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A Generalized Stochastic Hydrometeorological Model
for Flood and Flash-Flood Forecasting
1. Formulation

KONSTANTINE P. GEORGAKAKOS

Department of Civil and Environmental Engineering and lowa Institute of Hydraulic Research, The University of lowa, Iowa City

An attempt to couple meteorological and hydrological models and procedures within the real-time
flood forecasting framework is made. A local quantitative precipitation model is coupled to a soil model
and a channel routing model through mass conservation differential equations and an automatic updat-
ing procedure. Automatic updating is performed through the use of the Extended Kalman Filter that
provides the capability for real-time probabilistic forecasts of flood occurrence and flood magnitude. To
complement the coupled system. a methodology was developed for consistent spatial interpolation of
sparse observations of the pertinent meteorological input variables. The interpolation methodology takes
into account topographic relief and atmospheric lapse rates. The result of the modeling effort is a
stochastic-dynamic hydrometeorological system suitable for use in real-time flood and flash-flood fore-

casting.

INTRODUCTION

It has been common practice among hydrologists involved
in real-time forecasting of floods to develop rainfall-runoff
models that simulate soil and channel processes and utilize
precipitation rates as input. The lack of reliable and flexible
precipitation models suitable for the spatial and temporal
scales of the hydrologic processes (see review by Georgakakos
and Hudlow [1984]) has prevented the formulation of gener-
alized models that simulated precipitation, soil. and channel
processes. Recently, however, Georgakakos and Bras [1984a,
b] presented a physically based conceptual precipitation
model whose tests have given encouraging results. It is the
purpose of this paper to present a generalized hydro-
meteorological model which couples storm, soil, and channel
states in an extended state vector to produce, as an output,
flow rates at the drainage basin outlet. The soil moisture ac-
counting portion of the Sacramento model issutilized as the
soil response simulator. The precipitation model of Ge-
orgakakos and Bras [1984a] and the channel routing model of
Georgakakos and Bras [1982b] are used to provide the input
and to propagate downstream the output of the soil model,
respectively. The model is suitable for use in operational river
flow forecasting since (1) it uses as input operationally forecast
surface temperature T, surface pressure p,, surface dew-point
temperature T,, and mean areal evapotranspiration potential
rate u,, and (2) it is in state-space form, thus suitable to be
used with modern estimation theory techniques which have
proven to be of great value in the real-time forecasting of river
flows [e.g., Bras and Rodriguez-Iturbe, 1985; Kitanidis and
Bras, 1980a, b; Georgakakos and Bras, 1982b, 1984a, b].

Some of the characteristics of the stochastic hydro-
meteorological model that make it particularly useful in real-
time flood forecasting are (1) extended forecast lead time, es-
pecially in cases of flash-floods. because of the quantitative
precipitation forecast capability: (2) better distribution of the
precipitation volume in the various soil zones because of the
existence of a dynamic equation for the precipitation state: (3)
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improved modeling of uncertainty through the incorporation
of a precipitation state in the state vector; and (4) capability
for updating the upper soil states from only precipitation ob-
servations.

The long distances (order of 100 km) between points where
the meteorological input (T, p,, T,) is forecast (or observed) in
real time necessitates an interpolation procedure characteristic
of the basin of interest for the determination of Ty, p,, and T,.
This paper present- such an interpolation procedure that ex-
plicitly takes into a..ount topography and the prevailing lapse
rate of the atmosphere (dry adiabatic or pseudoadiabatic).
Verification of the interpolation procedure is done using real-
world data. In an accompanying paper [Georgakakos, this
issue], the model is verified using six-hourly hydro-
meteorological data from the Bird Creek basin in Oklahoma.

MODEL FORMULATION

Based on the current local moisture content of the atmo-
sphere, soil, and channel. and on forecasts of the meteorologi-
cal variables Tg, T, p,. and u,. the generalized rainfall-runoff
model equations are capable of producing rainfall and runoff
forecasts for the basin of interest.

The model equations are presented here in a general form
for a headwater basin (with no upstream inflows). Ge-
orgakakos and Bras [1982u]. Georgakakos [19837, and Puente
Angulo and Bras [1984] extend the formulation to include
large-river systems with sesveral tributary basins:
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The concurrent precipitation and basin outlet discharge
rates are the instantaneous model output variables, given by
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The notation employed in the previous equations is defined in
Appendix A.

Current observation networks give measurements of the in-
stantaneous discharge rate z.. However, the accumulated pre-
cipitation volume z,* over a time interval At is sampled in-
stead of the instantaneous rate z,. Equation (4) is utilized with
the instantaneous rate =, related to the volume zp" by
=13, At (6)

p

Equations (4) and (5) are valid for discrete time ¢, ¢ + At,
t4+ 24t -t + kAL

The functions f,, f, f.. h,. and h_and the parameters a,, a,,
and a, are defined in the following sections for the particular
cases of the Georgakakos and Bras [1984a] precipitation
model, the Sacramento soil moisture accounting model [Bur-
nash et al., 1973], and the Georgakakos and Bras [1982b]
channel-routing model.

PRECIPITATION MODEL

The precipitation model of Georgakakos and Bras [1984a,
b] is based on the conservation of condensed water equivalent
mass (model state) in a cloud column characterized by the
input variables T;, p,, and T,. Cloud microphysics gives ex-
pressions for the precipitation rate as a function of the input
variables, the model state. and the storm invariant parameters.
Pseudoadiabatic condensation gives the input rate in the
cloud column. Although the model formulation has been pre-
sented in the work by Georgakakos and Bras [1984a], we
present the model equations below in order to establish nota-
tion and for easy reference. Following the notation of Appen-
dixes A and B, the model equations are
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The temperature T, and the pressure p, are found as the
iolutions of the system of algebraic equations:
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with
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The temperature T, is found as the solution of the algebraic

equation,
0.286 LT y T, \
7; H_’l exp M = @e
P e, T

t

(20

The function h(u) in (7) is given by
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The temperature T, is the solution of the algebraic equa-
tion,
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The diffusivity of water vapor in air varies with temperature
T, and pressure p, according to
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TABLE 1. Soil Moisture Accounting Model Variables
Symbol Description Value
States (Vector x,)

X, upper zone tension water content. mm

X, upper zone free water content, mm

X, lower zone tension water content, mm

X, lower zone primary free water content, mm

X lower zone secondary free water content,
mm

Xg additional impervious storage, mm

Inputs

u, instantaneous evapotranspiration demand,
mm,6 hours

P, instantaneous precipitation input,
mm;/6 hours

Parameters (Vector a,)

x,° upper zone tension water capacity, mm 120

x,° upper zone free water capacity, mm 15

x,° lower zone tension water capacity, mm 160

x,° lower zone primary free water capacity, mm 140

x5° lower zone secondary free water capacity, 14
mm

d, upper zone instantaneous drainage coeffi- 0.089
cient, 1,6 hours

d/ lower zone primary instantaneous drainage 0.003
coefficient, 1/6 hours

d/” lower zone secondary instantaneous drainage 0.033
coefficient. 1/6 hours

€ parameter in percolation function 48

0 exponent in percolation function 2.1

P, fraction of percolated water assigned to 0.02
the lower zone free water aquifers

u fraction of base flow not appearing in 3.55
river flow

B, fraction of basin that becomes impervious 0.17
when tension water requirements are met

B, fraction of basin permanently impervious 0.001

m, exponent of the upper zone tension water 2
nonlinear reservoir

m, exponent of the upper zone free water 2
nonlinear reservoir

my exponent of the lower zone tension water 2

nonlinear reservoir .

Appendix B gives the constants. input variables, and model
parameters of the precipitation model presented.

The values of the model parameters are based on the work
of Georgakakos and Bras [1984b] and Georgakakos [1982,
1984]. Their results indicate that the ‘optimal’ parameter
values remain reasonably constant for various storm types,
various topographic locations, and various optimization cri-
teria.

SoiL MOISTURE ACCOUNTING MODEL

The soil moisture accounting scheme of the National Wea-
ther Service River Forecast System (NWSRES) has been suc-
cessfully used with modern estimation theory techniques for
the real-time forecasting of river flows [Kitanidis and Bras.
19804, b; Georgakakos and Bras, 1979; Georgakakos and Bras,
1982b; Restrepo-Posada and Bras, 1982]. It is a conceptual
model of the reservoir type that monitors the volume of water
in the various soil layers. Description of the deterministic
model is given in Burnash et al. [1973] and in the work by
Peck [1976]. Armstrong [1978] gives the physical interpreta-
tion of the model components in terms of the observable soil
characteristics. The differential equations for the time evolu-
tion of the model states, which are the contents of each con-
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ceptual reservoir, have been formulated in the work by Kita-
nidis and Bras [1980a].

Previous formulations characteristically represent outflow
from a certain conceptual reservoir as a discontinuous func-
tion of its contents. For instance, the upper zone tension water
reservoir, modeling upper soil layer and interception storage,
produces zero outflow until its contents equal its capacity.
Once the reservoir is full its output is equal to its net input.
This type of behavior is very difficult to handle within the
linear framework of the most powerful modern estimation
techniques. Kitanidis and Bras [1980a], in their formulation of
the linearized system, use describing function techniques to
avoid the problem.

This work substitutes the threshold-type behavior of the
reservoir outflow (wherever applicable in the model) with a
nonlinear reservoir response. This way the reservoir produces
outflow even if it is not full, and its outflow depends on the
degree of saturation. From a physical point of view, this is
consistent with the spatially lumped nature of the model,
given the inhomogeneity of the soil properties of the basin.
Thus even if each soil column behaves as a threshold-type
reservoir, the basin produces continuous outflow to ground-
water and to the channel because of the spatial variation of
the threshold value. In this work, the model parameter that
defines the threshold (reservoir capacity) is considered to be a
basinwide maximum capacity of the soil columns.

Apart from the removal of the discontinuities, the following
were important model modifications. The moisture input to
the soil moisture accounting scheme is taken from

P, =¢x, (36)

with P, the volume rate per unit area and x, the volume in
cloud storage. The dependence of ¢ on u has been omitted for
notational convenience.

The distribution function for allocation of the percolating
water between the lower zone free water reservoirs has been
replaced by a numerically better behaving one. Use of the
function in the original NWS model within a state estimation
algorithm is liable to produce incorrect results [ Analytic Sci-
ences Corporation, 1980]. The modification is presented in the
work by Georgakakos et al. [19807 and the result is

Portion allocated to primary storage

X X
<C2 — 1) = +1
X5 X,

Portion allocated to secondary storage
X5\ X,
(l -C, —0> -

xs°/) x,

r .0
d/' x,
’ 0 ” 0
dl X4 +d1 Xs

with C, defined by

C,= 37)

Table 1 shows the list of symbols used in the soil moisture
accounting equations together with their description. It is
mostly based on the notation introduced by Analytic Sciences
Corporation [1980]. (See also Kitanidis and Bras [1980a]. The
parameter values for the Bird Creek Basin are also shown in
Table 1. The parameter rate values correspond to a standard
interval of 6 hours.

A difference between the present formulation and the one
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published in the work by Kitanidis and Bras [1980a] is that
the equations to follow include the surface runoff outflow from
the additional impervious area. In this aspect the present for-
mulation agrees with the one in the work by Georgakakos et
al. [1980]. Depending on the hydrogeomorphologic character-
istics of the basin under study, this component of outflow may
or may not be significant.
To facilitate notation, define the quantities y and C, as

X3+ X4 + X5

ST T e G
Ci=d/ x,° +4d" xs° (39)
If the ith component of the vector function f{ ) is denoted
by f.. the applicable differential equations are as follows.
Upper zone tension water element
ez

Upper zone free water element

x, \™ X, m2 X3
o () el 1= () e n

4
Lower zone tension water element
x X3 \™
fi=Cll+e) 31— P,)[l - (—2) ]
X, Xy
X, X
- l-—}— 42
ue( xxo) X%+ x,° 42

Lower zone primary free water element

fi = —d; .¥¢+Cl(1+ey9)—'25’:l—(l—-Pf)[l -<i?5> ]]
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xs x,
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Lower zone secondary free water element

X, X3 \™
fio = —d)” x5+C,(l+ey")—-3l:l—(l—Pf)I:I—(——0> ]:I
X2 X3

Additional impervious area water element

2 my
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The output u. from the soil moisture accounting model,
referred to as total channel inflow per unit time, is given by

d x,+d" x4

uc=<dux2+ T+ 4 )(1—ﬂ1—ﬁz)

X — x,\? x, \™
RS
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The following constraints determine the definition domain
of the state variables x.°:

o]

0<x <y i=1.2 -5 (47)

[t should be noted that (40) and (41) are mathematical ap-
proximations in that the nonlinear reservoir outflow does not
depend on the current net input. but rather on the nonnega-
tive portion of it. This may result. for example, in a situation
where the filled upper zone tension water element will be de-
pleted by evapotranspiration even though the current precipi-
tation rate might be greater than the actual evapotranspira-
tion rate. Given. however, the small time increments in which
the integration of the differential equations will proceed, the
error introduced will be well within the overall model struc-
ture errors.

CHANNEL-ROUTING MODEL

Georgakakos and Bras [1980, 1982b] presented a con-
ceptual, nonlinear, reservoir-type channel routing model,
which when tested with the soil moisture accounting scheme
of the NWSRFS, showed improved performance over linear
black box type models. Their model is simple to implement on
a digital computer and it does not require a large quantity of
high quality input data, as do the routing models based on the
full momentum and continuity equations.

The idea is to represent the channel as a cascade of n reser-
voirs. Let S;(r) be the volume of water in storage at the ith
reservoir and u (1) the total channel inflow per unit time (for
example, the output of the soil moisture accounting scheme
presented previously).

Then denoting by f, the ith component of f,, the model
differential equations for a headwater basin with no upstream
inflows, are

Joo = pudey +a,_ S, ™) — a,S;™() (48)

| — R —_
i=1,2---,n a,=0

and the instantaneous discharge rate at the basin outlet is
given by

hix.:a)=a,S,™r (49)

The ith component of the channel state vector x, is S,
Parameters of the model are p,. a,, (i = 1. 2, ---, n). m, and n.
Georgakakos and Bras [ 1980] give the details of model formu-
lation as well as ways of estimating model parameters from (1)
the basin observable hydromorphologic characteristics and (2)
input-putput time series data.

The table below gives the values of the model parameters
(vector a_ ) for the Bird Creek basin.

Channel Model Parameters

n=3
m=0.8
a, = 1.09 (mm®? (6 hours)
4, = 1.04 (mm"°2.(6 hours)
dy = 1.08 (mm®-2.(6 hours)

STATE ESTIMATOR

Statistical filters will effectively couple the state variables of
the soil and channel models with those of the precipitation
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model. This is a different coupling than the one due to the
conservation of water-mass law. The effect that each state
variable has on the storm basin model output variables is
monitored through the filter equations. Each state variable is
updated from the system observations. based on the degree of
its correlation to the model output variables and to the rest of
the model variables. In this way the errors in predicting the
discharge at the catchment outlet have a bearing on the speci-
fication of the initial conditions of the precipitation model
variables. Similarly. observations of the precipitation state
variables and parameters have an effect on the determination
of the state variables related to the drainage basin. This as-
sures coordination in the operation of the coupled storm and
basin models in real time.

Use of a state estimator with the hydrometeorological
model offers the capability of probabilistic forecasts. Based on
the predicted mean state vector and the predicted covariance
matrix. one can obtain the mean and the variance of the pre-
dicted observation variables. Then. assuming a normal distri-
bution for the prediction errors. and given a critical flood flow
threshold. one can compute the probability of the threshold
exceedance and. therefore. the probability of flooding. This
probability value is indispensable in present day decision-
making processes.

Georgakakos and Bras [1982a] develop the formulation of
the stochastic hydrometeorological model in a linear statis-
tical filter framework. Their formulation allows for uncertain
input with given mean and variance. Since the system equa-
tions (i.e., equations (1) through (5)) are nonlinear, both in the
system states and the input, the extended Kalman filter is used
as the state estimator [Gelb, 1974]. The procedure is straight-
forward to implement and the interested reader is referred to
Georgakakos and Bras [19824] [also Bras and Rodriguez-
Iturbe, 1985] for the details. It should be noted, however, that
the stochastic formulation introduces new parameters related
to the filter covariance equations. These are the elements of
the system noise covariance parameter matrix Q and the ele-
ments of the observation noise covariance matrix R.

<
METEOROLOGICAL INPUT SPATIAL INTERPOLATION

The Georgakakos and Bras [1984a, b] precipitation model
uses surface meteorological data as input in order to forecast
the precipitation rate in the area characterized by the input. It
is often the case. with the present state of the surface meteoro-
logical data network (average distance between stations of the
order of 100 km), that the precipitation rate is sought in areas
where no observations (or accurate forecasts) of the input
exist. Interpolation of surface meteorological observations is
then necessary. This section examines the issue of the spatial
interpolation of air temperature T, pressure p,, and dew point
temperature T; near the ground surface of terrain of varying
altitude.

It is assumed that surface meteorological input is deter-
mined by both topography and atmospheric disturbances. The
input is decomposed into two corresponding parts u(z) and u,,
according to

u=ulz) +u, (50

where u denotes input (any of Ty, p,, T,); = denotes altitude:
u(z) is the altitude-dependent topography component: and u,
is the atmospheric component. The various interpolation
strategies for each component are presented in the following
sections.

Topographic Component of Input

An air parcel is followed as it is forced by the topographic
relief to ascend from the lowest point in the area under con-
sideration. The thermal properties (pressure and temperature)
of the parcel are determined from its initial properties at the
lowest point and from the assumption of heat-adiabatic ascent
in unsaturated environment or pseudoadiabatic ascent in satu-
rated environment. The available equations are [Weollace and
Hobbs. 1977] as follows. The hypsometric equation (see also
equations (26) and (33)),

RT,
_-__-,=—im<‘ﬁ> (s1)
g P

The equation for the dry adiabatic lapse rate.

dTid2)4ey parcet = — 4 <, (52a)
Jor. given initial condition 7, at altitude z,,
g
T=—-—(—-z)+T, (52b)

4

The equation for saturated adiabatic ascent (see also equa-
tions (17), (19), and (21)),

0.286 L(Tw T.
0= T(&) exp {M} (53)
p ¢, T

In the above equations the subscript / denotes quantities at
the lowest point in the area under consideration. Also. T, is
the average temperature in the layer between altitudes - and
2. All other quantities have been defined in the previous sec-
tion.

The methodology ! the removal of topographic effects is
summarized in the foilowing steps.

. Record the temperature T, pressure p,, and dew-point
temperature T, at the lowest point in the area of interest.
Determine the saturation degree of the air based on the in-
equalities

Ty, > T, unsaturated

T, = T, saturated

2. If Ty, > T, use (32b) 1o determine the temperature of an
air parcel, after its heat-adiabatic ascent. at height - below the
lifting condensation level =,. where the air just becomes satu-
rated. The altitude = is detined by (51) when p=p, and T, =
(T, + T2, and with p, and T, given by (13) and (14) respec-
tively.

(1Y For = = z, the parcel will rise following the pseudoadia-
bat that originates at T, and p_. Therefore solve (51) and (53)
simultaneously for p and T. given z. p,. T. and 0, (by means
of equation (19)). Using the procedure described, one can
obtain the topography component of the surface temperature

input T{(z) for all the altitudes = of interest. Then, using
T, =T, + T()) 2

and (51) solved for p,

(2 =2y
= ex —_— 54
P = Py, €Xp { T.R } (54)
obtain the topography component in the surface pressure
input p(z).
{2) For z < z;. the dew-point temperature of the ascending

parcel is equal to the one at the lowest point; that is,

T,00=T, :<:z, (55)







2088

AT(CK)

20
151
Z=2 km
104
Z=| km
5
o T T T T T
243 253 263 273 283 293
T, CK)
Q
Fig. 1. Difference in temperature between heat-adiabatic and

pseudoadiabatic descent from level z to the mean sea level based on
the U.S. Standard Atmosphere (computed from the pseudoadiabatic
chart in the work by Wallace and Hobbs [1978]).

For parcel ascent above z,, the air is saturated; therefore

T,(2) = T(2) (56)

2>z,

Since T, is equal to T(z,), the function T,(z) is continuous. At
this stage, the effects of topography are given through the
functions Tj(z), p(z), and T,(z) for all z.

3. If T, = T, then the lifting condensation level is at the
lowest point. Proceed as in step (2), case z > z;.

The key assumption in the proposed methodology is that
there are observations of T;, p,, and T, at the lowest point in

1.0

0.9

0.8

CORRELATION

0.6+

10
TIME Chours)

30 105 20 |555 II50
DISTANCE (km), V=I5 km/he

o] 15 30 45 60 75

0 30 60 90 20 150 180 210 240 270 300
DISTANCE (kmd, V=30 km/hr
Fig. 2. Time-space correlation functions for T, p, and T, from
Boston, Massachusetts (solid curve) and from Tulsa, Oklahoma
(dashed curve) storms. Conversion from time to distance is made

based on the constant velocity of the atmospheric disturbance V.
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TABLE 2. Topographic Characteristics of Stations Used in the
Interpolation Tests

Station Longitude  Latitude  Altitude, m
Wichita, Kansas 97°25'W 37°39'N 396
Springfield, Missouri 93°23'W 37°14'N 380
Oklahoma City, Oklahoma 97°36'W 35°24'N 384
Tulsa. Oklahoma 95°54'W 36°11'N 200
Billings, Montana 108°32W  45°48'N 1087
Great Falls. Montana 1H1°21'W 47°29N 1116
Lewistown, Montana 109°25'W 46°55'N 1493

the area of interest. In practice, there will be situations where
this is not the case. If the points of interest lie above the lowest
point where observations are available, the proposed method-
ology is still applicable. Also for the cases where one is inter-
ested in points of lower elevation than the lowest observation
station, and the station observations indicate unsaturated con-
ditions (T,, > T,), then one can use the heat adiabatic descent
(52b), together with (51) and (55) to determine the topography
components.

Problems arise when the observations indicate saturated
conditions at the lowest observation point and points of in-
terest lie on even lower elevations. Because one cannot assess
from the available information whether the lifting con-
densation level is at the observation altitude or lower, one
cannot decide whether to use the heat-adiabatic descent or the
pseudoadiabatic descent based on some assumption as to the
location of the lifting condensation level.

Figure 1| presents the difference in temperature between
heat-adiabatic and pseudoadiabatic descent from the lowest
observation station to the lowest point in the area of interest
as a function of T, (the temperature at the level of the in-
itiation of the descent) for 1 and 2 km of total descent. The
difference in temperature shown corresponds to the upper
bound of the temperature error committed by making any
assumption regarding the lapse rate of the atmosphere in the
range from adiabatic to pseudoadiabatic. The heat-adiabatic
descent corresponds to the situation in which the lifting con-
densation level is at the same altitude as the lowest observa-
tion station. The pseudoadiabatic descent corresponds to the
situation in which the lifting condensation level is at the
lowest point in the area of interest. It can be seen that the
errors made are smaller: the lower the temperature T, and the
lower the altitude z. Although Figure | can serve as a guide to
anticipated errors in the case where it is of interest to know
the temperature and pressure fields at the bottom of a deep

WICHITA, KS

SPRINGFIELD, MO
O

TULSA, OK
105 km

OKLAHOMA CITY, OK

Fig. 3. Plan view of the station configuration with the distances

from Tulsa, Oklahoma (kilometers).
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GREAT FALLS. MT

160 km
'Q LEWISTOWN, MT

145 km

o
BILLINGS, MT

Fig. 4. Plan view of the station configuration with the distances
from Lewistown. Montana (kilometers).

valley when the observation stations are at higher altitudes,
the occurrence of such a situation in practice is very rare. It is
rather the orographic effects that one wants to assess based on
observations at low altitudes.

At the expense of increased computational effort, improved
accuracy can be obtained if the atmosphere is discretized into
several horizontal pressure layers along the vertical direction.
Thus one can use several layers to compute T)(z) and p(z) in
step 2(1). Increased accuracy is expected mainly because of the
nonlinear character of (50), (53), and (54) with respect to tem-
perature and pressure. Because this methodology is intended
for use in real-time applications. no vertical discretization was
performed for the purposes of this work.

Atmospheric Disturbance Component of Input

Attention is now concentrated on the determination of the
component u, of the meteorological input u for all the points
in the area of interest. Suppose that there are N observation
stations within reasonable distance (less than 200 km) from
the area of interest. First, the field values T(z), p,(z), and T,(2)
are subtracted from the data of all stations to obtain altitude-
equivalent observations. Denote those by 7, p;,, and T,, for
i=1,---, N. The problem now is to optimally interpolate in
space the “observations” T,, p,, and T,,. '

TEMPERATURE

PRESSURE =-v-nmeomen

In applications where the area of interest is of the order of
10.000 (km?) or less, the number N is small. Usually it is less
than 10 and very often less than 5. The sparsity of data thus
excludes interpolation procedures of the kriging type [e.g.,
Ripley, 1981]. The assumption of an underlying trend surface
defined by a set of parameters to be determined from histori-
cal data is not particularly appealing, since the surface thus
estimated would be the long term average one rather than the
one due to a temporary passage of an atmospheric distur-
bance. Furthermore, the trend (if one really exists) in ground-
based coordinates is a function of the direction of the distur-
bance movement (e.g.. fronts), which is expected to vary
among different disturbances.

The previous discussion motivates the use of simple interpo-
lation procedures of the moving average type where the value
of T, or p, or T, (ie. u,) at a certain point is a weighted
average of the observations T, p;, Ty, i=1, ---, N, with
weights dependent on distance. Thus weights analogous to
D", e™", e” P’ with D denoting distance and r a parameter,
have been proposed and used with moving average schemes
[e.g. Ripley, 1981]. If the weights are denoted by W(D)), the
atmospheric disturbance component u, at a point in distance
D, from the ith station, i = 1, ---, N, is given by

N
u, = 3. WDy (57
i=1
with u, one of the T,, p,, or T, and with u, the corresponding
one of the T;, p;, or T,. Note that the following also holds:

N
Y WD) =1
i=1
An indication of the spatial variation of T,, p,, and T}, can
be obtained from ume series data from a particular station,
under the assumption that the disturbances that caused the
time series were moving with constant velocity V. Thus using
V. one can convert a time correlation to a space correlation.
Figure 2 presents the time-space correlation functions of T,
p. and T, for positive lags. based on data from storms at
Boston, Massachusetts (solid curve) and Tulsa, Oklahoma
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Fig. 5. Residual monthly means normalized by total record observations means for Tulsa, Oklahoma. Only the topogra-
phy component was used as an estimator.
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Fig. 6. Residual monthly standard deviations normalized by total record observations standard deviations for Tulsa,
Oklahoma. Only the topography component was used as an estimator.

(dashed curve). A total of 300 data values, all from storm
periods, were used in each case. The upper horizontal axis is in
units of time (hours), while the two lower ones are in units of
distance (kilometers) based on velocities of 15 km/hour (top)
and 30 km/hour (bottom). Figure 2 indicates linear depen-
dence for all variables at distances up to 100 km. Therefore it
is reasonable to use weights that are inversely proportional to
distance.

Once the component u, has been determined for the points
of interest, the input u is determined based on (50). It is u that

is used as an input to the precipitation model of Georgakakos
and Bras [1984a, b].

REAL-WORLD APPLICATIONS OF THE INPUT INTERPOLATION
PROCEDURE

The interpolation methodology is demonstrated by way of
application at the Tulsa, Oklahoma, and at the Lewistown,
Montana, areas. Six-hourly temperature, pressure, and dew-
point data were used in both cases. Data from Wichita
(Kansas), Springfield (Missouri), and Oklahoma City (Okla-
homa) were utilized to determine the meteorological variables
at Tulsa (Oklahoma). Data from Billings (Montana) and
Great Falls (Montana) were utilized for Lewistown (Mon-
tana).

The longitude, latitude, and elevation of all stations are

-
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Fig. 7.

Residual monthly means normalized by total record observations means for Tulsa, Oklahoma. Both the topogra-

phy component and the atmospheric disturbances component were used in the interpolation.
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Fig. 8. Residual monthly standard deviations normalized by total record observations standard deviations for Tulsa,
Oklahoma. Both the topography component and the atmospheric disturbances component were used in the interpolation.

given in Table 2. Figures 3 and 4 give the relative positions of
the stations on a horizontal plane with the interstation dis-
tances indicated. The difference in the two test cases lies in the
different topographic and climatic regimes. The Oklahoma
case is characterized by a flat topographic regime at low eleva-
tions with an average air temperature of 15°C. The Montana
case is characterized by pronounced topographic relief with
cold temperatures averaging 5°C throughout the year. (Tem-
peratures lower than —40°C occur in January and February.)
The interstation distances are about the same in the two cases
under study.

Tulsa, Oklahoma Case

In this case the elevation of the point of imterest (Tulsa) is
lower than the elevation of all the other stations. Based on the
previous discussion of the interpolation algorithm, per-
formance is expected to be better in other cases, when interest
is on the orographic effects at high elevations.

A total of § years of 6-hourly data were processed. First, the
meteorological quantities attributable to topography at Tulsa
were obtained and compared to the corresponding observa-
tions [component u,(z)] there (Figures 5 and 6). Then, the full
interpolation algorithm was used to obtain the Tulsa quan-
tities and the residual errors were obtained (Figures 7 and 8).
The results are summarized in averages over every month of
record. The figures present normalized quantities so that per-
formance of the algorithm with respect to different quantities
can be compared. Figures 5 and 7 present plots of the residual
monthly means normalized by means of the total record ob-
servations (at Tulsa). Figures 6 and 8 present plots of the
residual monthly standard deviations normalized by the stan-

dard deviations of the total record observations (at Tulsa).
Table 3 presents the total record statistics for all meteorologi-
cal quantities. Comparison of Figures 5 and 6 to Figures 7
and 8 shows that although the topography component ex-
plained a large portion of the variance in all quantities, the
weighted average interpolation reduced by about one-half the
scale of the residual variability due to the topography compo-
nent alone while giving more “unbiased” estimates. In terms of
the various meteorological variables, Figure 7 suggests that
the dew-point temperature had the consistently larger negative
bias (underestimated) and the air temperature had the highest
postitive bias (overestimated). Thus the interpolation method-
ology characterized the atmosphere as being drier than it
really was. Variations in the standard deviation (Figure 8)
showed similar scales for all the variables, with apparent
annual cycles. Examination of the precipitation record for
Tulsa showed that the “lows™ in the variations of Figure 8 are
in the excessively wet months of the year, that is, in the period
from May until August. It is this period that is of interest in
real-time flood forecasting. On the average, about 87% of the
standard deviation of all quantities has been explained by the
procedure suggested.

Table 4 gives the overall residual standard deviations for
the interpolation methodology. The standard deviation of the
residuals for each one of the meteorological variables can be
used as the input error standard deviation in the stochastic
hydrometeorological model formulated previously.

Lewistown, Montana, Case

A total of 2 years of 6-hourly data were processed. Figures 9
and 10 present plots of the normalized interpolation residuals

TABLE 4. Total Record Residual Standard Deviations for Tulsa,

TABLE 3. Total Record Statistics for Tulsa, Oklahoma Oklahoma
Variable Mean Standard Deviation Variable Standard Deviation
Temperature 28797, °K. 10.60, °K Temperature 1.1,°K
Pressure 99,283, kg (m/s?) 691, kg/(m/s?) Pressure 80, kg/(m/s?)
Dew-point temperature 281.62, °K 10.40, °K Dew-point temperature 1.5, °K
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Fig. 9. Residual monthly means normalized by total record observations means for Lewistown, Montana. Only the
topography component was used as an estimator.

when the interpolated values were equal to the topography
component u/z). Figures 11 and 12 correspond to the interpo-
lation residuals when the full interpolation algorithm was
used. The total record statistics for temperature, pressure, and
dew-point temperature are given in Table 5.

The variance obtained when the topography component
alone is used as an estimator is not drastically reduced by the
use of the full interpolation aigorithm (see Figures 10 and 12).
Therefore the topography component explains most of the
variance of the observations. Small bias reduction was real-
ized, also, when the full interpolation algorithm was used (see
Figures 9 and 11). Figure 11 suggests that the dew point tem-

.
.

TEMPERATURE ~memmem—nem

PRESSURE «-c-=~ cceen

perature estimates had consistently smaller negative bias
(underestimated) than the temperature estimates. Therefore in
this case the interpolation methodology characterized the at-
mosphere as being moister than it really was.

Variations in the standard deviation (Figure 12) showed
similar scales for all the variables with pronounced errors in
the cold months December and January. The errors in those
months are to a large extent due to large estimation errors in
the saturation vapor pressure e(T) (see also equation (11)):

e(T) = A (T — 223.15)%

The formula adopted is a reasonable approximation [see
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Residual monthly standard deviations normalized by total record observations standard deviations for Lew-

istown, Montana. Only the topography component was used as an estimator.
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Fig. 11.

Residual monthly means normalized by total record observations means for Lewistown, Montana. Both the

topography component and the atmospheric disturbances component were used in the interpolation.

Georgakakos and Bras, 1984a] of the saturation vapor pres-
sure over the range of temperature from — 30°C (243.15°K) to
+30°C (305.15°K). In December and January temperatures
lower than —30°C are often recorded at all stations. Therefore
errors in the computation of the topography component may
result. Note that the Lewistown case is an extreme case in that
respect. Certainly, in cases when the algorithm is used to pro-
vide input to a hydrometeorological model, much higher tem-
peratures are expected.

TEMPERATU.RE

PRESSURE =-+-coneccan

Table 6 gives the overall residual standard deviations for
the interpolation methodology. In this case too, the values of
Table 6 remained constant when weighting functions of dis-
tance other than the (1/distance) ones (used in Figures 11 and
12) were utilize .

Comparison of Tables 6 and 4 indicates that the algorithm
performed better in the Tulsa, Oklahoma case. However, sig-
nificant difference was noted only for the air temperature vari-
able, for which the errors doubled in Lewistown, Montana.
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TABLE 5. Total Record Statistics for Lewistown, Montana

Variable Mean Standard Deviation
Temperature 278.40. 'K 12,03, 'K
Pressure 87,186, kg (m/s?) 631, kg/(m/s?)
Dew-point temperature 27044, 'K 885, °K

Note that discretization in vertical layers would improve the
topography components in this case. Overall, judging from the
statistics in Tables 4 and 6. the interpolation algorithm
showed satisfactory performance in both cases.

SUMMARY

A three-component mathematical model has been formu-
lated to simulate the rainfall-runoff process. Its first compo-
nent describes the precipitation mechanism based on sim-
plified cloud dynamics and microphysics. The second compo-
nent is a spatially lumped representation of the soil moisture
related processes. A nonlinear channel routing model consti-
tutes the third component.

The model links together meteorological and hydrological
concepts and data, for the purpose of forecasting river flows
from headwater areas. The model equations are in state-space
form suitable to be used with modern estimation theory tech-
niques for real-time state updating from observations of mean
areal precipitation and discharge.

The spatial interpolation problem related to the input vari-
ables temperature, pressure, and dew-point temperature was
solved in two steps. First, the component of the variables that
is due to the topographic relief was determined, using concepts
from thermodynamics and air parcel ascent. Then, the compo-
nent due to the spatial correlation of the variables resulting
from the organization of atmospheric disturbances was ob-
tained, based on simple linear interpolation concepts.

The product of the above effort is a stochastic conceptual
hydrometeorological model that uses as input,%exclusively, op-
erationally forecast variables and produces, in real time, fore-
casts of basin mean areal precipitation and streamflow. The
fact that the model integrates, in real time, information from
meteorological and hydrological processes, thus reducing con-
siderably the communication time between meteorological
and hydrological forecasting operations, makes it particularly
useful in real-time, flash-flood forecasting. In cases of large
river systems with several tributary basins, where the number
of model states (and consequently of computations) increases
dramatically, the integrated nature of the hydrometeorological
model leads to computationally efficient dynamic decompo-
sition schemes [Georgakakos, 1983].

TABLE 6. Total Record Residual Standard Deviations for
Lewistown, Montana

Variable Standard Deviation
Temperature 2.1,°K
Pressure 97, kg/(m/s?)
Dew-point temperature 1.9, °K

GEORGAKAKOS: GENERALIZED STOCHASTIC HYDROMETEOROLOGICAL MODEL, 1

APPENDIX A: HEADWATER BasiIN HYDROMETEOROLOGICAL
MODEL SYMBOLS

Functions
fA ) Scalar function to represent the time derivative of
the precipitation model state.

Vector function whose ith component represents the

time derivative of the ith soil state.

f( )

f( ) Vector function whose ith component represents the
time derivative of the ith storage element of the
channel model.

h,( ) Scalar function that gives the relationship between
the precipitation rate observed and the hydro-
meteorological model states.

h( ) Scalar function to represent the relationship be-
tween the discharge rate at the catchment outlet
and the hydrometeorological model states.

States

x, Precipitation model state.
X, Vector of the soil model states.
. Vector of channel states.
Input
u Precipitation model input: T, p,, T
u, Potential evapotranspiration rate.
Parameters
a, Vector of precipitation model storm-invariant
parameters.
a; Soil model parameters.
a, Channel-routing model parameters.
Output
=, Precipitation rate per unit area in the drainage
basin.
z. Discharge rate at the drainage basin outlet.
APPENDIX B: PRECIPITATION MODEL CONSTANTS, INPUT
VARIABLES. AND PARAMETERS
Constants

e 0.622.
A 2.5 x 10° (J/kg).
B 2.38 x 103 (J/(kg. K.
A, 8 x 107% (kg/m s* "K3-3)).
A, 211 x 1073 (m? s).
T* 273.15 (°K).
p* 101325 (kg/(m/s*)).
p. 10% (kg/(m/s?).
g 9.80 (m/s?).
R 287 J/kg K)).
R, 461 (J/(kg/°K)).
¢, 1004 (J/(kg/°K,).
p 2 x 10* (kg/(m:s?)).
% 3500 (1/s) for rain: 1500 (1:s) for snow.
¢, 7 x 10° (kg/(m* s)) for rain: 1.4 x 10% (kg/(m?/s)) for
snow.

Input (Vector u)

T, Surface temperature.
Po Surface pressure.
T, Surface dew-point temperature.
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Parameters (Vector a,)

£, 1.65x 1077

e, 5 x 10* (kg/(mus?)

ey 1 (s/m).

e, 5.5 x 107° (m).

v L

s L

m 0.
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