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1. INTRODUCTION

Quality of hydrometeorological data is a
very important factor affecting operations of
hydrometeorological services. The real-time
forecasting of hydrometeorological processes is
especially vulnerable to poor quality data.
Dealing with high volumes of data within a
limited time framework calls for automated
quality control procedures preceding the input of
the data to the hydrological and meteorological
forecast models. Although there are many aspects
of quality control of hydrometeorological data,
in this paper we will limit our considerations to
those methods and techniques that could be
implemented in a fully automated mode in an
operational environment.

A uniform approach to quality control of
hydrometeorological data is very difficult to
develop. One has to face problems that result
from sparse networks, high variability in time
and/or space of some physical phenomena, wide
range of measurement hardware, diverse management
of the measurement networks and telecommunication
links, and non-standardized structure of the
hydrometeorological data bases. Also, factors
such as forecast lead time, observation
frequency, and the economic implications of wrong
forecasts dictate different approaches to data
quality control. Yet another consideration is
that of computational constraints, important in
situations such as flash floods, where prompt and
accurate forecasts are of vital interest.

Over the years a number of papers have been
published in the literature on the subject of
quality control of hydrometeorological data [for
example, the works of Reynolds and Campbell
(1971), Makhover and Ovsyannikov (1971), Allen
(1972), Shearman (1975), and Bryant (1979)]. In
this paper we will be interested mainly in those
hydrometeorological variables that are useful in
real-time hydrologic forecasting. A general
conceptual approach to the problem of data
quality control in such an environment will be
discussed. Of primary interest is precipitation
as the main driving force of hydrologic models.
Also important are streamflow, air temperature,
dewpoint temperature, pressure, wind speed, snow
cover, and snow water equivalent. For a more 3
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detailed description of the components of common
hydrologic models see, for example, Peck (1976).

The occurrence of bad data can be caused by
several factors. The ones common to many hydro-
logic and meteorological variables are: failure,
malfunction or improper placement of the sensor
or measuring device, outside electromagnetic
field interference or malfunction of communica-
tion lines, or coding error. There are other
causes of erroneous data specific to a particular
measurement technology and variable of interest
(for example, anomalous propagation in radar
measurements of rainfall or navigational error in
satellite observations). It should be noted at
this point that the objective of quality control
is to eliminate gross errors, not the measurement
error which is inherent in every technology.

There are at least two possible general
approaches to analysis of bad data, a deter-
ministic and a statistical approach. In a
deterministic approach, the physical character-

istics of the process of interest are used to
determine if a data point should be accepted or
questioned as bad data. In a statistical
approach, the statistical parameters of a
variable are used to do the same job. Before we
discuss both approaches in more detail, let us
distinguish two inherent problems in quality
control. The first one is detection of bad data
and the second is bad data accommodation or
substitution. We will concentrate here on mainly
the first problem.

Bad data can be defined as data falling
outside some expected range. Thus we will call
these data outliers. From that definition, it is
clear that an outlier does not necessarily have
to be an extreme value, although in many cases it
is.

2., DETERMINISTIC APPROACH

In a deterministic approach, physical char-
acteristics of a measured process are used in a
deterministic way to detect outliers. Usually,
that means setting upper and lower limits for the
variable of interest. In some cases, those
limits are obvious (for example, O is a lower
limit for precipitation), but in others they are



functions (Hampel, 1974). For any statistic, one
can develop an influence function which, roughly
speaking, measures the influence of a given data
point on that statistic. Ideally, one would like
all the points to contribute equally, so if a
given point influences the statistic of interest
unusually much, it is suspected of being an
outlier. For a staticnary time series, the
primary statistic of interest is the correlation
function. The corresponding influence function
has the form:

I (H, o(k), (yy0 ¥y,0) =
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(1)

where yi, Yj+g are standardized observations,
p(k) is the correlation value of lag k, and H is
the marginal distribution of y;. The
distribution of I (°) has a tractable form and
can be used to identify the unusually large
values (in absolute terms) at some specified
control level. This approach does not require

airplanes. Either case substantially affects the
spatial correlation structure of the radar-
measured rainfall field. If the radar-rainfall
data are given in a digitized form on a
rectangular grid (e.g., the HRAP grid, Greene and
Hudlow, 1982), then it is very easy to compute
the autocorrelation matrix of the data. The next
step is to compute the values of the influence
function for all the points in the radar field
that contributed to the computations of the
correlation matrix. The points which belong to
many pairs with high influence function values
should be questioned. For the details of the
computational algorithm, see Krajewski (1985).

The above methods require assumption of
stationarity of the time series, an assumption
which is often not satisfied in nature. How
serious the consequences could be is perhaps best
shown by the example given by Subba Rao (1979) in
his duscussion of a paper by Kleiner et al.
(1979). The time series shown in Figure 2 was
generated by the process:

Xy = 0.4 Sg-q1 * 0.8 X1 Zg-1 * Zy (2)
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Fig. 2.

any model of the time series and could be
implemented in real time. For more details, see
Chernick et al. (1982).

Similar techniques could be applied to
multivariate and univariate samples and also to
spatial data. As an example of the latest
technique, the concept of the influence function
for the correlation function has been applied to
quality control of radar-rainfall data. It is a
recognized fact that radar-rainfall data, even
those obtained from a well calibrated radar,
contain a lot of noise and, in some cases, gross
errors that result, for example, from anomalous
propagation or from reflected echoes of
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Nonstationary time series

where the Z, are independent standard normal
variables. The generated series is non-
stationary and does not contain outliers, but if
one tried to identify a stationary model for this
time series, then the points A and B would be
considered as outliers. A significant loss of
information would be experienced.

Another group of techniques for outlier
detection considers the data as a univariate
sample having a certain distribution. The
statistical literature is very rich here and many
tests and algorithms for parameter and quantile
estimation have been devised. An example of such
an approach, in the area of hydrometeorological



not easy to find and are determined in a sub-
jective way based on local or global recorded
maxima or minima. Another often considered char-
acteristic is rate of change in both space and
time. Again, the upper and lower limits are set
based on historical data analysis. The third
characteristic is the time of no-change. Due to
the natural variability and periodicity of most
of the hydrometeorological variables, any vari-
able is bound to change after a certain period of
time. In general, this period is shorter for
values of the variable that are farther from
normal. This characteristic is a very useful
means of detecting malfunction or failure of the
measuring device.

Quality control based on the above charac-
teristics is easy to implement and does not
require excessive processing time or computer
storage. The danger, however, is the subjec-
tivity in setting the limits. If they are set
too high, then the probability of bad data
falling into an allowable range is increased.
If, on the other hand, the limits are set too
low, then the consequences may be even more
dramatic, since good but extreme data could be
rejected or ignored. Another important point is
that exogenous information is not utilized. The
decision to accept or reject the data is based
solely on analysis of the variable itself. Also,
spatial analysis of rate of change is not often
performed unless the density of the network is
sufficient.

Figure 1 illustrates the deterministic
methods of outlier detection. Readers interested
in more detailed discussion of implementation
aspects should refer to works by Makhover and
Ovsyannikov (1971), Van der Schaaf (1984), and
O'Brien and Keefer (1985).

UPPER LMIT

3. STATISTICAL APPROACH

A discussion of the statistical approach to
hydrometeorological data gquality control requires
additional categorizing of possible situations.
From the statistical point of view, hydrometeoro-
logical variables can be seen as space and time
dependent continuous stochastic processes. These
processes are sampled in time and space and
collected data constitute discrete spatial time
series. Outlier detection in spatial time series
is a very little explored, almost nonexistent
area, at least as far as formal methods are
concerned.

A hydrometeorological variable can be
considered simply as a time series, without
taking into account its spatial aspects. The few
existing formal methods using this approach apply
to stationary processes that follow an
autoregressive scheme of known order. Certain
slowly varying hydrometeorological variables can
be modeled that way, especially if the seasonal
trends are removed. A maximum likelihood ratio
test has been developed by Fox (1972) for such
models, and could be performed in real time to
check for outliers. It should be pointed out
that the model would not be used for forecasting
purposes, but only to constitute the framework
for outlier detection. The advantage of such an
approach is that the limits for maximum and
gradient do not need to be specified or known.
The disadvantages are that the order and
parameters of the autoregressive model need to be
estimated and then stored for each station
(location).

Another approach to outlier detection in a

time series has been suggested by Chernick et al.
(1982). It is based on the concept of influence
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Fig. 1. Illustration of deterministic methods for outlier detection
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data quality control, is given in a paper by
Bissell (1981).

Bissell applied this approach to screen out
bad rain-gage precipitation data. According to
his algorithm, the original data values are
transformed to values of a standard normal
variable through some relationships that account
for local, seasonal, and sampling changes. Then,
a statistical test is performed to check each
data value either against climatological means or
forecasted values (if available). This approach
requires storage of a set of parameters for each
station but is not very demanding
computationally.

. OTHER APPROACHES

In the statistical approach described
above, the models were based on data of the
variable of interest itself. However, a model
can be based on some other variables that are
related through some statistical or physical
relationship to the variable analyzed. In such
cases, a model could be used in a forecasting
mode to produce a forecast based on previous data
of the variable of interest and current data of
related variables. Within this framework it is
convenient ta quality control the new data
through the analysis of residuals of the
forecast. A good forecasting model should be
characterized by approximately Gaussian,
uncorrelated model errors, constituting an
especially simple environment for quality control
testing.

Also, if a model is given in state-space
form, there is feedback, so that new observations
can be used to adjust the initial states of the
model, allowing production of better quality
forecasts, which in turn can be used to quality
control new observations. This type of approach
could be very useful, especially in streamflow
data analysis using stochastic-dynamic routing
models (Georgakakos and Bras, 1982).

Yet another approach to quality control of
hydrometeorological data, a very natural one, is
cross-referencing using data from multiple
sensors. This can be best illustrated with
precipitation data. Standard raingages, radars,
and satellites are used to collect data from
which quantitative estimates of precipitation are
derived. Although all these sensors utilize
different physical principles of measurement and
possess different sampling characteristics and
error structures, there is a significant amount
of independent information in each data set that
can be used to detect outliers and other
anomalies in other data sets. An example of how
to use such information within a quality control
framework is given in a paper (Hudlow et al.,
1982) on the Precipitation Processing System
planned for NEXRAD (Next Generation Weather
Radar) .
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5. CONCLUSIONS

It is clear from the above discussion that
the problem of quality control of hydrometeoro-
logical data is a complex and difficult one, even
if considered separately from technological
issues (sensor design, communication links,
etc.). It seems that the most proper and at the
same time general approach is to build a system
that would include all of the above analyzed
elements. These elements should be arranged in a
hierarchy of decisions (decision tree). In such
a decision tree, the simplest methods capable of
detecting the most obvious outliers are placed
before the more sophisticated methods. At each
level, outlier detection is followed by a common
element, i.e., outlier accommodation. An
illustration of such a quality control tree is
given in Figure 3.
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Fig. 3. Quality control decision tree

A slightly different concept could be
utilized if a definite decision cannot be made at
each level. In that case, it is advisable to
assign a probability (or a similar measure of
uncertainty) to each decision and proceed to the
next (lower) level until the accumulated
probability reaches a specified level selected as
the rejection threshold. 1In this approach also,
accommodation follows detection.

Finally we present a quality control system
for precipitation data, currently being
implemented at the Hydrologic Research Laboratory
for use with the data available from the NWSRFS
(National Weather Service River Forecast System)
Version 5 data base (Figure 4). The radar data
come from a RADAP II System. The satellite data



are GOES infrared images indicating cloud top
temperatures.
the regions of precipitation based on the
satellite information. This subsequently can
help to determine the existence of anomalous
propagation in the radar data (Fiore, 1985).
Then, the influence function method is used to
check for any other outliers. In unclear
situations a comparison with the rain gage data
will be made after adjustment is made to account
for different sampling properties of the two
sensors. Rain gage data quality control will be
based on historical data distribution parameters
and spatial correlation analysis.
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