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ABSTRACT

Presented is a state estimator suitable for use with linear, scalar
systems whose observables are time-integrals, over an interval At, of linear
functions of the state. The ability of the ordinary Kalman filter to
approximate the developed estimator in terms of prediction accuracy is
examined by way of application to a scalar, dynamic, station precipitation
model. For the application, the aggregation interval At takes on values

commonly used in the official reporting of precipitation data.






INTRODUCTION

It is rather common in the study of hydrometeorological systems to use
observations of time-aggregate quantities. Observational mechanisms measur-
ing volume of water accumulated over a certain period of time will produce
observations of the time-aggregate type. 1In particular, ground observations
of the precipitation rate by rain gages often measure the volume of water
accumulated in the gage receptacle over a period of time. Also, official
reporting of hydrometeorological data is often done in terms of aggregate
values (e.g., six-hourly accumulations of precipitation.)

When one uses a stochastic-dynamic model of the precipitation process,
as is the one proposed by Georgakakos and Bras (1984a,b), one has observa-

tions z(tk) that are related to the model state X(t) by

by

2(t,) = [ 6(t) X(8) dt + v(t) ;5 k= 1,2,... (1)

tk-1

with ¢(t) + X(t) being fhe instantaneous volumetric precipitation rate at
time t predicted by the model. X(t) is the system state at t and ¢(t) is a
time-varying coefficient. The initial and final times of aggregation are
denoted by tk—1 and tk for all k. v(tk) is a time-uncorrelated Gaussian
random sequence that simulates the errors in the observation mechanism.
v(t,) has zero mean and R(t),) variance, for all k. The observed volume of
precipitation collected in the interval [tk-1’tk] is denoted by z(tk).

The observation equation in (1) does not directly fall into the frame-
work of the Kalman filtering theory, which has proven useful in short-tern,
real-time hydrological and meteorological forecasting (e.g., Kitanidis and

Bras, 1980a and b, Georgaxakos and Bras, 1982b, 1984a and b).






It is the purpose of this work to derive the form that the Kalman
filter equations take in the case of time-aggregate observations in scalar,
linear systems with Gaussian statistics. For the case of the precipitation
model, it will also-quantify the decrease in forecast accuracy realized when

the observation equation is approximated by the familiar form:

z(tk) = At ¢(tk) X(tk) + v(tk) s k=1,2,... (2)
with At given by

At =t -t (3)
and an ordinary Kalman filter is used.

The case studies contain several storm events of both the convective

and the stratiform types. The comparison of the two approaches is made for
characteristic values of the time increment At used in the official

reporting of rainfall in the United States.

MATHEMATICAL FORMULATION

Consider the system whose dynamics are given by the scalar stochastic

differential equation:

= h(t) X(t) + £(t) + w(t) (%)

with initial conditions for the mean X(to) and the variance P(to) of X(t)

specified as: X(to) = XO and P(t ) = P






where,

X(t) : system state at time t,

h(t),f(t) : time-varying functions dependent on the model input
variables,

w(t) : a Gaussian white-noise process with spectral density equal

to Q and with zero mean,
X, P : the mean and the variance of the system Gaussian state at

the initial time t..

The algebraic equation in (1) gives the relationship that the system state
bears to the scalar observable variable z(t,) at time t,.

For the case of the precipitation process, Georgakakos and Bras (1984a
and b) give the expressions for f(t), h(t), and ¢(t) as functions of the model

input variables and parameters.

DERIVATION OF THE STATE-ESTIMATOR EQUATIONS

The process w(t) and the random variable X(t,) have been assumed
Gaussian. Equation (4) is linear in the state X(t). Therefore, in the
absence of measurements, the joint density of the state X(t) at various times
remains Gaussian at least up until the first observation becomes available.
Also, were the conditional density of X(tk_1), conditioned on the observations

z(t1), z(tz), cees z(tk_1), Gaussian, then equation (4) assures that the

WA

conditional joint density of any order of the process X(t) with tk— sttt

17 k’
conditioned on the same observations, will remain Gaussian. Thus, if it is
shown that, starting with a Gaussian state, updating across an observation

preserves the Gaussian character of the conditional density, then that would
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mean that the state remains Gaussian both at the propagation of the state in

time between observations and at the updating of the state across an

observation.
tk
The integral I = f $(t)X(t)dt is a Gaussian random variable due to
t
k=1

Gaussian process X(t). The random variable v(t,) is independent of X(t) with
t in the closed interval [tk—1’ tk] and it is Gaussian. It follows that the
random variable z(tk) given by equation (1) is also Gaussian. In addition,
the random variables X(t), for any t in [tk_1,tk], and z(tk) are also jointly

Gaussian. This becomes evident if the integral I is written in summation form:

with
* % < *
tk—1 =t < t1 < eue tN = tk
* * *
At = ti - ti—1 s 1=1,2,0..
*
and Noro | At 20

Then, form the linear matrix equation:

* *

X(t ) 1 0 C. 0 0 X(t)

* *

X(t,) 0 1 Co 0 0 X(t,)

X(ty) 0 0 C. 1 0 X(ty)
* * *

z(t,) o(t,)aL¥ ¢(t,)AL¥ R eI v(t,)






The random vector on the right-hand side is Gaussian. It follows that the
random vector on the left-hand side is also Gaussian. As a consequence, X(tk)
and z(t,) are jointly Gaussian and, furthermore, the density of X(t,) (already
conditioned on the observations before time t,) conditioned on z(t,) is
Gaussian too.

The previous analysis proves that the density of X(t) conditioned on the
available observations is always Gaussian, given Gaussian initial conditions

and Gaussian independent noise processes.

Update Equations

The first and second moments of z(tk) conditioned on z(t1),...,z(tk), are

known to be (e.g., Jazwinski, 1970):

. - » -
Xt e = xCe Jt, )+ P (gt ) = P o(tle, ) - (a(t)) - z(t, [t _ ) (5)

2 -1
PCElt,d = POyt ) = Pty lt, ) - Py (e fE, ) (6)
where,
X (ti|tj), P(tiltj) : mean value and variance of the state at time t;
given observations up to and including time tj,
sz(-) : covariance of X and z,
z(e), PZ(-) : mean and variance of z.

Equations (5) and (6) update the mean and variance of the state across

an observation. Next, the mean z(-), variance PZ(°) and covariance

PXZ(-) are determined based on the system stochastic equations.
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Take the expected value of both sides in equation (1) conditioned on

observations before time tk to obtain:

t
- k .
2(t Jt, ) = [ eCe) X(e|e ) at (7)
£
k-1
By definition,
Paltlt ) = B L [xe) - xee [t D]+ [2(t)) - 2t D] (8)

Using equations (1) and (7) in (8) one obtains,

by

Po(tlteo) = [ e(t) Pttt
Ei-1

k—1) dt (9)
because v(tk) is independent of X(t,).
P(ty,t|t,_q) is the cross-covariance of X(t,) and X(t), b, St St
conditioned on observations at times before time tye

The variance PZ(-) is given by
- 2
Pt It ) = E {[att)) - z(t |t _)]°] (10)

In view of equations (1) and (7), (10) is written as

by

P (t, [t ) = Ell [ et)(x(t) - i(t]tk_1))dt + v(tk)]z} (11)

tk-‘!

The random variable v(t,) is uncorrelated to X(t) for any t in the

closed interval [t,_,,t, ]. Consequently, equation (11) is expanded to






Pt It ;) = { [ sw ¢(n) P(u,t|t,_,) dudrt + R(t,) (12)

P(u,t|t,_,) is the covariance of X(u) and X(1), ey S WT S L,
conditioned on observations before time tk.
Substitution of equations (7), (9) and (12) in (5) and (6) gives the

following "updating" equations:

t
N ~ k
X(t, t,) = X(t |t )+ { () P(t,,tlt, ) at]
k=1
b Y »
[ { { o(u) ¢(1) Pu,t|t,_)du dr +R(t )]
k=1 k=1
tk
s Lzt - [ o) xeele,_pat] (13)
t
k=1
and
t
k
(e ft) = Pt fe, ) = [ [ ee) PCe,tlt, ) at]®
k! "k k! k=1 t k’ k=1
k=1
tk tkk »
IR ew e P(u,t[t, ;) du dt + R(t)] (14)
tk-1 tk—1

The set of equations (13) and (14) reveals that the basic difference
between the present formulation and the one cbrresponding to non-time-
aggregate observations (i.e., Kalman filter) is that in the present
formulation one needs to propagate the mean of X{(t) and the cross-covariance
between X(u) and X(t), with t, u and t in [tk_1,tk] for all k. In the
ordinary formulation one only needs to propagate the mean and the variance

of X(t) for t in [tk—1’tk] for all k.






Propagation Equations

The propagation equations for the mean X(tltk_1) and variance

P(tltk_1) of X(t), t St st conditioned on observations before time

k=1
tyo for a continuous-time dynamic system of the type in equation (4), are

known to be (Gelb, 1974):

ax(ele, _,)

It = h(t)x(t|tk_1) + f(t) (15)
and
apP(t|t, )
—g—— = 2h(©)P(t]t, )+ Q (16)

with initial conditions X(t _ |t _,) and P(tk_1|tk_1). Next, the

propagation equation for P[u,r|tk_1), tk_1 Su,tT st is derived.

K’
Consider at first the case u 2 T.
The solution of equation (4) for time u, given initial conditions at
time 1, can be written as (Gelb 1974):
u
X(u) = 8(u,X(1) + | o(u,t)[£(t) + w(t)]dt (17
1

with the transition function ¢(u,t) obtained from the solution of the

homogeneous differential equation:

dQ(u,T)

T = h(u) + o(u,t) (18)

with initial condition:

o(t,1) =1 (19)






Take the expected value of equation (17) conditioned on observations

before time t, to obtain
~ ~ u
X(ult, ) = ou, OX(t]t, ) + { #(u,t) £(t)dt (20)
By definition.
Plu,tlt, ) = E{[x(w) - x(u]t,_)] « [x()-xt<]t, _)]} (21)
Substitution of equations (17) and (20) in (21) yields
P(u,tlt, ) = ¢(u,1) - P(t]t, ;)5 u 2z (22)

because of the fact that w(t) is independent of [X(1) - X(r]tk_1)] for t in

[t,ul.
Similarly, one obtains:
P(u,T|tk_1) = o(t,u) - P(u|tk_1); T2u (23)

The set of equations (15), (16), (18), (19), (22) and (23) together with

the initial conditions x(tk-1|tk-1) and P(tk_1ltk_1) represent the state-

estimator propagation equations.






STATION PRECIPITATION MODEL APPLICATION

The stochastic-dynamic precipitation model of Georgakakos and Bras
(1984a,b) uses as input, ground surface air temperature, pressure and dew-
point temperature observations or forecasts. In the real-time forecasting
of precipitation, the values of the input variables are constant over each
time step. Given that h(t),f(t) and ¢(t) are only functions of the input
variables, it follows that these functions are constant over each time
step. In such a case, the integrals in the state-estimator equations can be
determined analytically.

For notation simplification, the constant values of h(t), f(t)
and ¢(t) for t in the interval [ty-15t ] will be denoted by h,f, and ¢,
respectively.

The precipitation model equations for t in the interval [tk-1§t§tk]

can be written as:

dx(t)

at = hX(t) + £ + w(t) (24)
tk

2(t,) = [ ox(vrdt + v(t,) (25)
tk—1

With the present formulation, the propagation equations (15), (16),

(18), (19) and (22) give [t _, stst I:

K
- h(t-t,_.) n(e-t, )
k=1 e -1
X(tle, ) = e Xt _Jt )+ f (""__H"'“"') (26)
2n(t-t, ) 2ht-t, ),
P(tlt, ) = e KTiUpe, e )+ Q (& ) (27)
k-1 k=11%k=1 2h
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o(u,7) = (WD) ; t,_, STSuSt (28)

_ h(u-1) .
P(u,rltk_1) = e P(t]t, i) £y -1 STSUSt, (29)

The expressions for z(t |t _,), Pt lt,q) and P (t |t _.) become

(At=t -t _,):

- -hAt - hAt
- g(lze__y hat of e =1
2(ty |ty 1) = (=) e 7 X(t, [t )+ (S - ab) (30)
-hAt hAt
_ 1-e 2hAt $Q e =142
PXZ(tkltk"1) - ¢( h ) e P(tk-1|tk_1J + > ( n J (31)
~hAt
_ ,2¢1-e 2 2hAt
Pt lt, ) = o ()" T p(t, |, ) ¢
2 2hAt hA
209 (& +3-l4e t+2hA§)+ R(t ) (32)
2h2 h K

The coefficient h in the dynamics equation (1) of the precipitation

model is negative or zero. It follows that the right-hand side of equations

~

(30), (31) and (32) is non-negative. Consequently, z, sz’ PZ are non-

negative at all times.

Substitution of equations (30), (31) and (32) in the updating equations

(5) and (6), and use of equations (26) and (27) yields:

-hAt .
X(t, |t 1)) -

" - 1-e
X(t, e = Xt [t )+ K(e) - (2(t) - o(

-hAt

%ﬁx<tk>(<‘;e )-at) (33)
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~hAt

1-e
P(tlt) = (1=Kt )e(—=) Pt [, ) +
~hAt
Q _hAtcl-e 2
+ Kt e 5 e (—5—) (34)
~hAt hAt
1-e : Q 1-e
¢ Y(PCE, [t 5= )
K(t,) = 2 knloe.h (35)
~hAt 2 hAt
2,1-e 2 Q. $Q ., _e =1
o (= 7(P(t, |, )+5) + ST S R(y)

By contrast, in the ordinary case, when equation (2) is the observation

equation, the updating equations become:

X(t,[t,) = Xt b, )+ K(t,) » (2(t)-eatx(t |t _))) (36)

P(t, [t,) = (1-K(tk)¢At) P(tk|tk_1) (37)
$AtP(t |t )

K(t,) = k_ ko (38)

2,.2
97at7P(t, [t _ )+R(t,)

Even for the simple case of constant f, h, and ¢ during each time step,
it can be seen that the exact filter equations ((26), (27), and (33) through
(35)) are much more complex than the approximate Kalman filter equations
((26), (27), and (36) through (38)). They require significantly more CPU
time than the Kalman filter equations do. Therefore, an examination of the
usefulness of the Kalman filter in cases of time-aggregate observations is
warranted.

When the Kalman filter is used with time-aggregate observations, a

model for the approximation error is needed. The simplest model that would

.-1 2=






not modify the Kalman filter equations represents the error as an additive
zero-mean, Gaussian random sequence of given variance (dependent on At),
that is added to the observation noise v(tk). The net effect of this kind
of a model is to inflate the observation noise variance R(tk).

In the following the model of approximation error is employed for the
examination of the usefulness of the Kalman filter formulation in rainfall
forecasting when the observations are time-aggregate quantities.

The observation error variance is given by

2
R(t,) = (RO +Cp z(tk)) (39)

where RO is a constant component and CR is a coefficient that allows R to be
analogous to the magnitude of the observed rainfall z(tk) at time t.

The parameters Ro and CR for both the exact and approximate filters for
all the values of At considered in the study were obtained by sensitivity
analysis. Only results corresponding to the best RO and CR estimates were
compared. In this way, the estimates of Ro and CR for the approximate
filter incorporated the variance of the approximation error.

The reporting interval At (see equation (3)) took the values 1, 3, and
6 hours commonly used by the Environmental data and Information Service,
National Oceanic and Atmospheric Administration, in the documentation of
rainfall data. A storm group with a total of 302 wet hours was formed with
convective and stratiform storms from Boston, Massachusetts, and it became
the data base for this study. Description and statistical characteristecs of
the individual storms can be found in Georgakakos and Bras (1982a).

The precipitation model parameters and the model error variance
parameter Q were set equal to the best estimates obtained from the

identification study of Georgakakos (1984) with hourly data.
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The standard deviation, s, and the mean, m, of the one-step-ahead
predicted residuals were the performance indices.

Table 1 presents the values of s and m obtained for all three of the
values of At using 1) the filter for aggregate observations (FAO), and
2) the Kalman Filter (KF). On the same table, the best estimates of R, and
CR for the Kalman filter are presented. For the exact filter and for all
the values of At: Ro = 0,05 mm/At and CR = 0.,2. Finally, Table 1 also
shows the mean y and standard deviation ¢ of the observed rainfall data for
all the values of At.

The results indicate that the calibration of R, and Cp for the Kalman
filter leads to results that are excellent in terms of the standard
deviation of the prediction residuals even for At = 6 hours. However, a
significant increase in bias is observed once At becomes greater than 3
hours. Those conclusions are expected given the model chosen for the

approximation error. It is the increased variance of the approximation

error that causes the inflation of R, and Cp for incfeasing At.

Table 1. Filter Intercomparison Results

(Units are mm/At; Cy is dimensionless)

At = 1 hr At = 3 hrs At = 6 hrs
SFAQ 1.8 4.8 8.4
Mepg 0.1 0.1 0.2
SKF 1.8 4.8 8.4
Mgp 0.1 0.2 1.0
Ry 0.1 2.6 7.0
CR 0.2 0.1 2.0
M 1.8 5.5 11.0
o 2.4 6.0 9.9
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CONCLUSIONS

A recursive estimator was presented, suitable for use with linear or
linearized systems that have time—aggregate observations. The estimator
differs from the commonly used Kalman filter estimator in that it requires
the propagation in time of the cross-covariance between the system state at
time t1 and the system state at time t,, with t, and t2 being any two values
of time within the aggregation interval of the observations.

The formulated filter and the ordinary Kalman filter were compared in
terms of the prediction errors for the case of the precipitation model of
Georgakakos and Bras (198l4a) running with historical data for Boston,
Massachusetts. For short time intervals of aggregation of the reported
rainfall data (At S 3 hours), the Kalman filter with inflated observation
noise variance approximated the formulated filter well in terms of
prediction error mean and variance. For longer At the Kalman filter

developed considerable prediction bias.
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