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Procedures for incorporating time-varying exogenous information into flood frequency analyses are
developed using the Cox regression mode! for counting processes. In this statistical model the probability
of occurrence of a flood peak in a short interval [t, ¢ + dt) depends in an explicit manner on the values at
t of k “covariate” processes Z,, ..., Z,. Specifically, letting dN(r) be 1 if a flood peak occurs in [t, t + dt)
and 0 otherwise, dN(t) = a(t) exp {Z = "‘ij A0} + dM(t) where a, the “baseline intensity,” is an unknown
function, b is a vector of unknown “regression” parameters, and the error dM(t) is (conditionally)

orthogonal to the past history. Two applications, assessment of relative importance of physical processes

such as snow melt or soil moisture stora
flood frequency estimates, are considered.

INTRODUCTION

The traditional approach to flood frequency analysis utilizes
information contained in the series of annual peak discharges.
It is recognized, however, that additional information is often
available. In this paper we develop procedures, based on the
Cox regression model for counting processes, for incorpor-
ating time-varying exogenous information into flood: fre-
quency analyses. In the model, occurrence of a flood peak in a
short time interval [, ¢ + dt) depends on the current values of
k “covariate” processes Z,, ..., Z,. Letting dN(t) equal 1 if a
flood peak occurs in [t, ¢ + dt) and 0 otherwise, we have

dAN(t) = a(t) exp {b,Z,() + ... + b Z0)} + dM(®) (1)

where a is an unknown function that represents a (seasonal)
“baseline” intensity of flood peak occurrences, b is a vector of
unknown “regression” parameters and the error dM(1) is, in a
suitable conditional sense, orthogonal to the past history of
the process. More precisely,

At)'=alt) exp {b,Z,(t) + ... + b Z,(t)} )

is the stochastic intensity of the counting process N and the
error process {M(t)} is a martingale. The stochastic intensity
{A(1)} will be interpreted as a conditional flood frequency pro-
cess, whose value at time ¢ is the conditional flood frequency
given information on flood peaks and covariates until ¢.

We illustrate two types of applications. The Cox regression
model can be used to assess the relative importance of specific
processes, such as snow melt, soil moisture storage or frozen
ground, on flood frequency at a site. In section 3 we develop
hypothesis testing procedures for this purpose. The Cox re-
gression model can also be used to provide time-varying flood
frequency estimates; in section S we present a formulation of
the “flood-warning problem” [Yakowitz, 1985] based on the
Cox regression model.

The modeling framework is illustrated in Figure 1, which
shows hydrograph of river discharge (with dashed line repre-
senting discharge of magnitude x) (Figure 1a), times of flood
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ge on flood frequency at a site and derivation of time-varying

peaks exceeding x (Figure 1b), and time series of two covariate
processes Z, and Z, that are presumed to affect the frequency
of occurrence of floods (Figure 1¢). Throughout, the time in-
terval [0, 1] will represent a single year. Dependence Of the
flood peak model on the discharge threshold x will be sup-
pressed in the notation. We illustrate in section 4 that explicit
representation of discharge threshold can be achieved using
“thinning” methods for counting processes.

Our approach to flood frequency analysis is based on par-
tial duration series, that is, the sequence of all flood peaks
above a specified threshold [see Shane and Lynn, 1964; Todo-
rovic and Zelenhasic, 1970; Karr, 1976; North, 1980; Cervantes
et al., 1983; Smith, 1984] rather than annual peaks. Histori-
cally, preference for annual peaks has been based on the argu-
ment that additional information provided by partial duration
series only concerns the central part of the flood frequency
distribution [Benson, 1962]. This argument may fail if floods
result from several distinct processes and exogenous infor-
mation can be used to classify flood peaks. Analyses of annual
peaks using mixture distributions [Leytham, 1984; Waylen
and Woo, 1982] illustrate that classification of events can have
a major impact on flood frequency estimates at ail quantiles.
One perspective for viewing the flood frequency model we
develop is that it provides a partial duration series analog to
mixture distributions. It should also be pointed out that for
“operational” problems such as the flood warning problem of
section 5 the central part of the flood frequency distribution
can be quite important.

The Cox regression model was originally developed for
analysis of survival times [Cox, 1972] and has been widely
applied in medical and industrial lifetesting problems; a litera-
ture review containing numerous applications is given in Cox
and Oakes [1984]. The formulation we use is based on the
counting process development of Andersen and Gill [1982], for
which Gill [1984] and Karr [1986] are the principal exposi-
tory treatments.

Definitions and Notation

The times of occurrence of flood peaks, that is, exceedances
of a discharge level x, during a year will be modeled as a
counting process (point process) on the interval [0, 1]. Thus
time O corresponds to the beginning of the year (which we
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Fig. 1. Illustration of model components: (a) river discharge, (b)

counting process for flood peaks of magnitude greater than x, and (c)
covariate processes.

take to be October 1) and time 1 corresponds to the end of the
year (September 30). Denote by N(1) the total number of flood
peaks during the year and for N(1) nonzero denote the oc-
currence times by T(1), ..., T(N(1)) € [0, 1]. The counting
process {N(t), t € [0, 1]} is defined by

N=0 N(U)=0 or t<T(l)
Nty=n Tw<t<Tn+1) 3)
N(@t)= N(1)  t> T(N(1)

The history of N at time ¢ is, heuristically, the information
about the process that has accumulated until ¢. It includes the
occurrence times of all flood peaks before ¢, as well as any
exogenous information that has been obtained. We assume
that relevant exogenous information is contained in k (left-
continuous) random processes {Z,(t), ..., Z 1), t € [0, 11},
which, in the terminology of the Cox regression model, are
called covariates. (In survival analysis the covariates represent
additional observable characteristics of a patient, such as age
or weight.) Formally, we define the history {H,, t € [0, 1]} of
the flood occurrence process by

H,=o{N@W), Zu;j=1,..., ku<t} )

that is, H, is the g-algebra generated by {N(u), u <t} and
{Zw;j=1,..., k, u<t} [see Karr, 1986]. The history H,
can be viewed as shorthand notation for use in conditional
expectations; thus for a random variable X,

E[X|H]=E[X|N@), Zjw);j=1,....ku<t] (5

Properties of the error process {M(r)} in (1) play a central
role in inference procedures for the flood frequency model. By
analogy with classical regression theory we would like error
terms for successive time increments to be independent and
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identically normally distributed. From the jump process repre-
sentation of {M(t)} (equation (1)), it is clear that errors cannot
be normally distributed. While we must abandon hope for IID
normal residuals, we do not, however, have to relax our goals
too much (as will be shown below), due to the fact that {M(¢)}
is a martingale. An H-martingale is a right-continuous, (adapt-
ed) process M satisfying the martingale equality

E[M(1)| Hy] = M(s) (6

for all s <t e [0, 1]. The term “adapted” means that for each
t, the value of the process at time ¢ is a function of the random
variables comprising the history of N and Z at time . An
equivalent form of (6) is

E[M(1) — M(s)|H,] =0

which shows that each increment in the error process is con-
ditionally orthogonal to the past history of the process; this
can be viewed as a weakened version of the classical situation.

The stochastic intensity of a point process N is a left- ‘
continuous, adapted process {A(t)} such that

t
M(t) = N(t) — J Mu) du 7
0
is an H-martingale. It is important to note that the gtochastic
intensity depends on the history H; as illustrated below, A(f)
can be interpreted as the conditional rate of occurrence of
events of N, given the information H,.
Our flood frequency model is specified to have the sto-
chastic intensity

At) = a(t) exp {<b, Z(1))>} (8)
where we use the inner product notation
(b, Z(t)y = b, Zy(t) + ... + B ZW(0) 9

The model reduces to a nonstationary Poisson process with
intensity function a(¢) if all of the b’s equal zero, and to a
stationary Poisson process if, additionally, a(t) is constant.

Interpretation of 4 as a flood frequency follows from the
fact that if 1 is the stochastic intensity of N then

i) = lim (1/s)P{N(t + s) — N(t) = 1|H,}

si0

(10)

[see Karr, 1986]; that is, i(t) dt is the conditional probability
of a flood occurring during [t, ¢ + dt) and A(t)~' is the “recur-
rence interval” (for a flood of magnitude x) at time ¢.

Statistical inference for the flood frequency model will be
based on n years of flood peak data, which will be denoted
{Ni(t), te [0, 1], i=1,..., n} and n years of corresponding
data for the covariate processes {Z;1); t € [0,1],j=1,..., k;
i=1,...,n}. We assume that the annual processes (N*, Z' are
independent and identically distributed. For fixed, i, N' and Z'
are not independent; indeed a key property of the model is
that N’ depends in a specific manner on Z' Validity of the
independent and identically distributed (IID) assumption for
the example presented in section 4, in which snow pack and
soil moisture storage are the two covariate processes, depends
heavily on choosing the time interval [0, 1] to represent a
“water year” (October—September) rather than a calendar
year. The following three points are of particular importance:
(1) late summer is the period of lowest flood frequency (see
Figure 2); (2) late summer is typically the period of maximum
soil moisture depletion; and (3) snow occurs only during the
months October—April.
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Fig. 2. Precipitation (in inches per month) and flood frequency (in
events per month) for the North Branch Potomac River basin (one
inch = 2.54 cm).

PARAMETER ESTIMATION AND HYPOTHESIS TESTING

The utility of specifying the flood frequency model in terms
of its stochastic intensity is due in large part to the physical
interpretation of the stochastic intensity and to availability of
inference procedures. In particular, the likelihood function for
a point process can be expressed in terms of the stochastic
intensity. We have the following expression for the log-
likelihood function given independent observations over n
years [Karr, 1986]

Lo =y,

n
i=1

1 n 1
j [l —Aw]du+ Y f log (4(w)) dN'(u)
0 i=1 JO

n  Ni(l)

1
f [L—A@ldu+ Y Y log ((T')
i .

i=1 j=1

n

1=

i

1

Ll

where 0 is the vector of unknown “parameters” of N, some of
which, as in our model, may be functions rather than finite-
dimensional parameters. Likelihood-based inference for point
process models of rainfall are described in the work by Smith
and Karr [1985].

Direct analysis of the Cox regression model using maximum
likelihood estimation is impossible. Because the baseline inten-
sity function a is entirely unknown the full log-likelihood func-
tion (omitting a constant term)

n r1

L{a, b) = — a(u) exp {<b, Z'(u))>} du

i=1 JO
i

log (a(u)) dN'(w)

I8

1
-

+
i JO
1

+ <b, Ziu)) dN(u)
0

(12)

M:

]
—-

i v
is not bounded above, and hence (joint) maximum likelihood
estimators of a and b do not exist. Partly because of this,
partly because the regression parameter b is often of para-
mount interest, and on the rationale that differences among
covariates are manifested only through b, Cox proposed that b
be estimated by maximizing the “partial (log-) likelihood”
function
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n 1
Cb) = 3 j <b, Z¥(w)> dN'(u)
i=1 J0

1 n
- f log[ Y. exp {<b, Z‘(u)>}] dNw  (13)
0 i=1

which does not depend on a. In (13), N is the superposition
(sum) of N, ..., N* that is,
N@ty= Y N (14)
i=i
Thus C(b) in effect compares individual covariate effects to the

overall effect of the covariates on the superposition N. The
Cox estimator of b is any solution 5 to the likelihood equation

VCb) =0 (15)

where “V” denotes gradient. For additional discussion and
interpretation see Cox [1975], Johansen [1983], and Karr -
[1986].

Andersen and Gill [1982] show that partial likelihood esti-
mators have asymptotic properties similar to those of ordi-
nary maximum likelihood estimators. Of particular impor-
tance are the following results, which are valid under suitable
technical restrictions [see Andersen and Gill, 1982]. Let b,
denote the “true value” of the regression parameter b.

Consistency
14
b— b, (16)

Asymptotic normality

D
n'*(b, — b) - N(O, A" 1) (17

the matrix A can be calculated explicitly (we omit the result)
and, more importantly, can be estimated from the observa-
tions.

Consistency of estimators of asymptotic covariance matrix

(1/m)I(b) 2 A

(18)
where
| X Z9)®% exp (<b, Z1(s)))
I(b) = f —
0 Y exp (Kb, Zi(5)))
i=1
n ®2
Y. Zis) exp (Kb, Z¥s)))
| = dN(s) (19
2. exp (<b, Zi(s)))
i=1
For a vector z =(z(1), ..., z(k)) the notation z®2 denotes the

k x k matrix whose (i, j) entry is z(i)z(j).
For estimation of the integrated baseline intensity function

At) = J ' a(u) du (20)

0

one uses martingale estimators [see Karr, 1984; 1986]

A(z)=”i exp (¢6, Z"(u)»]— iNw @

0 i=1

where b is the estimator given by (15).



An important feature of the partial likelihood method is
that inference for the regression coefficients b does not require
parametric assumptions concerning the baseline intensity a(u).
Explicit estimators of a(u) (using either equation (21) or (12)
for standard maximum likelihood estimation) may be ob-
tained for certain specified parametric. forms of the baseline
intensity. For example, one may assume that the bascline in-
tensity is constant over the entire year or that the baseline
intensity assumes constant values for seasons. A serious prob-
lem with standard likelihood-based inference procedures (es-
pecially for the hypothesis testing problems described below)
is that it is difficult to eliminate the effect of (improper) para-
metric assumptions for the baseline intensity on inferences
concerning the regression parameters. Consequently the non-
parametric approach represented by (21) is often preferred.

Inference procedures based on partial likelihood also pos-
sess significant computational advantages over maximum like-
lihood methods. Numerical optimization techniques must be
used for either maximum likelihood or partial likelihood pa-
rameter estimation. Note, however, that the partial likelihood
function can be expressed in terms of the covariates evaluated
only at the times of flood peaks, whereas the maximum likeli-
hood method, even under parametric assumptions regarding
a, requires numerical integration of the covariate functions
over the interval [0, 1] (the first term of equation (12)), and in
particular, knowledge of values of the covariates at every time
t.

Formal significance tests for the Cox regression model can
be constructed from partial likelihood ratios

A, = =2[Clbo) - C(b)] 22

where b is the partial likelihood estimator and b, is the (hy-
pothesized) true parameter of the model. Rejection levels can
be calculated using the following proposition.

Proposition: under the hypothesis that b = (b,, ..., b)) = by,
and assuming that the esimators b are asymptotically normal,

A, = =2[Clby) — C(b)] 23)

converges in distribution to a x? random variable with k de-
grees of freedom. The proof is sketched in the appendix.

ILLUSTRATION OF INFERENCE PROCEDURES

In this section parameter estimation and hypothesis testing
procedures for the flood frequency model are applied to a 240
square mile catchment located on the Appalachian Plateau in

‘western Maryland. The covariate processes we consider are
soil moisture storage and snow pack.

The North Branch of the Potomac River receives an
average of 50 inches of precipitation annually, of which ap-
proximately 10% is in the form of snow. Figure 2 shows mean
monthly precipitation together with the monthly frequency of
floods greater than 2000 cubic feet per second (cfs). The sharp
winter-spring peak in flood frequency, together with the ab-
sence of comparable seasonal contrasts in precipitation, sug-
gests that soil moisture storage and snow melt are important
processes in flood frequency for the North Branch. It is natu-
ral to ask whether the role of soil moisture (snow pack) results
simply from the annual cycle of evapotranspiration demand
(temperature), without change from year to year, or whether
flood frequency varies from year to year in response to
random fluctuations of soil moisture and snow pack. We illus-
trate below how the Cox regression model can be used to
examine these issues.
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Direct measurements of soil moisture or snow pack are not
widely available, but surrogates for these variables can be ob-
tained from readily available precipitation and temperature
data. The soil moisture data we use for flood frequency analy-
ses are obtained from the Sacramento soil moisture account-
ing model [Burnash et al., 1973], while our snow pack data
are obtained using the National Weather Service (NWS) Snow
Accumulation and Ablation model [ Anderson, 1973].

The Sacramento model is a rainfall runoff model that routes
rainfall and snow melt through a series of conceptual storage
zones, with the ultimate destination being either channel
inflow or evapotranspiration. Six-hourly rain plus melt data
for the North Branch were used to produce a 26 year record
of daily soil moisture storage. The covariate value on day ¢ for
soil moisture storage was taken to be the value of lower zone
free primary storage (see Burnash et al. [1973] for definitions)
at the beginning of day ¢ — 1.

The NWS snow model accounts for a range of processes
including areal extent of snow cover, energy balance of the
snow pack, and total water equivalent of the snow pack. Six-
hourly records of mean areal precipitation and temperature
for the North Branch were used to create a 26 year record of
daily total water equivalent. The covariate value on day t was
taken to be the average total water equivalent over the pre-
ceding ten days. Over the period of record the months for
which nonzero values for the snow variable occur are
October-April.

Table 1 shows estimates of the regression coefficients of a
model for which soil moisture storage is covariate 1 and snow
pack is covariate 2. Estimates are presented for flood thresh-
olds of 2000, 3000, and 4000 cfs. Standard deviation and cor-
relation of the estimators, obtained from (17) and (18), are also
presented in Table 1. For each of the regression coefficients,
the standard deviation is small compared with the value of the
estimator, confirming that the covariates do play a significant
role in the flood process. Note also that correlation between
the estimators is smail.

The baseline flood frequency a(t) was parameterized to
assume a constant value a(1) in October and November, a(2)
in December and January, etc. Estimates of the baseline inten-
sity are presented in Table 2. Note that the largest values
occur in summer, the period of lowest flood frequency. The
form of the estimated baseline intensity (especially, the
summer peak in baseline intensity) reflects both seasonal con-
trasts in the covariates and seasonal contrasts in flood produc-
ing storms. High rainfall intensity storms are most common in
the summer season. The largest flood during the period of
record occurred in September of 1955 following hurricane
Dianne. The results suggest that during the summer season
the effects of soil moisture storage on the flood process are
subordinate to the variability in rainfall intensity of summer
season storms, resulting in “large” values of baseline intensity
relative to the covariate term.

TABLE 1. Estimates of Regression Coefficients
Number
of Events b, Var(b,) b, Var(b,) Cor (b, b,
Threshold
2000 133 021 002 0019 0004 -0.07
3000 69 025 003 0021 0005 -0.08
4000 35 025 004 0026 0.006 —0.07

Threshold given in cubic feet per second.
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TABLE 2. Estimates of Baseline Intensity Parameters for
Increasing Discharge Threshold

Parameters
a1y aQ2) a3) a4) as) &6)
2000 331 53 2.5 2.7 43 20.2
3000 74 0.5 0.2 0.3 04 2.1
4000 26 0.2 0.1 0.1 0.1 2.1

Threshold given in cubic feet per second; units in 10™* events per
year.

An interesting feature of the estimation results is that esti-

mates of the regression coefficients increase slightly with in-
creasing discharge threshold, so that even though the overall
number of events is sharply decreasing, the flood frequency
component attributed to snow pack and soil moisture remains
virtually constant or increases slightly. The following dis-
cussion sheds light on this result.

Let N be a point process with history {H,} and let {¥(i),
i=1,2,...} be IID random variables independent of {H,},
with

P{Y()=1}=p=1—P{Y() =0}

For each t let

24

- N(@)
N(@) = 21 Y(i) 25
thus N is obtained from N by randomly deleting events from
the original process. In particular, each event of N is deleted
with probability 1 — p, independently of all other events. The
process N is termed a p-thinning of N.

In our setting, the occurrence process for flood peaks larger
than 3000 cfs can be expressed as ’

- N@©)

N =3 Y() (26)
i=1

where Y(i) = 1(X(i) > 3000), with X(i) the magnitude of the ith

event, and where N represents flood peaks larger than 2000

cfs.

If (1) the magnitudes X(i) of flood peaks are IID, (2) the
magnitudes of flood peaks are independent of the occurrence
process N and the covariates Z, and Z,, and (3) N has sto-
chastic intensity

Ae) = a(t) exp {<b, Z(1)>} @7

then [see Kallenberg, 1983; Karr, 1986] N is a p-thinning of N
and its stochastic intensity is

Ae) = palt) exp {<b, Z(1)>} (28

where
p = P{X(i) > 3000} (29)

Thus if conditions 1 and 2 above hold, regression coef-
ficients do not vary with increasing threshold values. Con-
versely, if regression coefficients are not constant with thin-
ning, explanation can be based on violation of conditions 1 or
2 (or both). Regression coefficients should increase with thin-
ning if larger flood peaks are more closely related to covariate
processes, and decrease if thinning produces events with de-
creasing dependency on the covariates. Results of Table 1 sug-
gest that over the range of thinning thresholds examined influ-
ence of the covariates on flood frequency remains virtually
constant.
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Table 3 contains results of partial likelihood ratio tests of
significance for soil moisture storage and snow pack. A partial
likelihood ratio test for model significance is given by A(0, 0),
which under the null hypothssis has a x* distribution with 2
degrees of freedom. A test of the significance of soil moisture
given that snow pack is included in the model is given by A(0,
b,), which under the null hypothesis has a x? distribution with
one degree of freedom. Similarly, A(b,, 0) provides a test of the
significance of snow pack given that soil moisture is included
in the model.

All of the test statistics are highly significant. Thus in this
example, the partial likelihood ratio tests merely substantiate
conclusions based on the covariance results. Decreasing likeli-
hood ratios with thinning reflect the decline in total number of
events from 139 at 2000 cfs to 35 at 4000 cfs; a corresponding
increase can be noted in standard deviation of regression coef-
ficient estimators in Table 1. Note, for example, that while
estimates of b, increase from 0.21 to 0.25 with thinning, the
number of standard deviations from 0 decreases from 10 to 6.
The latter is the germane point for likelihood ratio tests. It
should also be noted that the likelihood ratio tests provide a
qualitative measure of the relative importance of snow pack
and soil moisture storage; this information is much more diffi-

cult to derive from covariance results. .

THE FLoOD WARNING PROBLEM

In this section we formulate a version of the flood warning
problem of Yakowitz [1985] based on the Cox regression
model. Our development is motivated by a reservoir operation
problem on the North Branch of the Potomac River; the
formulation presented below, however, is a highly simplified
version of the actual operating problem.

The essentials of the flood-warning problem are as follows.
Large releases from a reservoir must be made from the lowest
port of a multiport release system. Water quality at the flood
port level is poor and large releases from this port will deci-
mate a downstream fishery. The operations problem is to allo-
cate flood control storage based on time varying estimates of
flood risk so as to minimize the expected loss from fishery
damage and excess release. This is accomplished by maintain-
ing the flood pool at level L1 when flood risk is low and
lowering the flood pool to level L2 when flood risk is high.
When the flood pool is at level L1 floods above magnitude x
require releases which destroy the fishery. “All” floods can be
managed without damaging the fishery when flood pool is at
level L2. Flood control operations only concern the nondraw-
down period November-April, which we now take to be the
time interval [0, 1].

To replace a destroyed fishery, which is necessary when a
flood occurs, costs A dollars, while the cost per time unit of
operating the reservoir at the reduced level L2 is B dollars.
Decisions to raise or lower the flood pool (for simplicity we
assume that changes can be effected instantaneously) are
based on estimates of the probability that a flood of mag-
nitude greater than x will occur in the immediate future. These

TABLE 3. Partial Likelihood Ratio Test Results

A0, 0) A, b,) Ab,, 0)
2000 169. 156. 15.
3000 130. 104, 14.
4000 78. 52. 13.

Threshold given in cubic feet per second.
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estimates are based in turn on previous observations of the
flood peaks and covariate processes. In the context of our Cox
regression model for flood peaks, provided that the baseline
intensity function a and regression parameter b are known
{more on this point below), this probability can be approxi-
mated as

P{N(t + dt) — N(t) > 1| H,} = a(t) exp {<b, Z(t)} dt
(30)

The simplest kind of operating policy has the form: main-
tain reservoir level L1 when the stochastic intensity A(f) =
a(t) exp {<b, Z(t))} falls below a threshold value y (this is
equivalent to the predicted flood probability given by (30)
being below a different threshold), and reduce the level to L2
when the stochastic intensity exceeds y. The random loss in-
curred by following this policy over the course of one
November-April period is

1 1

Liyy=A4 J. 1(Mu) < y)dN(u) + B f 1(A(u) > y) du (31
o

0

In (31) the first term is 4 times the number of flood peaks that
occur when A(u) < y and the flood pool is hence at L1, and
represents the cost of destroyed fisheries; the second is B times
the length of time during which the level is maintained at L2.

Suppose now that we wish to choose y to minimize the
expected cost

Cly) = E[L(y)]
= AEI: jl 1(Au) <y) dN(u):I + BE[ Jl Au) > y) du]
o o

(32

To simplify the analysis we stipulate that for each u the
random variable A(u) = a(u) exp {<b, Z(1)>} admits a continu-
ous density function f(x):

P{Aw) <z} = J fo) do (33)

This amounts to a corresponding assumption on the random
vector Z(u) and does not seem unreasonable physically. Be-
cause A is the stochastic intensity of N (and because the pro-
cess 1(A(u) < y) is predictable; this point is technical but abso-
lutely essential, and is discussed in Karr {1986]),

1
Cly) = AE[ 1(Au) < y)Auw) du:I
o

+ BE{ J‘l 1(A(u) > y) du]
0

= AE[ f l 1(Au) < y)A(w) du]
0

1
+ BE[ J {1 - l(Mu) < »)} du]
0

= jl E[(AA(u) — B)1(Au) < y)] du + B
0

= Jl (J‘y (4z — B)f(2) dz) du+ B (34)
o .

0

To minimize C it suffices to minimize the first term, which
can be done by calculus. We have

1
Cly) = J; (4y = B)fy) du (33)

which is zero for y = B/A, and it is easily checked that
C"(B/A) > 0, so that y* = B/A is the unique value of the
threshold that minimizes expected total costs.

Note that the value of y* does not depend on either the
baseline intensity function a or the regression parameter b,
which is particularly useful in practice since these are not
known. Thus y* can be determined even when a and b are
unknown. Nevertheless, issues of implementing the policy
remain, because the stochastic intensity is not observable;
only the covariate process Z is observable, and since a and b
are unknown, one cannot calculate from Z(u) the value
Au) = a(u) exp {<b, Z(u)>} needed for comparison to the
threshold. In the formulation of Karr [1986] this becomes a
problem of combined statistical inference and state estimation.
State estimation is the optimal prediction of unobserved
random variables; nearly always the predictors, as in (30), are
conditional expectations of the unobservable random vari-
ables given the observations. But also, as (30) makes explicit,
computation of conditional expectations usually » entails
knowledge of whatever “parameters” comprise the statistical
model. In practice and in theory this difficulty is addressed by
replacing unknown parameters by estimators of them, yielding
in our case “pseudo-” state estimators

P{N(t + dt) — N(t) = 1| H,} = d(t) exp {<b, Z(t))} dt
(36)

(Recall that Z(¢) is observable.) In (36), d and b are estimators
of a and b, respectively, derived from previous years’ data
using methods described in section 3. By virtue of consistency,
given large data sets these estimators are close to the “true”
values a and b, and hence P{N(t + dt) — N(t) = 1| H,} does
not differ significantly from P{N(¢ + dt) — N(t) > 1 {H }. ’

In terms of the flood warning policy, one would define the
“pseudo-" stochastic intensity

() = a(e) exp {<b, Z(1)>} (37

and follow the policy “operate at L1 if A(f) < y* = B/A4 and at
L2 if () > B/A.” For practical purposes this policy has the
same optimality properties as the policy based on the sto-
chastic intensity A(¢).

The problem described above is representative of a range of
water resources problems for which the primary goals are to
characterize the frequency of occurrence of water quality
problems related to rare hydrologic events, and to design con-
trol and abatement strategies which utilize time varying infor-
mation pertaining to hydrologic response.

SUMMARY AND CONCLUSIONS

The Cox regression model provides a flexible tool for incor-
porating time-varying exogenous information pertaining to
processes such as soil moisture storage, snow pack, and frozen
ground into flood frequency analyses. The flood frequency
model we develop based on the Cox regression model simulta-
neously generalizes partial duration series models [Shane and
Lynn, 1966; Todorovic, 1972] and mixture distribution models
[Leytham, 1984; Waylen and Woo, 1982].

Two applications of the model are illustrated. The model
can be used in a hypothesis testing framework to assess the
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importance of specific processes on flood frequency at a site.
Partial likelihood inference procedures for this purpose are
presented in section 3. Specifically, the estimation procedures
of Andersen and Gill [1982] are presented and a partial likeli-
hood ratio test is developed for assessing the significance of
“covariates.” Inference procedures are applied to a 240 square
mile catchment on the Appalachian Plateau. In this example
the covariate processes are snow pack and soil moisture stor-
age.

The Cox regression model can also be used to provide time-
varying flood frequency estimates for water resource manage-
ment problems. In section 5 a formulation of the “flood warn-
ing problem” of Yakowitz [1985] is presented based on the
Cox regression model. In this example, operation of flood
control storage of a reservoir is tied to time-varying estimates
of flood risk.

APPENDIX

The proof of (23) is sketched below. A Taylor series ex-
pansion of the log partial likelihood function C(b) about b
yields

C(b) = C(b) + (b — B)VC(b) — (1/2)(b — B)I(b*)b — H)T

(A1)
where b* is on the line segment between b and b.
Evaluating (A1) at the true parameter b, yields
Clbo) = C(B) — (1/2)(bo — BI(B*)b, — b)T (A2)

noting that VC(b) = 0 by definition of the partial likelihood
estimator. Rearranging terms yields

— 2AC(bo) — C())

= n"(p, — 5)[(1/H)I(b*)]n”2(bo — B)T (A3)

The result follows from consistency of the partial likelihood
estimator (16), consistency of the estimator of the asymptotic
covariance matrix (18), and asymptotic normality of partial
likelihood estimators (17).
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