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A stausucal framework for modeling space-time rainfall using radar and rain gage observations is
developed. Three principal tasks are involved in implementing our statistical model. These tasks are
referred to as sampling (that 1s. characterization of the error structure of radar and rain gage measure-
ments of rainfall. modehing). (that 1s. specification of a stochastic model for space-time rainfall), and
parameter esumation. It 15 emphasized that sampling. modeling. and parameter estimation are inter-
related and equally important tasks. Our statistical model is applied to daily rainfall fields in the tropical

Atlanuc region covered by the GATE experiment.

1. INTRODUCTION

The practical need for space-time rainfall models is com-
pelling. Rainfall is not measured continuously in space and
time. Models are necessary as an adjunct to measurements.
Two broad classes of models have been prominent: these are
Gaussian random field models and their variants [see Bras
and Rodriguez-lturbe. 19835] and cluster models. introduced by
LeCam [1961]. It is the latter class of models that we focus on
in this paper. Gupta and Waymire [1979] isee also Amorocho
and Wu [1975]. Waymire et al. [1984]. and Rodriguez-lturbe
et al. [1986]) have combined recent developments in meteorol-
ogy with the LeCam modeling framework to produce very
sophisticated models of space-time rainfall. It is hoped that
cluster models will provide valuable tools. in conjunction with
measurements of rainfall. for inferring properties of space-time
rainfall. This line of research has commenced with the work of
Eagleson [19847] and Valdes er al. [1985].

For the practical utilization of space-time rainfall models.
we must have accurate estimates of model parameters. Devel-
opment of procedurés to estimate parameters of space-time
rainfall models. however, has not kept pace with development
of models [AGU Committee on Precipiration, 1984: Rodrigue:-
Iturbe. 1986: Georgakakos and Kavvas. 1987). Smith and Karr
[1985] consider parameter estimation for cluster models using
data sets consisting of rain gage observations. They conclude
that severe limitations on model structure are imposed by
identifiability problems resulting from the limited spatial in-
formation that can be obtained from operational rain gage
networks. The identifiability problems described by Smith and
Karr suggest the need for additional spatial information such
as provided by radar or satellite imagery.

In this paper we present a statistical model of time-
integrated rainfall fields which accommodates data from
multiple sensors. Our statistical model consists of a random
field [Jfx). xe R% i=1.2 .-, where Z(x) represents ac-
cumulated rainfall during time period / at spatial location x,
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and a data set H, representing observations of the random
field  and exogenous processes related to & available at time
n. The form of our statistical model dictates three tasks. We
must specify the relationshp between measurements of rainfall
fields and the actual values of rainfall. This task, which we
refer to as sampling. is the topic of section 2. We must also
specify a probability model for rainfall fields. The model,
which is developed in section 3. falls within the category of
cluster models. Finally. we must develop a parameter esti-
mation procedure for determining parameter values of the
probability model. The estimation procedure presented in sec-
tion 4 is a method of moments procedure. It is emphasized in
the paper that modeling. sampling. and parameter estimation
are equally important and interrelated tasks.

We develop a statistical model for which the data set con-
sists of time-integrated radar observations from a single radar
and time-integrated rain gage observations from a network of
rain gages. The sampling model we present in section 2 is
motivated by the assumptions that the strength of rain gage
data is accuracy of time-integrated totals. while the strength of
radar. for purposes of parameter estimation. is its ability to
accurately delineate regions receiving rainfall from regions re-
ceiving no rainfall.

Smith and Karr [19857 illustrate that for estimating parame-
ters of cluster models. maximum likelihood methods are trac-
table only for simple models and simple sampling situations.
Consequently. reliance must generally be placed on alternative
estimation procedures tand especially method of moments due
to its broad applicability). An attractive feature of the method
of moments estimation procedure is that a simple statistic
tequation (42)) can be precomputed from the radar and rain
gage observations to indicate whethgr feasible estimators exist.

In section 5 we apply our statistical model to the Atlantic
tropical region covered by the GATE experiment [Hudlow
and Patterson, 1979]. This experiment provides one of the best
radar rainfall data sets available. Our initial result, using the
feasibility statistic alluded to in the previous paragraph, is that
parameter estimators cannot be obtained for the model. Fur-
ther analysis using the feasibility statistic indicates that low-
intensity “background” rainfall is the principal reason that the
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feasibility criterion is not satisfied. Indeed. if low-intensity
rainfall is removed. we show that the feasibility criterion is
satistied and physically realistic parameter estimates are ob-
tained.

5

SAMPLING

Parameter estimation for the rainfall model !Z(x); will be
based on observations [Z(x). xe Q! from a single radar
covering a region Q < R? and observations AP
j =1+, ki from k rain gages with locations x,. . x, € Q
The data set at time n is thus

H,=.Z(x). i =10 hox e Q) (h

Three assumptions contained in (1) warrant particular men-
tion.

l. Observations from radar and rain gages are time-
integrated values covering identical time intervals. Thus Zx)
and Z(x) represent time-integrated values for the ith time in-
terval of length Ar. In the example of section 3. time intervals
are of length [ day. '

2. Radar observations are continuous in space. Thus for
cvery point v oin the region Q covered by the rudar. we huve o
value of radar reflectivity. In pracuee. some degree of ~patidl
averaging will be present in any set of radar ohseryations

3 Time-ntegrated rain gage observations
Note that the rain gage observation for the «th
the actual value of the rainfall feld at location v

Our data model is not complete without speciiving the re-
lutionship between radar retlectivity | Z,!) and the ramtall field
1.1 The traditional approach of radar meteorology [ Barrun.
19737 begins with a “Z-R relationship™ of the form

ATS 2rror-iree,

1ge

o NN

Zix) = ali’felx) 2

where a and b are positive constants. and ax). v = Q! s a4
nonnegative error field (the term Z-R relationship was adopt-
ed in the radar literature due to the convention of using the
symbol Z for radar reflectivity and R for rainfall rate).

Wilson und Brandes [1979] review research on error struc-
ture of Z-R relationships. They note that several features are
common to most studies. These include the following.

I Radar error increuses with distance from the radar. This
suggests that the variance of ¢(x) is an increasing function of
the distance from v to the radar.

Rudar error 1s spatially correlated.

Radar error depends on the tvpe of rainfall. Error strue-
ture for convective storms. for example. would ditfer from
crror structure for cyclonic storms.

A serious obstacle to using radar data for inference prob-
lems concerning the rainfall tield |2 ! is that (2) specities that
rudar observations | Z,) depend on the rainfall field 2!

‘e 12

=)
s

through parameters of the Z-R relationship («. b. and parume-
ters of the error Held (c!). From the results of Wilson and
Brandes [1979] we can expect that accurate specification of all
error field parameters will be especially difficult.

Rather than assume that parameters of the Z-R relationship
are known or attempt to simultaneously estimate parameters
of the Z-R relationship and rainfall model. we assume that
radar can accurately distinguish regions receiving rainfall from
regions receiving none. that is.

SNk =0 if and only if Zix) =0 3

This assumption has been used by a4 number of authors in
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estimating storm wetted area characteristics (see, for example,
Smith [1977). Doneaud er ul. [1981]. and Lorejoy [1982)).

We illustrate in section 4 that parameters of our rainfall
model can be estimated from rain gage data and “0-1 mosaics™
of the radar field

Zix)= UZ(x)>0) 4

1Z.(x) equals 1 if Z(x) is positive and 0 otherwise) so that it is.
indeed. unnecessary to assume that parameters of the radar
equation are known or to simultaneously estimate Z-R pa-
rameters and rainfall model parameters. We will denote by
H,=

Z;‘-‘"~ Stvprisngj=1 L hkxeQ (5)

the reduced data set consisting of rain gage observations and
0-1 mosaies of radar fields. An attractive aspect of using radar
datiin the form of 0-1 mosaics 1s that it potentially allows the
use ol long records of analog radar rainfall data which. for the
U nited States. can be obtained from the National Climatolog-
real Duta Center.

3 RaiNkaLt MobDeL

In this section we present a model for time-integrated rain-
Ll nelds ool Temporal evolution of the model 1 coverned
Sy Muarkoy chain

S

JY. which specifies the <equence f wet-
operiods ipenied s wet it rainfall oceurs anvwhere n the
regron L Structure of the ramnfall feld during 4 wer neriod s

(oo

dlustrated in Figure 1. Circular “rain cells™ are organized 1nto
cthpsordad “rainbands™ which are randomly distributed in the
plunc. Runtall internsity 1s assumed constant over a cell but
varies randomly frov cell to cell.

W use the terms run eell and rainband loosely to indicate
~patial seales of ageregation within the model. The smallest
spatial scale in our model is represented by a cell. The largest
spatial scale 15 the storm scale which is assumed to be larger
than the region Q. [t 1s hikely that the spatial scales we associ-
ate with rain cells and rinbands in our model will depend on
the model ume step [see Rodriguez-liurbe, 19%6].

The Markov chain model Y of wet-dry periods contains
two parameters: the probubiiity of trunsition from a dry
period to a dry period

g, =Py

Fre. 1. Structure of the ranfall tield during 4 wet period.
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and the probability of transition from a wet period to a wet
period

g, =P{Y., =1Y= 1}:1_p{yl_ﬂ=o|yi=1} (7

These determine the limit probabilities

po = lim P\Y, =0} (8)
py=lmPY, =1 =1-p, (9)

In particular,
py = b0 _ (10)

3
-~ 4o — Y,

We assume that rain cells are circular and have fixed radius
r”. that is. cell radius does not vary from cell to cell or period
to period. We choose to treat cell radius r in our model as not
only fixed but also as known a priori: we will not try to
estimate cell radius along with other model parameters. Speci-
fication of cell radius is discussed further in section 3.

The rainfall field |Zix); can be represented in terms of a
marked point process ;L' U, where L' 1s the spatial lo-
cation of the center of the jth cell during period i and U'is
the storm depth (in millimeters) of the jth cell. (See Karr
[1986] for background material on marked point processes.)
We have

=Y Y UML -y <0 (1

J=1

where I L' — x < r)equals | if the jth cell is located within
distance r of x. and 0 otherwise. Note that J(x) = 0 for all x in
Qif Y, = 0: dry periods are periods with no rainfall anywhere
n Q.

The marked point process L, U] can be described as
follows. The locations L, of cell centers are restricted to lie
within rainbands which are modeled as ellipses (see Figure 1).
Within an ellipse. locations of rain cells constitute a spatial
Poisson process with rate 7 (in cells per square kilometer). The
assumption that rainbands are randomly located in the plane
means that centroids of the ellipses constitute a spatial Pois-
son process with rate /4 (in rainbands per square kilometer).

Geometry of rainbands is specified by three parameters.
radius of the major axis a,. (in kilometers). radius of the minor
axis a,a, (with 0 < a, < 1). and orientation of the major axis
from north to south 0, (with —90 < 0, < 90 ). The area of a
rainband is a,na,?: the mean number of rain cells per rain-
band is ya,na, 2.

Storm depths U, for individual rain cells are assumed to be
independent and identically exponentially distributed with pa-
rameter B. The average storm depth for an individual rain cell
is thus 7! (in millimeters).

The probability law of a random field can be specified by its
Laplace functional

L ()= E[exp {—J SIx¥(x) d,\}}
R2

where f: RZ— R_. The Laplace functional not only uniquely
determines the probability law of & it also provides distri-
butional properties needed for parameter estimation in section
4. (See Karr [1986] for an expository treatment of Laplace

functionals.) The following theorem contains. the major distri-
butional result for our rainfall model.
Theorem 1. The Laplace functional of {¢,} is given by

L.(f)=p, exp {-/'.f (1 — e~ Hiy d:} +(1=py) (12)
R2
where

- f Sy — xji < r) dx
H(:)=J x:
R2

gz —y)dy (13)
B +j SOOUly — x|l < r) dx
R2

g(iz) =7y ze G

g(z2)=0 otherwise
and G is the region covered by an ellipse with parameters a,,
a,. and 8, whose centroid is located at the origin. The proof is
given in the appendix.

Using the preceding result. it is straightforward to obtain
the regular Laplace transform of ¢{x). We have

Lyx) = Efexp | —24(x)}] = p,

“exp {_,:J. [1 _ e<—:u:+ﬂiihg<:;~y) dy] d:} + (1 "Px) (14)
R:

where

R,={yeR¥|y—xli<r} (15)
is the set of points within distance r of x. We now introduce
the following approximation:

‘ glz — yydy = nriglz — x) (16)

vR.

The approximation. (16), is an equality unless x is near the
boundary of the ellipse specified by g. If x is further than
distance r from the boundary of the ellipse (either inside or
outside). then (16) 1s an equality. For x within the ellipse and
within r of the boundary. the right side of (16) is larger than
the left. If x is outside of the ellipse and within r of the bound-
ary. the right side of (18) is smaller than the left. Note in
particular that if ar® « a,na,?, that is. if rain cells are small
relative to rainbands. then the error introduced by (16) is very
small.

Using (12) and (16). the following distributional results for &,
can be obtained:

E[ZixNY = 1] = i 'nr*ya,na,’ (17)

Var [5xY, = 1] = E[Z0 Y, = 1][B7 12 + ynr))]  (18)

P Ix)=0Y =1, =exp [—4a,ma, (1 —e ™7™ (19)
Piix)=0.3xp=0Y=1, ="

exp [—H2a,ma,? — A, N —e ™) (20)

where 4, . is the area of overlap of two ellipses (with parame-

ters a,. a,. and 0,) whose centroids are at x, and x,. We

present distributional properties conditioned on Y, =1 be-

cause these are the results needed for the estimation procedure
of section 4.
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4. PARAMETER ESTIMATION

In this section we develop method of moments estimators
for parameters of the rainfall model presented in section 3.
Recall from section 2 that our data set for parameter esti-
mation is

B, ={&{x) Z{xyisnj=1 k xeQ

. . . ,
where Z(x) = 1 if radar indicates positive rainfall at location x
and Z{x) = 0 if radar indicates no rain at x. We will use the

random variable
Z = 1( f Z(x) dx > o) (21
Q

to indicate whether rainfall is observed anywhere in our
region Q by radar (Z, = 1) or whether radar shows the entire
region to be dry (Z, = 0.

One final assumption on our data set will prove quite
useful; we assume that Q is large enough that the probability
of no rain cells in Q during a wet period is very small. This
assumtion implies that Z, = Y, with high probability.

[t follows that the estimation problem can be separated into
two parts: estimation of temporal parameters associated with
the Markov chain model of wet-dry sequences and estimation
of spatial parameters associated with the random field model.
Note that more complex models of wet-dry sequences (see. for
example, Foufoula-Georgiou und Lettenmaier [ 19877 and Smith
[19877) could be used without affecting the spatial component
of the model.

Estimation of temporal parameters of the Markov chain
model is straightforward under the assumption that Z, = Y,
We estimate g, by

- -1

n ‘n-1
40=Z<1—Z.-x1—2._l>(2«l—Z’J) (22)
i=2

=1 7

and q, by
n n-1 -t
“il = Z Z:zi—l <Z Z,) (23)
i=2 i=1

In words, 4, is the fraction of wet periods that are followed by
wet periods and g, is the fraction of dry periods followed by
dry periods.

For estimation of spatial parameters we use a method of
moments procedure which employs the following statistics.

I An estimator of E[{{x)|Y, = 1] is given by

(22) fafeba] e
i=1 i=1 Jj=1

2. An estimator of Var (£ (x)|Y, = 1) is given by

n -1 n k
pE =(z z,) Y Z, [k“ 5 (:.(x,»—w} (25)
i=1 i=1 j=1

j=

3. An estimator of P{Z(x) = 0|Y, = 1} is given by

L] -1 n
p= (Z Z‘) Yz [mr‘ f (1 = Z(x) dx] (26)
i=1 i=1 Q
where Q] is the area of Q.
4. An estimator of p(f, s) = P{iix)) =0, 3(x,) = 0¥, = 1},
(where x; — x, = (8, s), that is, x, and x, are separated by
distance s and the line segment between them is oriented 6

degrees from north to south) is given by

A0. s)=(i2’i>‘li

i=1 i=1

~2",-[lﬁr‘ J (1 = Zoxt = Zy) dx] 27
o

-y =(8s)

where Q is the set of points x in Q such that the point y which
is located at distance s and orientation 8 from x is also in €.
The area of Q. €3], will, of course. be smaller than the area of
Q.

Note that the first two statistics require both radar and rain
gage observations: the latter two statistics use only radar data.
To estimate the conditional probability of no rainfail at a
point (equation (26)). given that the period is a wet period, we
simply average the dry area values for all storm days. Simi-
larly. to estimate the joint conditional probability of no rain-
fall at two points (equation (27)) separated by distance s and
angle 8. we average the product of observations (that are sepa-
rated by distance s and angle 6) both spatially and over time,
for all storm days.

Estimation of 6, is based on the observation that

Pty ) = pto. s) Vv sand 0

Py s) > plo. s) 0 # 6, s <aa,

which is obtained from {20). We choose §, as the solution to
the optimization problem

A

max [H(t) = J

0

po. s) ds: —90° < 6 < 90°}
0
where 1, is chosen to ensure satisfactory sampling properties
of H. Our estimate of ellipse orientation is thus the direction
{from the radar) along which the largest joint probability of
zero rainfall occurs.

We now define

pus) = pll,. 5) (28)
fus)h = puly — 90, s) (29)

Thus p,(s) is an estimator of the probability of zero rainfall at
two points separated by distance s oriented along the major
axis of a rainband while p.(s) is analogous for minor axis. Qur
moment equations can now be expressed as follows using
(1720):

fo= B “mria,na, (30)
6% = 4[B Y2 + yrrd] (31)
—log (p) = juyma, H(1 — e ™ (32)

—log (p(s) = A[2a,ma,* — 4,(s)](1 — e~ ™%  (33)
—log (P(s) = A[2ayma,? — A9)](1 — e ™7™ (34)

where A,(s) is the area of overlap of two ellipses oriented
along their major axes with centroids separated by distance s;
the definition for 4,(s) is analogous with “minor axis” replac-
ing “major axis.” For orientation along major axes, we have

A,(0) = ama,? = sajla,* — 02559

— 2a,’a, arcsin (0.5sa, ") (39)
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Combining (32) and (33) and (32) and (34) we obtain

log (B,(s)) _ 2a,na,% — A,(s) (36)
log (p) a,na,’
. 1

log (pzfs)) _ 2a,na, A(s) (37)
log (p) a,na,?

Note that the right-hand sides of both (36) and (37) depend
only on a, and a,. Ws choose 4, and 4, as solution to the
optimization problem

: " [Mlog (p,(s) 2a.na.? — A 2
min H(a,, a,) = j [ lg (P;fs b ( a.na, : ‘(S))}
0 og (p) a,na,

a.a; /

log (p,(s) 2a.na,? — A4,(s)\]?
i AL —< Sl M _5) ds  (38)
log (p) a,nua, -~

such that a; >0 and 0 < g, < 1. As before, 1, is chosen to
ensure satisfactory sampling properties of A.

Our remaining moment equations can be rewritten as fol-
lows:

BTl =67 N2 = wmrt ! (39)
4= —log (pXd,nd,*) "l — o 7 (40)
—log (P)G? 2« . mr? . !
— = — [l —e¢ "™ ) = /1) (41
}J- 'l.'ﬂr-
Note that
10y =2
lim [ =1
fi1<0 for >0
implying existence of / ~': (1. 2] — [0. x). I[
— log (p)6*
<087, (42)
i
we choose 77 as the unique solution to (41). that is.
" —log (pi6*
Pert (T (43)
u- /
Finally. we take
B = (62 AN2 + Frr) ! 144)
s = —log (PNd,md, ™1 — e~ i) 7! (45)

Condition {42) is quite useful in practice. As a first step in
carrying out the estimation procedure one computes the sta-
tistic in (42). If it is between 1 and 2. existence of parameter
estimates is guaranteed. If the statistic does not fall in this
range. estimates do not exist. In the latter case. one concludes
that either the model is inappropriate for the data set or that
the data set is too short. Unfortunately. there is no clear way
of distinguishing the two cases.

It can be shown that our method of moment estimators
possess attractive large sample properties typically associated
with maximum likelihood estimators (see W. F. Krajewski and
J. A. Smith. unpublished manuscript. 1987). Specifically, our
estimators are asymptotically normal and consistent in mean
square error.

The proof of asymptotic normality is straightforward and
can be imitated in many situations in which method of mo-
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ments estimators are used. There are three basic steps: one
shows that sample statistics (equations (24)27)) are asymp-
totically normal using a standard central limit theorem: (2)
one shows that parameter estimators are “reasonable” func-
tions of sample statistics: and (3) one invokes an appropriate
theorem (see. for example. Serfling [1980]) stating that reason-
able functions of asymptotically normal statistics are them-
selves asymptotically normal.

5. RESULTS OF MODEL APPLICATION

In this section we describe application of our statistical
model to daily rainfall in the tropical Atlantic. We choose this
area due to availability of radar rainfall data from the GARP
Atlantic Tropical Experiment (GATE). The GATE experiment
provides a very high quality radar rainfall data set which
covers a region of approximately 120,000 km? (for detailed
discussion of the GATE data set. see Hudlow and Patterson
[1979]). Modeling based on the GATE data set has played.
and continues to play. an important role in research on the
hydrology. meteorology, and oceanography of tropical ocean-
ic regions (see. for example. Bell [1987]).

Because there were only a few rain gages used during the
GATE project. we simulated a sampling mechanism for the
rain gage network. This approach is justified in the case of
GATE radar data due to its high quality and good agreement
with the rain gage data actually used [see Hudlow er al. 1979].
The procedure we used to generate rain gage observations
from the radar rainfall GATE data accounts for different sam-
pling properties of the two sensors and is described in the
work by Krajewski [1987].

The estimation procedure of section 4 was applied using
daily data for the 37 days of three phases of GATE. Daily
radar fields were constructed by aggregating the hourly radar
fields twhich are summarized in the work by Hudlow and Pat-
rerson [1979]). Using a simulated rain gage network of 400
zages (for a gage density of approximately 1 gage/300 km?) we
first computed the feasibility statistic of (42) obtaining a value
of 434 This result implies that estimators of model parame-
ters cannot be computed.

From (42) we can loosely conclude that mean rainfall and
the probabulity of no rainfall are too small and the variance of
rainfall 18 too large. It is argued below that the crux of the
problem 1s that the probability of no rainfall during wet
periods is too low. In effect. the model is not capable of hand-
ling low-intensity background rainfall. To arrive at this con-
clusion. we created censored rainfall fields in the following
fashion. Daily radar fields were constructed after first remov-
ing from the hourly fields values less than a specified thresh-
old. In Table | we show the esumated mean. variance, prob-
ability of no rainfall. and feasibility statistic for the original
data set and censored data sets with thresholds of 0.5 and 1.0
mm hour. Note that the mean and variance for the 0.5 thresh-
old differ from the zero threshold values by less than 12%: the
probability of no rainfall with thé 0.5 threshold is more than
twice the zero threshold value.

Note also in Table 1 that the feasibility statistics for both
the 0.5 and 1.0 mm hour thresholds lie between ! and 2.
Clearly. the feasibility statistics for the censored rainfall fields
are in the appropriate range due to the increase in the prob-
ability of no rainfall. The mean and variance are not only
slowly changing with increasing threshold, they are also
moving in the wrong direction. The sample mean is decreasing
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TABLE 1. Statistics Computed for Various Thresholds

Threshold. mm/hour

Statistic 0.0 0.5 (K1)
i 0.46 0.40 0.33
é? 0.78 0.81 0.85
p 0.30 0.73 0.85
$ 434 1.61 1.28

with increasing threshold. If the other parameters remain con-
stant. a decreasing sample mean increases the feasibility statis-
tic. Similarly. an increasing sample variance would increase
the feasibility statistic if other parameters remain constant.
Table 2 contains values of the feasibility statistic for a range of
rain gage numbers. These results rule out sampling properties
of the rain gages as a problem source. These results strongly
suggest that shortcomings of the model for the GATE region
relate to low-intensity rainfall.

Using the radar fields censored at 0.5 mm hour and the
parameter estimation procedure of section 4. the following

parameter  estimates  were  obtained: 4 = 0.0003
rainbands km*. 7 = 0.14 rain cells km®. f~' = 0.63 mm. d, =
20.4 km. and d, = 1.0. The value of rain cell radius was taken

to be 2 km. Note in (17}+20} that rain cell radius appears only
through terms involving ;nr®. Thus if we change r. the only
change in model parameters involves ;. If. for example. we use
a rain cell radius of | km. the rain cell intensity - increase to
0.54. Using a value of 2 km gives us rain cells that are ap-
proximately the size of our radar pixels.

It is noteworthy that the estimated model has rain bands
that are approximately circular in shape (that is. d, = 1.0):
this is not overly surprising for tropical rainfall. [t would be
expected that extratropical storms would show stronger aniso-
tropic organization.

From our parameter estimates, we conclude that during a
wet day our 120,000 km* region contains. on average, 36 rain-
bands. An individual rain band, which has an area of approxi-
mately 1300 km?, contains, on average, 182 rain cells. Average
rainfall intensity for a single rain cell is 0.63 mm.

In our application we have identified one of the possible
limitations of the model: its inability to deal with low-
intensity rain hiding more apparent structure of a rainfall
field. Other limitations such as those attributable to small
sample properties of parameter estimators, effects of rain gage
density, and the structure of the rainall process itself could be
examined via a Monte Carlo study.

TABLE 2. Feasibility Statistic Computed for Various Network
’ Densities

Threshold. mm hour

Number of

Gages 0.00 0.50 1.00
25 189 .72 ’ 1.35

50 494 1.78 1.38

100 4.59 1.65 1.29
200 428 1.57 1.27
400 4.34 1.61 1.28
800 443 1.63 1.29

6. CONCLUSIONS

In this paper we have presented a statistical framework for
multisensor rainfall modeling; three principal tasks are in-
volved. In section 2 we present our sampling model which
characterizes the error of radar and rain gage measurements
of rainfall. Our sampling model is based on the assumptions
that, for purposes of parameter estimation. the strength of rain
gage data is accuracy of time-integrated obervations while the
strength of radar is its ability to “see” areal extent of rainfall
fields. In section 3 we develop a cluster model for time-
integrated rainfall fields. The major distributional result we
obtained for our model, a representation for its Laplace func-
tional. is given in theorem 1. From this result. we are able to
compute the theoretical moments necessary for parameter es-
timation, Method of moments estimators for model parame-
ters are derived in section 4. The estimators require rain gage
data and 0-1 mosaics of radar fields. An especially attractive
feature of the estimation procedure is that a simple statistic
(equation (42)) can be precomputed to determine whether fea-
sible parameter estimates exist.

[t has been shown that inclusion of radar rainfall data, even
in the simple form of 0-1 mosaics. improves the model identifi-
cation problems discussed by Smith and Kurr [1985]. By using
radar data in conjunction with rain gage data. we can consider
more complex rainfall models than if rain gage data alone are
used. If. however, we wish to consider more complex rainfall
models than the one presented in section 3. several problems
may arise. {t may not be possible to obtain the information
necessary for parameter estimation from 0-1 mosaics of radar
fields. requiring direct use of high-resolution digitized radar
fields. This, in turn. would likely require stronger assumptions
on radar error structure than were made in section 2. A
second problem that may arise is loss of computational tracta-
bility. In choosing a more complex model, we may lose the
capability to compute distributional properties that are neces-
sary for parameter estimation. Ultimately, we must balance
the validity of rainfall model assumptions against the validity
of sampling assumptions and analytical tractability.

In section 5 we apply our statistical model to the tropical
Atlantic region covered by the GATE experiment. Results of
this section suggest that our rainfall model is suitable for im-
portant components of tropical Atlantic rainfall. The model is
not capable. however. of representing low-intensity compo-
nents of the rainfall process. The results of section 5 reinforce
our conviction that progress in rainfall analysis is best
achieved by a coordinated and balanced treatment of mod-
eling, sampling. and parameter estimation.

APPENDIX

The proof of theorem | is sketched below. First., we note
that an alternative representation to (11) for the random field

ull vy —x1 < dMy, w (Al)
vRIXR .
where M, is a point process on R? x R,. For 4 = R? and
B <= R.. M{A. B) is the number of rain cells whose center is
located in 4 and whose storm depth is contained in B.
Computational tractability of Z follows from the fact that
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the point process M, in (Al) can be represented as a Cox
process on R?* x R,. A Cox process is a point process which
can be interpreted as a Poisson process with a randomly vary-
ing rate of occurrence [see Karr, 1986]. The randomly varying
rate of occurrence will be termed the “directing process.” The
directing process of M, is given by

Afx.uw)=Afxhu) xeR? ueR. (A2)

where h is the expoiential density function with parameter B
and
Adx)= | glx — y) AN (A3)
«R:
N, is a Poisson process on R* with intensity 4, and g is given
by (13). In this formulation. N, is the point process of rain
band centers and y(x) 1s the rate of occurrence of rain cells at
x associated with a rainband centered at the origin.
The following lemma [Karr. 1986] 1s needed for computing
the Laplace functional of | |

e

Lemma

Let M be a Cox process on a Euclidean space E with direc-
ting process A. Then

E{exp \1— ' fix) d.\!(,\')?{:l
3 J
!

= E[exp — | (I = 7"IAx) dx}} (A4)
JE
Proof of Theorem 1
L= E[exp {— J HxIS(x) dx}] (A5)
R
|
L‘HfE[;\p{ /1\L,(\)d‘(}|7,=1:|P1Y,=1!

- E[ﬂp j— | SNy d\}j Y, = :|Pl Y, =0 (A6)
. j’ { i i
L.tf)=E]exp {— S(x)EAx) dx ;),:l p, +(1 —p))
JRZ

(AT

E[exp {— J L3 (x) d.\} Y, = 1]
R:
= E[:exp {—J f(.\‘)D ul(ly — xt < rydM . ul] dx}:l
R2 RIXR.

i (A8)
E[exp {—f S(x)E(x) d.\'} Y, = l] = E[exp (-—
R 1 R2xR.
[u-[ )y —=x, <) d.\'] dM yy. u)}:! (A9)
R:

E|:exp {— FIx)EUx) dxH Y, = l] = E[exp {— f

+R2 R2xR.
‘[1 — exp (—u f feOlgly — xl < r) dx)]/.\,.(y)hlu) du dy}:]

R:

(A10)
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E[cxp {— J. S(x){x) dx} Y, = l]
R
= El:exp {— f ’:j h(u) — h(u)
. r: LJm.
“exp <—u f SOy = xlih <) dx) du]ﬂ.b') d.v}] (A1)
'
E[exp {— j S(x)Edx) dx} Y= l] = E[exp {—j
R: r2

[ - b ]&m dy}] (A12)
B +J’ SOy — xf < r) dx
R
Let
J SOy — xi < r)dx
G(y) = —= (A13)
ﬁ+J FEOMEY = xI < 1) dx
R:
Then
E[exp {— (‘ S(x)E(x) dx}‘Y— :I
vR2
E[exp { j }] (A14)
E) exp {— F10)EAx) dx} Y =1
L Jr: i
- E[exp {— J Gly) j gz — ¥) dN(2) d_\}:l (A15)
R: R:
El exp ¢ — S (x) dx} Y=1
L Jr: |
= El:exp 5 - [ Giyiglz = v) d_\':] dN,{:)}] (A16)
U Jre Lee
r g r 3 )i B
E| exp {— J JEUx) dx plY =1
L R: j .

= exp j_;_ ' ( 1 —exp (— j G(ygtz — ) dy)) d:}
L JRI N R: v
(A17)
" |
E|:exp {—— fix1g0x) dx ]'Y = I:I
Jr: Ji
=exp{—).[ (1 —e’"‘”)d:} (A18)
R:

Key steps in the proof are (A8) and {A17), which follow from
the lemma. and (A12) in which we evaluate the normal La-
place transform of an exponent}al random variable.
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