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1. INTRODUCTION

Radar rainfall estimates, when properly
adjusted using a limited number of gages, can be
a useful source of data for severe weather fore-
casting (flood and flash flood) and water
management activities. The National Weather
Service (NWS) plans to implement a real-=time
multi-stage/multisensor precipitation analysis
system coincident with the implementation of the
Next Generation Weather Radar (NEXRAD) beginning
in 1989. The adjustment/merging of radar data
and rain gage data is envisioned as taking place
on hourly data in two distinct steps. This
decision is based on the fact that a comprehen-
sive merging of the radar and rain gage data
should be performed only after the radar data
have gone through quality control procedures
which require satellite and other ancillary data
not available on the NEXRAD computer system.
Also, for flash flood forecasting, data are
needed as soon as possible, while for river
forecasting, timeliness can be sacrificed
somewhat for the sake of improved accuracy.
Thus, it was decided that a fast technique to
correct for the radar mean field bias would be
implemented within the NEXRAD computer system
using limited gage data and an optimal interpo-
lation procedure (Krajewski and Ahnert, 1986)
would be performed later on a computer system
external to NEXRAD using the more comprehensive
gage data base available., A Kalman filter
procedure to compute the mean field bias is
proposed as the technique for a "fast" adjust-
ment on the NEXRAD computer system. The
adjusted rainfall estimates generated will be
used for NEXRAD real-time graphical displays and
for input to flash flood forecast models and
procedures at the local forecast office and will
be used as input to the optimal interpolation
procedure performed during the next stage of
processing (Ahnert et al., 1983, 1984; Hudlow

et al., 1983).

The advantages of the Kalman filter over
simply computing G/R ratios are: 1) the tech-
nique accounts for the "noise" in the measure-
ments when updating the mean bias; 2) the tech-
nique provides an estimate of the error in the
computed bias; 3) the technique should avoid the
instability associated with G/R ratios when R is
small; and 4) the technique combines an estimate
of the bias and its error variance made an hour
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earlier with the current measurements and esti-
mated measurement error variance to compute an
updated bias estimate and new forecast for the
next hour. It has these advantages while also
being very efficient in terms of computer
processing requirements.

To test the Kalman filtering approach, a
fully controlled simulation experiment has been
designed to perform a comprehensive test of the
procedure. In the experiment, the bias in the
radar field is simulated using various stochas-
tic process models. Hourly radar-rainfall data
are then generated by imposing an error field
incorporating the simulated bias on a "ground
truth" field. Similarly, unbiased rain-gage
observations are generated. The Kalman filter
is then used to update the estimate of the bias
using the simulated observations. Using this
method, performance may be tested for various
rain-gage network densities, sensor measurement
error characteristics, bias models, and Kalman
filter parameters.

In the next sections we will describe the
Kalman filter, the experimental design for
testing it, and some preliminary test results.
2. THE KALMAN FILTER
Estimating the mean field bias from com-
parisons of radar areal estimates of rainfall
and point estimates from gages which both
contain errors in addition to the mean field
bias is not straightforward. It is further
complicated by the desire to incorporate infor-
mation about the current bias contained in pre-
vious estimates of the bias. The technique used
must incorporate: (a) a mathematical system
model for the behavior of the bias; (b) an
observation model for the radar and gage mea-
surement behavior; and (c) an estimation method
that combines (a) and (b). The Kalman filter is
a technique that meets these requirements.

In order to design the Kalman filter for
radar rainfall bias estimation, a mathematical
model of the mean multiplicative radar rainfall
bias had to be assumed. A reasonable system
model seemed to be a random walk process; i.e.,
the bias is equally likely to increase or
decrease over the next hour. For a random walk
process:



B(t) = B(t=1) + 8 S - N(0,Q) (1)

A mathematical model of the relationship
between the bias, the radar observations and
gage observations also had to be assumed. It
was assumed the radar and gage measurement noise
could be combined into a single additive noise
component, In this way, gage measurements
(G=<Gl>) may be expressed as a function of the
radar rainfall estimates (R=<R;>), the bias (B),
and a measurement noise vector (M). Such repre-
sentation accounts also for errors resulting
from different sampling characteristics of radar
and rain gages.

G(t) = R(t) B(t) + M M-N(O,F) (2)
Eq. (2) is a vector equation since data from
numerous gages are obtained. In fact, the
length of the various vectors will vary with
time depending on the gage locations where
precipitation occurs.

Egs. (1) and (2) form the mathematical
model of the "real world" upon which this filter
is based. These can be used to derive the
Kalman filter equations. The general vector
equations for a discrete Kalman filter are
summarized by Gelb (1974).

In order to use (1) and (2) for a Kalman
filter bias estimation procedure, estimates of
the system noise variance (Q) and measurement
noise covariance matrix (F) are required. For
simplicity, Q is assumed to be constant and
known. The measurement noise covariance matrix
must be estimated since it will be time varying
and depend upon which gages are being used.

The Kalman filter runs once each hour
using available hourly gage estimates and asso-
ciated radar rainfall estimates at the gage lo-
cations., To ensure reasonableness of the input,
gage-radar pairs are excluded if both the gage
and radar hourly accumulation estimates are less
than 0.6 mm. Next, to remove outliers, the mean
and standard deviation of the (log (Gi) - log
(R )) differences are calculated. Gage-radar
palrs whose normalized (log (G ) - log (Ri))
difference is greater than twice the standard
deviation are excluded from the filter., The
remaining gage-radar pairs are placed in
corresponding elements of a gage observation
vector (G) and radar observation vector (R).

Once current gage observations (G(t)) and
corresponding radar observations (R(t)) are
available we may use them to estimate F. From
the observations a vector (g;<e1>) of differ-
ences is obtained. Its elements are called the
innovations and they give the difference in the
current gage values from the corresponding radar
estimates adjusted using the previous forecast
of the bias for time t made at time t-1:

e(t) = G(t) - R(E) B(t[t=1) (3)
which can be manipulated to give:
e(t) = G(t) = R(t)B(L) - (4)

R(t)[B(t[t-1) - B(L)]
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From Eq. (2), the definition of the
measurement noise covariance F is:

F = E{[G(t) - R(£)B(£)ILA(L) - R(IB()IT}  (5)

where the superscript T indicates the transpose
and E{-} is the expectation operator.

Noting that the quantity [B(t{t=1) = B(t)]
is uncorrelated with G(t) and R(t) and has a
zero mean, Eq. (4) can be manipulated to yield:

E{e e} = F + P(t|t-1) E(R(LR'(£)}  (6)
where
P(t|t-1) = E{[E(t|t-1) - B(£)1%) (m

and P(tlt-1) is the previous forecast of the
mean square error in the bias estimate and is
estimated by the filter.

Eq. (6) provides the means to estimate
the measurement noise covariance matrix F. The
most straightforward method would be to simply
use the sample estimates for each term in the
require% covariance matrices E{e e} and
E{R(t)R (t)} and the estimated value of P(t|t-1)
provided by the filter.

Unfortunately, this straightforward
procedure yields poor estimates of F (including
frequent estimates which do not satisfy the
requirement that F be a positive definite
matrix). This instability is due fundamentally
to the limited sample size. To avoid these
difficulties, a somewhat more complex procedure
has been adopted; Eq. (6) is replaced by the
following:

~

F=X-pY (8)
where X is a covariance matrix related to E{e eT}
P is a scalar value related to P(t|t-1)

Y is a covariance matrix related to
E{R(£)RT(t)}.

The terms of the covariance matrices X
and Y are defined by spatial covariance
functions defined in the following way:

Xij =a *b, exp[cx- dij] (9)
where X; is the i,j term of the matrix X
i3
ay, bx' ¢, are parameters of the
covariance function
dij is the spatial distance from the i-=th
gage to the j—-th gage.

Similarly, the terms of the covariance
matrix Y are defined by:

Y =a_+ b_explc - d.. 10
13 7 3y * by expleys gyl (10)
The covariance parameters, a,, by, and
¢y, are basically estimated by a least-squares
fit to the covariance of the innovations (e).
Likewise the covariance parameters, ay, by: and
c,, are estimated by a least-squares fit to the
covariances of the radar observations (R(t)).
Constraints are imposed on the values of the



covariance parameters, i.e.,

b b, >0 and ¢ (1)

y - x?
Actually, the constraints, Eq. (11), are applied
after the least squares estimation procedure.

They are applied in three steps described below:

a

- ey <0

x? ayv

Step 1: x? and ¢

(113,

If step 1 violates constraints, then
re-estimate covariance parameters with
the additional constraint that a_ = O.
(This is a two-parameter covariance
model.)

Estimate all parameters ax,
and test against constraints, Eq.

Step 2:

Step 3: If step 2 violates constraints, then
re-estimate covariance parameters with
= ¢ =0 and a_ allowed to vary.

(fhls 1s a one-parameter covariance

model.)

The two sets of covariance parameters are
linked in such a way that if a one-, two=, or
three-parameter model is used for the innova-
tions (X), a similar model is used for the radar
observations (Y).

Finally, the scalar p in Eq. (8) must be

defined in such a way that F is positive
definite. This constraint is satisfied by

p = Min {P(t]|t-1), O.S(ax+bx)/(ay+by)} (12)

with the factor of 0.5 times the ratio of the
variance of the innovations to the variance of
the radar observations as an essentially
arbitrary choice.

In fact, several of the estimation steps

to define F are arbitrary in essence, but they

do assure that the the estimate (F) of the
measurement noise covariance matrix (F) is a
well-behaved positive definite matrix. With the
value of the system noise variance (Q) assumed
constant and known, we now have all the infor=
mation required to operate the Kalman filter.
The update begins with the calculation of the
Kalman gain vector (X):

K(t) = P(t[t=1) R (%)
N T -1 (13)
{R(LIP(t]t=1) R (t) + F(t)}

where the superscript -1 indicates a matrix

inversion and P(t|t-1) is the previous forecast
of the mean square error in the bias estimate
for time t made at time (t-1).

The new bias estimate for time t is then
given by:
= B(t[t-1) + K (t) e(t)

B(t|t) (14)

New bias error variance estimate:
[1 - K () R(E)] P(t]t=1)

P(t]t) = (15)
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Based on our random walk model the new
forecast bias and forecast mean square error
estimates are:

B(t+1]t) =

%(t|t) (16)

P(t+1|t) = P(t|t) + Q )

The adaptable parameter considered to be
most crucial to the filter performance is Q, the
estimate of the mean square error in the drift
of the bias from one hour to the next. Deter-
mining a reasonable value for Q is a major goal
of these tests.

For a detailed functional specification
of the adjustment algorithm for NEXRAD,
incorporating this Kalman filter, see the NEXRAD
Algorithm Report (NEXRAD, 1985).

3. TEST DESIGN
One way of testing the Kalman filter
would be to make use of a set of radar data and
a corresponding set of rain gage data having a
density such that it may be used as "ground
truth" (0'Bannon and Ahnert, 1986). Such an
evaluation is hampered by errors inherent in the
use of point gage observations as "ground truth"
for areal radar rainfall estimates, by the
limited availability of data sets containing
both radar and dense rain gage observations, and
by the large data management effort required to
handle enough data to give the experiment
statistically meaningful results.

An alternative method for testing the
Kalman filter is to use simulated radar and rain
gage data. The simulation system used here was
developed by Krajewski and Georgakakos (1984)
based on earlier work of Greene et al. (1980).
The idea is to generate fields from an existing
high quality radar field by imposing a noise
field of known statistics. The generated radar
and rain gage field may then be used as input to
the Kalman filter to update the estimated bias.
For comparison, the actual bias can be indepen-
dently calculated from the original and gener-
ated radar fields. Each step in the testing
process is described below. Preliminary test
results are described in the next section.

Step 1: Select Original Field 0(x,y):

The original field consists of hourly radar data
from the GARP Atlantic Tropical Experiment
(GATE) conducted in 1974. A detailed descrip-
tion of the GATE data is given by Hudlow and
Patterson (1979). The 24 hours used in pre-
liminary testing were from September S, 1974,
Data are on a 100 x 100 grid of 16 km“ spatial
averages,

Step 2: Calculate New Theoretical Bias B(t):

The theoretical bias specifies the multiplica-

tive bias to be introduced into the original
field when generating the radar field. Two
models for the theoretical bias are being used.
The first is simply that the bias is constant.
The second is that the bias follows a random
walk process.



Step 3: Generate Radar Field R(x,y):

Noise is added to the original field to generate
a radar field with specified second order sta-
tisties (Krajewski and Georgakakos, 1984). The
statistics specified for R(x,y) are the bias
8(t), the variance in log[R(x,y)/0(x,y)], (v,
and the correlation distance of the noise 1/h.
The generated fields statistics are approxi-
mately those specified (an ensemble of fields
would have these statistics exactly). There-
fore, to compute the error in the biases esti-
mated later we compute the actual bias B(t) in
the radar field.

B(t) = tO(x,y)/IR(x,y) for R(x,y) = 0

Step 4: Generate a Set of Rain Gage Values {G}:
A specified number of rain gage locations are
randomly scattered across the (x,y) grid. The
same grid of 30 gages was used in all prelimi-
nary runs. A rain gage value is then generated
in a way that accounts for the differences in
the point sampling characteristics of the gage
versus the areal estimate given in the original
field. The procedure is described by Krajewski
(1986). The measurement error expressed in
terms of standard deviation given as a percent-
age of the mean was then imposed on the adjusted
point value. This error was 10 percent in all
the runs.

Step 5: Form Gage Observation Vector G(t) and
Radar Observation Vector R(t):

The radar field value directly over each gage is
paired with the gage value to form gage-radar
sets. The gage-radar pairs are then subjected
to the tests described above to assure
reasonableness.

Step 6: Update Bias Estimates From G(t) and R(t):

Be(t), Bop(t), Bopg(t)

GRS
The Kalman filter bias B, (t) is computed using
the equations derived in 'section 2 and a speci-
fied value of the system noise variance (Q). In
addition, for comparison, two additional bias
estimates are generated by computing G/R
ratios. The equations used are:
1
R = Ilog(G,/R.)
N i i
BGR(t) =10

Bars Bars

The same gage observation vector (G(t)) and
radar observation vector (R(t)) are used in the
Kalman filter and in computing the G/R ratios.

~

(t) = 0.5 (t-1) + BGR(t)

Step 7: Repeat Steps 1-6 Beginning with Next
Hour Original Field.

Step 8: Repeat Steps 1-6 with New Set of Speci-
fications for the Theoretical Bias Model, Radar
Noise Parameters, Numbers and Locations of
Gages, and/or Kalman Filter System Noise
Parameter.

Step 9: Compute Error Statistics:
For each run of 24 hours, the mean square error
of the three bias estimates is computed.
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~

MSQ = E% £ [B(t) - B(t)]?

4, PRELIMINARY RESULTS AND CONCLUSIONS

Table 1 presents the results from the
first set of test runs. The theoretical bias
(B) was set to a constant value of 0.5, 1.0, or
2.0. The radar noise parameter (Vr) was set to
near 0 and for this reason the correlation
distance (1/h) had little effect on the results.

Table 1. Parameter Values and Mean Square
Errors of the Kalman Filter Bias Estimates
(MSQ), G/R Ratio Bias Estimates (MSQgg), and
Smoothed G/R Ratio Bias Estimates (MSQG s) for
tests with a Constant Theoretical Bias ?B) and

V, = 0.005.
Parameters Mean Square Errors

Run # B8 1/h Q MSQy MSQgr MSQgrs
1 0.5 20.0 .01 .037 .024 .005
2 0.5 20.0 .05 .036 .024 .005
3 0.5 20.0 .10 .038 .024 .005
4 0.5 4.0 .01 .029 .021 .006
5 0.5 4.0 .05 .032 .021 .006
6 0.5 4.0 .10 .036 .021 .006
7 1.0 20.0 .01 .048 .078 .058
8 1.0 20.0 .05 054 .078 .058
9 1.0 20.0 .10 .056 .078 .058
10 1.0 4.0 .01 .0u3 .067 .046
11 1.0 4.0 .05 .043 .067 046
12 1.0 4.0 .10 .046 .067 .0L6
13 2.0 20.0 .01 .253 .736 430
14 2.0 20.0 .05 .206 .736 L 430
15 2.0 20.0 .10 191 .736 .U430
16 2.0 4.0 .01 .255 .790 419
17 2.0 4.0 .05 .208 .790 419
18 2.0 4.0 .10 .195 .790 419

The Kalman filter system noise parameter's

effect on B, seemed to depend on the value of
the bias. Eor a bias of 0.5 and 1.0 a smaller Q

resulted in a smaller error in B, while for a
bias of 2.0 a larger Q reduced the error. This
is probably due to the assumption in Eq. (1)
that the bias (B) follows a random walk process.
This initial model assumes a change in the bias
from 0.1 to 0.2 is equally likely to a change
from 2.1 to 2.2. However, since it is a multi-
plicative bias, the change from 0.1 to 0.2
results in a far larger change in the radar
estimates and probably is far less likely than a
change in the bias from 2.1 to 2.2. An easily
implementable correction is to let Q become a
function of By(t), The proper form of this
function and its effects are being investigated.

The Kalman filter procedure did better
than G/R ratios when the bias equaled 2.0 (radar
underestimation), and worse when the bias
equaled 0.5 (radar overestimation). For the
parameters chosen, this is understandable since
gage values included noise, while radar noise
was set to near 0. For a bias of 2.0, values of



R are reduced and noise in G produces larger
errors in the G/R ratios. The reverse is true
when the bias is 0.5. Once radar noise is
added, this effect may be less apparent. The
smoothed G/R ratio (B R ) also is aided by the
fact that the theoret cgl bias (8) was held
constant.

For a more realistic test the radar noise
parameter was increased and the theoretical bias
was generated from a random walk process model
as in Eq. (1). To distinguish it from the
Kalman filter system noise (Q) parameter the
symbol (q) is used for the variance parameter
used when generating the theoretical bias. The
value of q was set to 1.0. This large value of
q results in a rapidly varying theoretical
bias. Bias error statistics for some pre-
liminary runs using this theoretical bias time
series are presented in Table 2. An interesting
result is the apparent reverse in the dependence
of MSQK on Q for the two values of 1/h. Values
chosen for 1/h represent estimated minimum and
maximum values. The actual range of this
statistic is not known.

From Table 2, it is apparent that the
Kalman filter remains a good candidate method.
More testing is in progress to see how the
performance of the bias estimates degrades as
the number of gages is decreased. The
availability of 30 real-time hourly gages
assumed in tests presented here exceeds the
number currently available for most sites. The
Kalman filter method should be able to handle
reduced amounts of gage data better than G/R
ratio methods.

Table 2. Parameter Values and Mean Square
Errors of the Kalman Filter Bias Estimates
(MSQK), G/R Ratio Estimates (MSQGR), and
Smoothed G/R Ratio Estimates (MSQgpg) for tests
with a Random Walk Model for the Theoretical
Bias (g) and V., = 0.15.

Parameters Mean Square Errors

1 1.0 20.0 .05 .319 . 267 .326
2 1.0 20.0 .10 .266 267 .326
3 1.0 20.0 .25 .260 .267 .326
Y 1.0 4.0 .05 .231 .362 2.754
5 1.0 4.0 .10 .236 .362 2.754
6 1.0 4.0 .25 .320 .362 2.754
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