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Radar Rainfall Data Quality Control by the
Influence Function Method
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The statistical concept of the influence function is applied to detection of outliers in radar rainfall
fields. The method can identify observations which are inconsistent with the spatial correlation in the
field. A Monte Carlo experiment has been performed to test the method for daily and hourly radar
rainfall data and to compare it to other simple methods such as range and gradient checks. The results of
that study indicate the usefulness of the method in the detection of outliers in real time. They also show
the potential of the method to deal with outliers resulting from certain types of anomalous propagation.

1. INTRODUCTION

The ability of a weather radar to monitor rainfall continu-
ously in time and space is very attractive from an operational
point of view. As a result, there are numerous examples of the
application of radar for hydrologic purposes [e.g., Kessler and
Wilk, 1968; Anderl et al., 1976; Collier et al., 1983; M. D.
Hudlow, unpublished manuscript, 1973]. Systems have been
developed that are capable of producing digitized estimates of
rainfall with high temporal and spatial resolution (e.g., the
Radar Data Processor II system; D. Greene et al, unpub-
lished manuscript, 1983). However, there are some problems
with a direct use of radar rainfall estimates as an input to
hydrologic or other types of operational models. Although
radar provides a very good areal description of rainfall cover-
age, the magnitude of rainfall estimates is contaminated by
errors of a multiple nature. A good discussion of various
sources of error in radar rainfall estimates is given in the work
by Harrold et al. [1973] and Wilson and Brandes [1979]. The
errors can be reduced if radar rainfall estimates are combined
with other rainfall data such as rain gage or possibly satellite
data. Papers by Eddy [1979], Crawford, [1979], and Krajewski
and Hudlow [1983] address the problem of optimal merging of
radar and rain gage rainfall data. Such procedures are, how-
ever, very sensitive to the quality of radar data and the density
and configuration of rain gage networks. Thus in order to
provide high-quality radar rainfall data, additional processing
must precede the merging procedures (M. D. Hudlow et al.,,
unpublished manuscript, 1983; P. R. Ahnert et al,, unpub-
lished manuscript, 1983). This paper describes a preprocessing
procedure applicable to this quality control problem.

High-quality rainfall data are understood to be data which
do not contain unrealistic values hereinafter called “outliers.”
Outliers in radar rainfall data can result from anomalous
propagation (AP), interference of signal from other than rain
targets such as airplanes or towers, communication line prob-
lems, etc. Detection of outliers in radar rainfall data seems, on
the surface, to be a simpler problem than it really is. The crux
of the problem is to develop a usable definition of “unrealis-
tic.” For instance, let’s consider high values. If we set an arbi-
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trary upper limit on “realistic” values, we risk that if the limit
is set too low, we will reject correct values and underestimate
the rainfall. Or, if the limit is too high, some incorrect high
values or outliers can slip through the system and cause over-
estimation of rainfall. In either case, underestimation or over-
estimation of rainfall can significantly affect the subsequent
analysis. Trying to set the limit based on historical data analy-
sis is difficult, since the result would depend upon the geo-
graphic location, the availability of the historic data, and the
approach taken. In the case of radar rainfall data, the historic
data base is very limited and because of different sampling and
error characteristics cannot be substituted or even supple-
mented by a rain gage data base. Similar problems exist for
low values. Although the physical lower limit on radar rainfall
values is simply zero, it is possible that unusually low data
values appear in a region of intense precipitation. In this case,
it is even more difficult to establish a simple threshold. Similar
considerations apply to analysis of gradients instead of mag-
nitudes in the radar rainfall field. It is clear from the above
discussion that simple threshold tests are inadequate and that
other approaches are necessary.

In this paper, application of the influence function method
to the problem of outlier detection in radar rainfall fields is
described. The method is attractive since it can be fully
automated and used in an on-line mode. Also, it does not
require any external information or calibration. The method,
as applied to radar rainfall fields, is based on analysis of spa-
tial correlation in the field. Outliers are defined as data being
inconsistent with the correlation function. Such definition
allows for detection of the high-valued outliers as well as the
low-valued points. The assumptions required are that the rain-
fall ficld is statistically homogenous (up to second-order mo-
ments) and can be transformed into a Gaussian field. It seems
that both assumptions are satisfied in most nonorographic
type situations. A more detailed description of the influence
function concept is given next.

2. MATHEMATICAL BACKGROUND

2.1. Influence Function Method

Rainfall is considered as-a stochastic process; this paper is
focused on statistical analysis of samples from this stochastic
process. In any analysis of statistical data, one faces a problem
of robust estimation, ie., constructing such estimates that
would be resistant to differences in realizations (or samples) of
the underlying process. A related problem is that of estimation
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TABLE 1. Critical Probability Values
1,
a 1.00 2.00 3.00 4.00 5.00 6.00
1.00 02090 0.0618 0.0196  0.0065 0.0022  0.0007
090  0.1814  0.0477 0.0135 0.0040 0.0012  0.0004
080  0.1525 0.0346  0.0085 0.0022 0.0006  0.0002
0.70 01224  0.0231 0.0047 0.0010  0.0002  0.0000
0.60 00918 00136 00022 0.0004  0.0001 0.0000
0.50 00618  0.0065 0.0007 0.0001 0.0000  0.0000
0.40 0.0346  0.0022 0.0002  0.0000 0.0000  0.0000
0.30 0.0135  0.0004 0.0000 0.0000 0.0000 0.0000
0.20 0.0022  0.0000 0.0000 0.0000  0.0000  0.0000
0.10 0.0000 00000  0.0000 0.0000 0.0000  0.0000

Constant a = 1 — p2(k, I).

in the presence of outliers. Hampel [1974] introduced a con-
cept of influence curve or influence function to facilitate analy-
sis of contaminant effects on estimators. In that concept, all
data obey a basic model (or distribution) F. The data contain
a contaminant which comes from a different model G. Both
models constitute a contamination model C:

C=(1—-AWF +.G 1

where A € {0, 1>. Now, let’s denote our estimator of interest
by T (for instance, T can be the mean, the variance, the corre-
lation coefficient, etc.) and our data sample by Z =<Z,, Z,,
<+, Z> Ofcourse, T=T(Z,,Z,, --+, Z,);ie., T is a func-
tion of Z.

In order to evaluate the influence of any data point & of the
sample Z (¢ =2, i=1, 2, ---, n) on the estimator T we
define the influence function

Jr./d) =lim {[T(1 — HF + AG) — T(F)J/4} @

A—0

We note that

0
fr®) =7 {TL1 = HF + AG1} ;-0 ©)

p(2,2) p(2,2)

»(0,0)

p(2,2) p(2,2)

Fig. 1. Spatial correlation matrix.
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Fig. 2. Critical level exceedance count pattern for an outlier.

Devlin et al. [1975] give expressions for the influence function
for various estimators, including correlation coefficient in a
bivariate sample.

Ideally, each data point should influence the estimator T to
approximately the same degree. If the point ¢ influences T
much more than other points, it can be suspected of being an
outlier. The final determination of whether it is an outlier or
not is based on the test of influence function value at some
specified critical level.

2.2.

In this paper we examine the applicability of the influence
function concept to the detection of outliers in the rainfall
radar field when the estimator of interest is the spatial corre-
lation. Using the result employed by Devlin et al. [1975], the
influence function for correlation in space is

Influence Function of Spatial Correlation

ITH, p(k, D), (yijs Yierj+ 0]

= VijVi+rj+1 — % plk, l)(yij2 + yi+k,j+l2) @

28

N NN
N TN NN

21222

Fig. 3a.

Pattern along the radar umbrella bound.
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Fig. 3b. Pattern in a high-gradient region.

where I( ) is the influence function; H is the marginal distri-
bution of standard normal observation y;;; and p(k, [) is the
correlation at lags k and [ in the i and j directions, respec-
tively. Since I( ) is a function of sample values, it is a statistic
itself and can be described by its distribution. It is difficult to
derive the distribution of I( ) directly from (4); therefore a
transformation is convenient [see Chernick et al., 1982]:

Uijkl = %[(yij + Yigp e )1 + plk, ) Ciz

+ (yij - yi+k,j+l)(1 — p(k, l))—1/2] (%)
V;jkl = %[(yij + Vi1 + plk, D712
- (yij - yi+k,j+l)(1 — plk, )~17] (6)

Then

Iijkl = I[H, p(k, 1), Wip» yi+k,j+l)]
= [1 — p2k, DIUMVM (D)

It can be easily shown that for a stationary Gaussian field,
U,* and ¥ are independent and normal with a zero mean
and variance of one, N(0, 1). Thus I,;/* has distribution of a
constant times a product of the standard Gaussian indepen-
dent variables. It can be shown that I;;* has the following
probability density function:

P =1 — p*k, D17} i Ko@) ®

where K, is the Bessel function of the first kind of order zero,
and z is the product of U;* and V;*.

On the basis of this distribution, a critical value I,, of I,;*
can be selected. Table 1 shows the critical probabilities as a
function of I,, and the constant [1 — p?(k, D)]. It is clear from
the table that if one selects I, to be 4.0, then the probability
associated with it is less than 0.01 no matter what value the
correlation takes. The sensitivity of the method to the choice
of the parameter I, is investigated in the following chapters.

As can be seen from (4), in the case of correlation influence
function we are actually examining a pair of observations y;;
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and ;. .+, In general, it is difficult to distinguish which
point from that pair should be questioned. However, this
could be determined if both points are given another test, this
time entered coupled with different points. Repeated high
value of influence function for a given point usually means the
point is an outlier.

3. DEeTECTION OF QUTLIERS IN RADAR RAINFALL DATA

In actual applications of the method, we do not know the
true statistics, and therefore estimates have to be used. These
will be denoted hereinafter by a circumflex. Let us assume that
radar rainfall data are given on a rectangular grid and denote
RG,j,i=1,---,NXandj=1,---, NY. A correlation matrix
of radar data for nonzero areas within a radar umbrella can
be computed from the following formula:

M; M;
2. 2 [RG, ) — AI[RG + k, j + 1) — 4]

mi mj

Ak, ) = ©

Ng?

where N is the number of pairs of observations whose coordi-
nates differ by the vector (k, /) and R(, j)> 0 and R[i + k,
j+ >0, fiis the estimate of the mean of the nonzero part of
radar rainfall field, and 62 is the estimate of the corresponding
variance.

Integration limits m;, m;, and M;, M for a rectangular field
can be computed as

m; =max (1,1 — k) m; =max (1,1 —1)

M; = min (Nx, Nx — k) M;=min (NY, NY — )

For example, if k € (-2, 2) and | € {—2, 2), then the corre-
lation matrix is a 5 x 5 matrix of the form presented in Figure
1.

Suppose now that at the location (i, j) in our radar rainfall
field there is an outlier. It we compute the influence function
for all the pairs in the field that are separated by no more than
two lags in any direction, and we count, for each pair, the
number of times the influence function exceeds the critical
level, then the display of these counts for the vicinity of lo-
cation (i, j) would result in the pattern shown in Figure 2.
Thus the problem of outlier detection in radar rainfall fields
can be simplified to the problem of pattern recognition. Of
course, a single pattern such as the one presented in Figure 2
appears only if the outlier is very distinct. A more difficult to
recognize pattern can result along the boundaries of the
search region or in the presence of high local gradients in the
radar rainfall field. Figure 3 shows examples of such situ-
ations.

Also, it is obvious that the choice of the critical level of
influence function affects the pattern as well; this is demon-
strated in Figure 4. One can see that the pattern obtained for
the critical level equal to 3.0 is easier to recognize than the
patterns for I, = 1.0 and I, = 2.0.

The following rules were employed to recognize an outlier
pattern.

1. All the locations within a given number of lags from the
point under examination must indicate critical level exceed-
ance. The number of lags should correspond to the dimensions
of the correlation matrix to be computed.
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TABLE 2a. GATE Daily Data Characteristics

Field Characteristics
GATE
N AN N N N Day i, é, R VR,,
No. mm/h mm/h mm/h mm h™!lag™! /(1)
242 0.59 0.57 3.34 2.35 0.95
N N N N N 243 0.08 0.17 2.66 1.96 0.81
o 244 0.03 0.08 1.41 1.39 0.64
d 245 1.00 0.85 5.62 3.40 0.90
(o'0] 246 0.11 0.21 398 3.14 0.84
I N N ~r N AN 247 0.79 1.18 7.07 401 097
248 1.04 0.95 8.91 8.32 0.91
e‘, 249 0.28 0.45 4.46 4.20 0.90
— 250 0.18 0.22 2.81 2.04 0.81
N N N N N 251 030 055 5.30 331 092
252 0.55 0.59 5.30 3.28 0.87
253 0.11 0.32 5.62 4.04 0.82
254 0.18 0.40 5.01 327 0.84
N AN | AN AN N 255 0.61 0.80 595 334 0.94
256 0.71 0.94 14.12 9.39 0.86
257 1.00 1.02 7.49 5.12 0.92
258 0.27 0.51 3.98 295 0.92
259 1.02 0.80 9.99 8.50 0.80
260 0.55 0.65 6.30 2.96 0.90
261 0.11 0.18 3.16 2.53 0.70
TN N NN
S 2. The count for a point under examination must be at
8, least four times higher than the average count in the sur-
<T oN o oN N L‘; rounding area (5 x 5 in our examples).
() ‘g These rules are purely empirical. The second rule could be
N £ replaced by a more theoretically sound approach of influence
O N (e'0) o~ 3 function for the local average of counts, but it was found to be
] I N = unnecessary in our applications. Further work with real-time
()
) radar rainfall data is required for a more thorough examina-
6 ° d fall dat d fi h h
— O < < = tion of these rules. It may be possible to relate the rules to the
N N | S
&=
© TABLE 2b. GATE Day 245 Hourly Data Characteristics
<
~ ~ ~r N Al 50 GATE Field Characteristics
b Day
245, i, é, R, VR,,
hour mm/h mm/h mm/h mm h™!lag™?! /)
0100 0.21 0.94 22.38 19.40 0.58
0200 0.34 1.51 28.18 19.77 0.73
0300 0.48 2.44 58.08 35.30 0.78
0400 0.38 1.59 3548 20.91 0.77
Al N N N N 0500 031 141 4216 40.67 0.64
0600 0.30 1.15 28.18 22.56 0.65
0700 0.34 1.29 23.71 21.20 0.63
0800 0.58 2.14 56.23 39.45 0.74
A N N N 0900 0.60 2.09 50.11 3427 0.74
o 1000 0.46 1.56 31.62 25.67 0.68
— 1100 0.61 1.88 29.85 25.87 0.69
0 1200 0.86 2.28 33.49 28.18 0.71
I (e o) O ~r N N 1300 1.19 3.05 47.31 36.58 0.74
1400 1.62 3.37 42.16 28.04 0.77
6 1500 1.78 3.61 37.58 26.61 0.60
— 1600 1.70 3.37 47.31 33.51 0.80
© | | ¥ | © | 1700 210 392 4466 40.20 0381
1800 2.15 3.67 39.81 38.69 0.87
1900 2.15 3.80 39.81 38.14 0.89
2000 1.85 3.55 28.18 18.04 0.92
©Q | 0|0 | ¥ | O 2100 1.66 340 3548 19.21 093
- 2200 1.19 252 28.18 22.13 0.88
2300 0.83 220 56.23 32,52 0.78

2400 0.48 1.31 22.38 12.94 0.80
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TABLE 3a. Outliers Generated for Daily Data TABLE 4a. Number of Outliers Detected by Simple Methods,
Daily Data
GATE Generated Outliers, mm/h

Day Gate Day Maximum Range Maximum Gradient
No. 1 2 3 4 5 6 No. Method Method
242 0.76 6.66 252 3.63 791 18.26 242 1 3
243 1.07 0.82 0.92 1.04 0.83 1.85 243 0 0
244 1.07 0.97 1.26 0.83 0.93 1.11 244 0 0
245 15.48 1.97 1.54 14.68 0.50 471 245 2 2
246 2.17 1.34 1.58 1.74 213 1.36 246 0 0
247 0.61 11.27 9.42 9.20 0.02 2.51 247 1 3
248 0.45 2275 0.97 0.26 4.66 40.88 248 1 3
249 0.46 1.29 7.27 0.99 242 0.26 249 0 1
250 1.07 0.81 0.97 1.37 1.38 145 250 0 0
251 393 1.66 0.27 0.14 2.88 4.32 251 0 0
252 1.21 5.03 4.17 0.17 2.47 521 252 0 2
253 093 3.58 1.81 491 0.91 1.13 253 0 0
254 0.90 232 0.61 1.12 1.25 1.88 254 0 0
255 091 0.53 12.92 11.67 9.61 049 255 1 3
256 045 0.34 0.44 0.55 6.30 5.55 256 0 1
257 1.04 0.82 2.18 17.57 0.71 8.23 257 1 2
258 0.36 2.22 3.90 0.41 0.90 1.19 258 0 0
259 4.72 495 11.64 2.57 7.99 8.04 259 1 3
260 1.17 5.62 4.56 0.13 2.56 5.84 260 0 2
261 1.01 2.12 1.45 2.51 1.00 1.12 261 0 0

physical size of rain cells. In order to evaluate the performance
of the above described method, a Monte Carlo experiment
was performed and is described next.

4. MONTE CARLO EXPERIMENT

Evaluation of the performance of the influence function
method and a sensitivity analysis of the critical level choice

TABLE 3b. Outliers Generated for Hourly Data

was carried out through a simulation-type experiment. Daily
and hourly radar rainfall data from the international GARP
Atlantic Tropical Experiment (GATE) conducted in 1974 were
used. The choice of GATE data was motivated by the high
quality of the data which was assured by a very thorough post
experiment data processing and analysis. It is highly unlikely
that any outliers exist in that data set. This is an important
point, since our performance test was based on analysis of

TABLE 4b. Number of Outliers Detected by Simple Methods,

GATE Generated Outliers, mm/h Hourly Data
Day
245, Gate Day Maximum Range Maximum Gradient
hour 1 2 3 4 5 6 No. Method Method
0100 0.42 5.02 5.29 0.36 3.90 0.16 0100 0 0
0200 8.94 0.84 0.38 0.49 65.11 2.78 0200 1 1
0300 0.00 0.00 0.03 0.02 25.18 0.03 0300 0 0
0400 0.10 0.05 0.87 4.71 0.02 0.83 0400 1 0
0500  1064.31 0.86 2.62 0.58 2.01 098 0500 0 1
0600 042 0.21 2.03 3.54 35.87 498 0600 0 1
0700 211 1.83 1.50 7.00 0.03 0.01 0700 0 0
0800 0.11 1.31 0.04 0.00 0.21 31.40 0800 0 0
0900 0.75 0.00 0.00 0.98 328  751.02 0900 1 1
1000 265.88 6.65 0.51 0.20 5.36 2.36 1000 1 1
1100 0.35 0.09 183.03 14398 91.24 0.08 1100 3 3
1200 0.20 0.51 0.01 0.23 4.39 0.01 1200 0 0
1300 0.44 0.01 0.00 0.00 1.39 0.00 1300 0 0
1400 0.01 0.20 0.42 1.64 0.01 0.56 1400 0 0
1500 0.00 0.89 59.69 325 238237 14.00 1500 2 2
1600 0.00 8.06 6.43 0.00 0.00 0.00 1600 0 0
1700 0.05 6.86 0.54 0.00 1.23 21.16 1700 (] 0
1800 0.00 70.68 0.00 0.14 0.02 177.44 1800 2 2
1900 0.11 0.00 3577 227.00 47.25 4.02 1900 1 3
2000 0.00 2.60 7971.37 0.00 0.00 232589 2000 2 2
2100 1.04 5704.68 0.01 0.00 0.00 0.08 2100 1 1
2200 1.72 0.00 0.00 129.11 11.67 0.02 2200 1 1
2300 184.04 2.15 425 18.81 791 686.77 2300 2 2
2400 2.26 0.57 191 30.57 46.62 0.00 2400 0 1
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TABLE 5a. Number of Outliers Detected, Daily Data TABLE 5b. Number of Outliers Detected, Hourly Data
It" IC)‘
GATE 1.0 20 3.0 4.0 5.0 6.0 GATE 1.0 2.0 3.0 4.0 5.0 6.0
Day Day
No. A B A B A B A B A B A B No. A B A B A B A B A B A B
242 4 4 4 4 4 4 4 4 4 4 4 4 0100 0 0 0 0 0 0 0 0 0 0 0 0
243 6 6 6 6 2 2 1 1 1 1 1 1 0200 2 2 1 1 1 1 1 1 1 1 1 1
244 4 4 7 5 0 0 0 0 0 0 0 0 0300 2 1 2 1 1 1 1 1 0 0 0 0
245 2 2 3 3 3 3 3 3 3 3 3 3 0400 0 0 0 0 0 0 0 0 0 0 0 0
246 4 4 5 5 s 5 5 5 5 5 5 5 0500 1 1 1 1 1 1 1 1 1 1 1 1
247 3 3 4 4 4 4 4 4 3 3 3 3 0600 3 1 1 1 1 1 1 1 1 1 1 1
248 9 4 5 3 4 2 3 2 3 2 3 2 0700 0 0 0 0 0 0 0 0 0 0 0 0
249 7 4 4 4 33 2 2 2 2 1 1 0800 1 1 1 1 1 1 0 0 0 O 0 O
250 4 3 2 2 2 2 2 2 1 1 1 1 0900 2 1 1 1 1 1 1 1 1 1 1 1
251 5 4 4 4 3 3 3 3 3 3 3 3 oo 5 2 1 1 1 ¢t t 1 1 1 1 1
252 6 4 5 4 4 3 4 3 4 3 2 2 1100 4 2 -2 2 3 3 3 3 3 3 2 2
253 9 5 10 5 10 6 6 3 2 2 2 2 1200 O 0 0O 0 O O O o o0 O o0 o0
254 4 1 1 1 1 1 1 1 1 1 1 1 1300 i1 o 0 0 0 O O O O O o0 O
255 6 3 5 3 3 3 3 3 3 3 3 3 1400 $1 o0 0 0 0 O O O o0 O o0 O
256 11 11 1 1.1 1 0 0 0 O 1500 tr 1 1t 1 1 1 2 2 2 2 2 2
257 1 1 2 2 2 2 2 2 2 2 2 2 1600 1 i o 0 0 0 O O O OO o0 o
258 4 2 4 1 tr o 1t o0 1 0 1 O 700 0 0 0 O O O O O 0 O O0 O
259 3 2 2 2 3 3 3 3 1 1 1 1 1800 2 2 2 2 2 2 2 2 2 2 2 2
260 3 3 3 3 3 3 3 3 3 3 3 3 1900 2 2 3 2 2 2 2 2 2 2 2 2
261 5 3 4 3 2 2 1 1 1 1 1 1 2000 5 2 3 2 2 2 2 2 2 2 2 2
2100 1 1 3 2 2 1 2 1 2 1 1 1
Column A contains the number of detected outliers, and column B 2200 4 2 3 2 2 2 2 2 1 1 1 1
contains the number of actual outliers. 2300 3 3 3 3 3 3 3 3 3 3 3 3
2400 3 2 2 2 2 2 2 2 2 2 2 2

generated outliers. Six outliers were generated for each field
from a lognormal distribution with mean equal to j and high
variance equal to 100. That way, some of the outliers were
clearly outside of any reasonable physical range, some were
high by these standards but realizable, and some were as low
as most of the values in the field and thus almost impossible
to detect.

Some of the characteristics of 20 selected GATE days, as
well as those from each of the 24 hours of GATE day 245 are
summarized in Tables 2a and 2b, respectively. The selection of
the 20 days was done arbitrarily. In Table 2, ji denotes the
mean value of nonzero region in the field, ¢ is the correspond-
ing standard deviation, R, is the maximum value in the field,
VR,, is the maximum gradient ‘in the field, and p(1) is lag-one
correlation coefficient averaged over N-S and E-W directions.
Table 3 includes the generated values of outliers, six for each
field. Table 4 presents the results of application of two simple
methods of outlier detection. One method is called maximum
range check and the second is maximum gradient check. For
the purpose of this study, the maximum range value was se-
lected as 10.00 mm/h for daily data (Table 4a) and 50 mm/h
for hourly data (Table 4b). The maximum gradient was set as
5 mm h™! lag™! for daily and 30 mm h~! lag™! for hourly
data. These decisions are arbitrary and were made without a
long preceding study, but here they serve an illustrative pur-
pose only. Table 5 contains the results of the influence func-
tion method application for different critical values. One can
see that when the critical value equals 1.0, the method is over-
sensitive and detects relatively high values in the fields as the
outliers. Raising the control level to 2.0 helps to avoid this
problem, and raising it to 3.0 virtually eliminates it. Some-

Column A contains the number of detected outliers, and column B
contains the number of actual outliers.

times, for a low critical level, even high-valued outliers are
undetected because the critical level exceedance pattern be-
comes too messy and does not conform to the detection rules.
Raising the initial level clears the picture and the outliers can
be detected.

For a more convenient evaluation of performance of the
influence function method, three additional performance sta-
tistics were computed (R. J. Donaldson et al., unpublished
manuscript, 1975) as follows: (1) probability of detection, de-
fined as the ratio of correctly detected outliers to the total
number of outliers; (2) false alarm ratio, defiend as the ratio of
incorrectly detected outliers to the total number of detections;
and (3) critical success index, defined as the ratio of correctly
detected outliers to the sum of the total number of outliers
and incorrectly detected outliers. The results averaged over all
days and all hours are given in Tables 6 and 7, respectively.

Comparison of the results in Tables 4 and 5 clearly favors
the influence function method (for example, compare day 246
daily rainfall values), which is geared to individual fields and
defines outliers through correlation, a statistic very important
in any analysis of radar rainfall fields. The results in Tables 6
and 7 should be used only in a relative sense. They do not
indicate the absolute performance measures of the methods.
As we pointed out earlier, the generation scheme used in this
study affects heavily the “configuration” (or distribution) of
outliers and biases the results. This can be easily seen in
hourly data where only a small part of all generated outliers
deserves such a name; however, in the computation of the
summary statistics the total number was used.
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TABLE 6. Summary Statistics for Daily Data

Critical Level I,

Maximum Maximum
1.0 2.0 3.0 4.0 5.0 6.0 Range Gradient
Probability of 0.525 0.542 0.433 0.383 0.333 0317 0.067 0.208
detection
False 0.234 0.140 0.108 0.104 0.079 0.067 0.001 0.011
alarm
Critical 0429 0.478 0.406 0.365 0.325 0311 0.067 0.202
success
index

In operational application of the method, it is suggested
that a prespecified value for the critical level be used instead of
expressing it in terms of critical probability, since this would
require computation of an appropriate quantile for each single
value in the field and thus prolong the processing. Based on
the results of this study, it is recommended that I, = 3.0 be
used.

The existence of outliers can significantly affect the esti-
mates of the correlation matrix. Therefore the influence func-
tion method should be applied in two or more passes. Often,
in the first pass only the most apparent outliers are detected,
since their existence has a masking effect on other outliers.
The detected outliers should be accommodated, i.e., substitu-
ted by some other values we think are the best estimates of
clearly wrong values. The concept of the influence function
method allows for a simple method for outlier accommoda-
tion. They should be replaced with values which would not
affect the estimates of the statistic of interest (the correlation
in this case) computed without them. In our study, we did not
apply this approach in a strict sense. We substituted for the
outliers the local averages; a procedure which has little influ-
ence on the correlation in the field. The averages were com-
puted from the eight surrounding values.

5. CONCLUSIONS AND FINAL REMARKS

The influence function method and its application for the
quality control of radar rainfall data has been presented. The
results of a Monte Carlo experiment indicate the usefulness of
the method. The main assumptions of the method, as applied
to the radar rainfall field, are that the fields are Gaussian and
second-order stationary. Both assumptions, although in gener-

al not met by rainfall fields, are approximately met if a nor-
malizing transformation is applied and rainfall accumulated
data are considerd. In case of strong orographic effects, the
methods can be used to analyze the residuals from the mean
(if such can be identified and estimated). In principle, the
method can also be used for nonhomogenous fields. It would
require, however, a derivation of influence function for gener-
alized covariance (see, for example, Bras and Rodrigues-Iturbe
[1985]). Applicability of the method to analyze radar data
from localized thunderstorms seems to be even more limited.
Some practical applications are needed to fully explore this
problem.

The power of the influence function method used to quality
control radar rainfall data lies in the fact that it does not
require knowledge of the distribution of the data nor of any
other characteristics that cannot be derived from the available
data. It does not require the setting of arbitrary limits on the
magnitude or gradient in the rainfall field and it accounts for
local anomalies. This means that the outliers need to be ab-
normal in a local sense only in order to be detected. Also, the
method is capable of detecting a “negative” outlier, i.c., a value
that is much smaller than its neighbors (but not necessarily
negative). Other advantages of the method are its simplicity to
implement, a calibration-free operation with a sensitivity
tuning capability, and statistical soundness.

The method can also handle some types of AP existence. If
AP appears in a rainy region, it is often manifested as high-
gradient, high-magnitude data. It would obviously affect the
correlation structure of the radar rainfall field. Clear air AP
usually cannot be detected by the influence function method
but then other methods such as comparison with satellite data
(J. V. Fiore et al., unpublished manuscript, 1986) or hardware-
type methods can be used [Aoyagi, 1983].

TABLE 7. Summary Statistics for Hourly Data
Critical Level I,
Maximum Maximum
1.0 2.0 3.0 40 5.0 6.0 Range Gradient
Probability of 0.186 0.174 0.174 0.174 0.160 0.153 0.125 0.152
detection
False 0.258 0.076 0.021 0.021 0.021 0.000 0.118 0.288
alarm
Critical 0.167 0.168 0.172 0.172 0.159 0.152 0.122 0.142

success
index
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