Karr,
1986].

For threshold  values & = 150,000 and u = 195,000, we

obtain k=038, ¢ = 146,000, j = 0.55. Figure 3 shows the —

estimated intensity function. The intensity ranges from a maxi-
mum of 0.30 (units are events per year) in March to a mini-
mum of 0.06 in August. Using (55) we can now estimate the
time-varying 100-year flood quantile. The 100-year flood
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quantile ranges from a maximum of 450,000 cfs in March to a
minimum of 330,000 cfs in August.

6. SUMMARY AND CONCLUSIONS

In section 3 the generalized Pareto procedure for annual
peak quantile estimation is described and applied to Potomac
River flood peak data. Major conclusions are as follows.

1. The estimate of the tail paramecter k of the annual peak
distribution is positive (0.38), implying that Potomac flood
peaks are bounded. This result suggests that the common as-
sumption that flood peak distributions are unbounded above
should be examined more closely.

2. The standard error of the estimate of k is large enough
that we cannot definitively rule out any form of upper tail
behavior. Due to the error of estimates problem for k it may
be prudent to assume that the upper tail is exponential, that is,
k = 0. On the other hand, small positive (or negative) values of
k will lead to very different quantile estimates for floods of
large return interval.

3. Standard errors of quantile estimates of very large re-
currence interval floods (in the range of 1,000-10,000 year
floods) are of the same order of magnitude as the estimates.
Estimates in this range are thus of no utility. An important
component of any quantile estimation procedure that pur-
ports to estimate very large recurrence interval floods is a
method of assessing error of the estimates.

4. For the generalized Pareto procedure, severe censoring
yields very different quantile estimates from moderate censor-
ing. Using the largest 10% of annual peaks we conclude that
flood peaks are bounded with an upper bound only 20%
larger than the flood of record. Using the largest 40% of
annual peaks we conclude that flood peaks are unbounded
with very thick tails. For the Potomac data set the issue is not
removing a few unrepresentative small floods, but rather de-
ciding what the “upper taii” of Potomac flood peaks really is.

The main results of section 4 are theorem 1 which provides
a general representation for the annual peak distribution of a
seasonal mixture model and corollary 2 which characterizes
dependence of the annual peak distribution on seasonal tails.
Two major issues for flood frequency analysis are raised in
this section. The principal motivation for estimating the upper
tail of an annual peak distribution F from the largest order
statistics is uncertainty in specification of the parametric form
of F. We argue in section 4 that uncertainty in specification of
F is well justified if seasonality is an important feature of the

“fiod process. The second issue we consider is seasonality of

extreme floods. It follows from corollary 2 that if seasonality is
a prominent feature of extreme floods, serious difficulties for
both annual peak and seasonal flood frequency analysis will
result. .

In section 5 we introduce the seasonal quantile function
Q.(a), t € [0, 1] and develop generalized Pareto quantile esti-
mators Q,(z). Importance of seasonal quantile estimation
stems in part from reservoir regulation problems in which it is
desired to tie flood control operation to seasonally varying
flood risk. The seasonal quantile estimation procedure is ap-
plied to Potomac flood peak data yielding a time-varying esti-
mate of the 100-year flood that ranges from a maximum of
450,000 cfs in March to a minimum of 330,000 cfs in August.

- — — — —APPENDIX— — — — — 7

In this appendix we present proofs of theorem 1 and corol-
lary 2. Before commencing with the proof of theorem 1 we
need a definition and a lemma.
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Let (i(t)) be a nonnegative function on [0, 1]. The point
process N' is a Poisson process on [0, 1] with intensity func-
tion 4 if (1) {N'} has independent increments, that is, for all k
and0 <5, <t;, < - €5 <t <1, the random variables
Ni(t,) — N¥s,), -+, Ni(t,) — N¥(s,) are independent and (2) for
each ¢ € [0, 1], N(t) has a Poisson distribution with mean
o' As) ds.

Lemma: The zero probability function of a Poisson process
{N'} on [0, 1] with intensity function 4 is given by

PUHO=0}=up{—rK9h} te[0,1] (A1)
0

The proof of theorem 4.1 follows from (A1) as follows. The
annual peak distribution is given by

Fix) = P{Y, < x}

= P{N,(1) = 0} (A2)

Recall that N_ ! is the counting process of floods larger than x
and can be represented as

Nir)
N i)=Y I(Z}>x)
j=1

J

te [0, 1] (A3)
By assumption N'is a Poisson process with intensity function
A. It follows from (A3) that N,'is a Poisson process with
intensity function

A= A1 — H(x|1))  te[0,1]

The theorem follows by applying the lemma to N, {(1).
To prove corollary 2 we note first that for sequences a, > 0
and b,,

(A4)

lim F*a,x + b,) = ¥(x) (A5)
for some nondegenerate limit distribution V¥ if and only if
lim nlog F(a,x + b,) = log ¥(x) (A6)

We also have that —log W(x) =~ (1 — W¥(x)) as ¥(x) — 1. It
follows from theorem 1 that
lim n log F(a,x + b,)

A= ®

1
lim —n J Au{!t — H(a,x + b,|u)] du
0

Lind ]

— lim IZJ' Aunf{l — Hi(a,x + b,)] du

n— o

+ J‘ AHunll — Hya,x + b,)] d“_l
Az

—I Mu) du | lim n[1 - H (ax + b,,)]]
Ar ln—~o

-J. Au) du| lim n[l — H,(a,x + b,)]]
Az Ln—x

- J Au) du | lim nlog H,(a,x + b,,)]
AL

A = ®©

1%

- Au) du| lim nlog Hz(“.x“"b..);l (A7)
o g — Coe e N

L=

il both Hax+b)—1 and Hyax +b,)— 1 (otherwise
F'a,x + b,) has a degenerate limit distribution). If both H,
and H, are bounded with upper bounds x,, > x,, then there
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exists 7 such that H,(a,x + b)) = 1 for n > A, from which the
first assertion of corollary 2 follows. The second assertion fol-
lows from corollary 1.6.3 of Leadbetter et al. [1983].
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