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ABSTRACT

A summary of a long-term study on the suitability
of remote sensing capabilities for use in hydrologic
models is reported. Seven hydrologic models used by
government agencies were investigated. Also, six remote
sensing capabilities were considered (precipitation
estimates were not included). The effect of the models'
structure and their impact on the applicability of
remotely sensed information are discussed. A method of
combining remotely sensed data with in situ collected
observations is described and discussed. Particular
attention is also given to the problem of updating the
states of the models using remotely sensed information.
The general results of the study indicate remote sensing
information has only limited value for use with the
hydrologic models in their present form. The usefulness
of the remote sensing information would be greatly
enhanced with minor modification of the models.

1. INTRODUCTION

In the past decade or so, many remote sensing technologies have been developed. They
are capable of providing information on land characteristics such as topography, vegetative
cover, soil moisture, water equivalent of the snow cover, and others. To some, these new
technologies seemed to offer a panacea for many of the problems associated with the collec-
tion, processing, and analysis of data. Indeed, the remotely sensed data of terrain charac-
teristics and vegetative cover have proven to be of considerable value, at least as useful as
data obtained using standard technology and, in some cases, are obtained at a great saving in
time and expense.

However, remotely sensed measurements of hydrological variables, such as soil moisture
or water equivalent of the snow cover, have found very limited use in operational hydrology.
There are a number of reasons for that situation. Limited accuracy, high volume of data
requiring a lot of computer power, and variable frequency of observations all constrain the
implementation of the new technology. Yet another factor, probably the most important one,
is that the structure of existing operational hydrologic models is not suitable for straight-
forward applications of remotely sensed information. There is not a one-to-one correspond-
ence between the hydrologic states as measured in the real world by the new technology and
states as represented in the mathematical models of hydrologic processes presently in use.
This is due to the fact that these models were developed prior to the availability of
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remotely sensed measurements. To add to the problem of non-correspondence, remote sensors
may be sensitive and respond to more than the hydrologic variable of interest. For example,
microwave sensors may infer both soil moisture and vegetative roughness.

Another problem is how to effectively combine the remotely sensed measurements with the
existing in situ measurements in order to extract maximum information on the state of hydro-
logical variables. Hydrological models generally represent the average conditions for a
specific area such as a river drainage basin. Most models are lumped parameter and lumped
input models and require areal average values for input data or for updating the states of
the model. At the present, areal averages of hydrological variables are determined from
standard point (in situ) measurements using various estimation techniques. Incorporation of
remotely sensed measurements can substantially improve the accuracy of the estimated areal
averages, especially under sparse ground network conditions, but it clearly requires changes
to the standard in-situ-only estimation procedures.

This paper presents a summary of a long-term study, sponsored by NASA, that examined the
suitability of operational hydrologic models to incorporate remotely sensed information and
evaluated strategies for using remotely sensed information in the models. The detailed
results of the research have been reported by Peck et al. (1981a, 1981b, 1983, 1984) and
Johnson et al. (1982).

The interrelations among the problems described above can be presented as a diagram
(Figure 1).
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Figure 1. Remote sensing and hydrologic modeling--problems to be solved.

Analysis of Figure 1 makes it clear that a series of efforts were required. The first
area of research focus was describing the relationship between hydrologic models and remotely
sensed data in general terms. In order to do this, seven commonly used hydrologic models
were analyzed in detail based on a common framework.

2. REVIEW OF HYDROLOGIC MODELS

The following five hydrologic models commonly used by Federal agencies were selected for
review:

o Antecedent Precipitation Index (API)

o National Weather Service River Forecast System (NWSRFS)
o Storage, Treatment, Overflow, Runoff Model (STORM)

o Stanford Watershed Model IV (SWM)

o Streamflow Syntnesis and Reservoir Regulation (SSARR)






Two other hydrologic models were reviewed. The Chemical, Runoff, and Erosion from Agri-
cultural Management System (CREAMS) model was included because of its extensive use in the
field of agriculture. The NWSRFS Snow Accumulation and Ablation model was also selected
since it is commonly used with several of the basic hydrologic models.

Since the models were developed by different groups over a period of several years, it
was necessary to analyze the models within a common framework that would also be suitable for
considerations related to remote sensing technologies.

Modern systems analysis terms were adopted for that purpose and the inputs, processes,
states, decision points, parameters, and outputs were identified for all the models. The
complete findings of this phase were presented in an interim NASA report (Peck et al., 1981a).

3. REMOTE SENSING CAPABILITIES

The next question that arises is what are the capabilities of remote sensing as far as
hydrologic modeling is concerned? Before an answer is given, a definition of remote sensing
is required. "For this study, remote sensing is taken to mean estimating the average value of
a variable over some areal extent by examining the characteristics of the radiation from that
area. The study focused on satellite-borne sensors, although the methodology is applicable
to other platforms. Emphasis has been placed on those variables that havs at least an intu-
itive connection to portions of existing hydrologic models, and that exp=~ience has shown can
be remotely sensed with some degree of success.

Remote sensing capabilities of six variables were reviewed for use with the operational
hydrologic models. These were:

0 Areal extent of snow cover

o Impervious area

o Land cover

0 Areal extent of frozen ground
o Soil moisture

O Water equivalent of snow cover

Of the six variables, only the first three can be considered to nave operational meas-
urement techniques at the present time. All three may be obtained through analysis of
LANDSAT images.

None of the other three variables {areal extent of frozen ground, water equivalent of
snow cover, and soil moisture), with the possible excepticn of frozen ground, can currently
be measured effectively from satellites. All three are awaiting further extensive research.

In spite of the recognized potential value of remotely sensed data for water resource
management, the Federal agencies responsible for river forecasting and water supply predic-
tion are not using such data as a primary operational data base. To examine the reasons for
this and to suggest improvements in remote sensing applications, it was necessary to couple
the information from the review of the hydrologic models and the review of remote sensing
capabilities.

4. STRATEGIES FOR USING REMOTELY SENSED DATA

There are several strategies for using remotely sensed data or, indeed, any type of
data, in hydrologic models. The first is to estimate the inputs to the models. The second
is to update the states of the models to be consistent with the observed data. A third
strategy for using remotely sensed data is for calibration of the parameters of the model.
In traditional applications, parameters are estimated only once based on current topographic
and land cover data and hydrometeorological data for some calibration period. It is
certainly possible to recalibrate a model based on new data. For example, remote sensed






observations of changes in land cover can be used for recalibrating of models, thus blurring
the distinction between updating and calibrating the model.

Each of the seven hydrologic models was analyzed to determine the usefulness of the six
selected remotely sensed variables for the present configuration of the model, with minor
modification or adaptation. The most obvious conclusion from the analysis for the basic soil
moisture accounting models is that, in their present configuration, there is not a signifi-
cant potential for using the six target remotely sensed observations for input, updating,
or calibration. With minor modification, some of the models can take advantage of the
significant potential for applying remotely sensed data to hydrologic modeling.

A careful reader will have noticed that precipitation was excluded from consideration
in spite of the fact that the ability to measure precipitation characteristics remotely has
received more attention in the past than the ability to measure any of the other six vari-
ables. Remote sensing of precipitation would have direct use in hydrologic modeling since
precipitation is normally the primary input to hydrologic models (although it may be a state
as well). No model modifications would be required to benefit from such measurements. How-
ever, the problem that remote sensing of precipitation shares with the other six variables is
that of how to optimally combine the data with the in situ collected measurements in order to
increase the accuracy and reliability of the areal average estimation.

5. MULTIPLE SENSOR DATA ANALYSIS

The main reason for combining measurements from remote sensing with other measurements
(either remotely sensed or in situ) of the same or related variables, is to maximize the use
of the information contained in each of the data types. Remotely sensed data have signifi-
cant measurement errors; however, they provide areal extent information that is not provided
by the in situ measurements. This is due to different sampling geometries of various sensors
and physical principles of the measurement technology.

Mathematically, if Z(u,t), u=(x,y) is process of interest at location u and time t, then

point observations z; of process Z can be expressed as:

- i= 14
zi(gi.t) = Z(gi,t) + e(gi,t) for i=1,2,...,N 1)

where s(gi,t) is measurement error that has a random nature. On the other hand, most of

remotely sensed data, Zg, represent integrated (or averaged) values:

1 s
zpluy,t) = % { Z(uy,t) dA ¢ ep(uy,n) J=1,.0 K (2)
J

The measurements z;(u;,t) and ZR(EJ»t) collected at the time t can represent instantane-

ous or accumulated data. Given data sets with observations of the type {1) and/or (2) the
problem is to estimate:

1
Z, =5 éz(g,t) g (3)

where usually Q » AJ and AJCZQ and Q is the basin of interest.

The problem is difficult, but several approaches are possible. In any case, for a
technique to be of maximum value for estimating areal averages of hydrological variables from
all available measurements, the following criteria should be satisfied:

(a) It should not be dependent on particular measurement technology.

(b) It should be an objective technique.

(c) It should produce an estimate, regardless of the mix of data available at any one
time.






(d) It should explicitly recognize the sampling geometry of the data.

(e) It should explicitly recognize differences in measurement accuracy of different
technologies.

(f) It must produce some estimate of the accuracy of the areal estimate.

Some techniques that meet these criteria have been developed in the area of radar-
rainfall data analysis (e.g., Krajewski and Crawford (1982) and Krajewski and Hudlow (1983)).
Other possible approaches are using universal co-kriging and disjunctive co~kriging (for a
study of universal kriging and disjunctive kriging, see Puente and Bras, 1982). All these
techniques, however, are extremely demanding as far as computational requirements are
concerned and that makes them less attractive.

As an alternative, the correlation area method has been designed by Johnson et al.
(1982). The method is a heuristic approach that takes liberties at certain points with a
more theoretically correct technique in the interest of simplicity and operational capa-
bility. It also meets all the criteria listed above for estimating areal averages from data
of various sampling characteristics. The algorithm assigns weights to each data type based

on their accuracy and spatial influence. According to the method, an estimate ZQ is computed
as linear combination of various observations:

A L S (4)
Q em1 e 21 "1 )
where: L - is the number of observation types (point measurements, areal measurements,
line measurements).
Ng =~ number of observations from 2th observation type

agy weight assigned to the ith observation of the %th sensor

Zli - ith observation value of the %th sensor
The weights ali depend on the information value of each measurement which, in turn, is

dependent upon how much area is assigned to that measurement and on how well that information
correlates with the true variable in that area. The weight TN is equal to its correlation

area Azi divided by the sum of all the correlation areas for the basin:

A
i
T TN, )
DA Y
=1 i=1
where correlation area A21 is defined as
- * = - *
Ay Ai pes(M) aAY , A,Ca, n=lu-ull, wEay (6)
i

where pzi(h) is a correlation function of the ith observation of the %th sensor with the true
value at a distance h, and Aii is the region defined by the points EJ such that:

*) . * = - H = o H Flycyens
pg;(h) > o (n¥); n*=|u gJ.I, k=1,2,...,L; m=1,2 N






Thus, the area Aii

fth sensor is more highly correlated with the true variable than is any other observation.

The correlation area Ali is then the weighted average of the correlation itself over the

region A;i. The procedure is illustrated graphically in Figure 2 which shows the portion of

the basin assigned to an areal sampling technology and to hypothetical line and point
sampling technologies.

is the region within the basin where the ith observation of the

Figure 2. 1Illustration of correlation areas.

A measure, m(ZQ), of the overall accuracy of the final estimate ZQ is obtained by
dividing the sum of the correlation areas (Aai) by actual area of the basin B.

L N
2
DI ¥
- =1 i=1
m(ZQ) = —_— (7
B

~

By definition, w(ZQ) must be between 0 and 1 and can be loosely referred to as the

correlation of the estimated value ZQ with the actual average ZQ of the variable Z over the
catchment.

The algorithm has an intuitively reasonable behavior; more accurate measurements get a
larger weight than less accurate observations, and samples in data sparse regions tend to get
larger weight than those in data rich regions. Correlation areas which determine the weights






depend on the spatial correlation functions for each sensor type. Thus, some parameters that
relate both to the accuracy of particular measurement technologies and to the correlation
decay in space need to be estimated prior to implementation of the method. These parameters
are:

(a) The correlation of each observation type with the corresponding true value of a
variable (32’ 2=1,...,L).

(b) The rate at which the correlation decays in space (typically it is assumed that the
correlation is only a function of distance),
(bQ, 2=1,...,L).

These two parameters define a simple isotropic correlation model, for example:

(h) = a, * exp (bz « h) (8)

Poi %
with h defined as above,

For most technologies, with perhaps the exception of in situ measurements, it is not
easy to obtain the values of these parameters. For ground sampling technologies, it is
expected that the correlation between point measurement and the true val.2s is generally
"large," i.e., a; (if 2=1 corresponds to ground measurement) is approximztely 0.9 or
better. For remote sensing technologies (line-type and areal), a number >f expensive field
experiments would be required to estimate those parameters. 1In general, it is expected that
it would be somewhat less than 0.9.

As far as estimation of the decay parameter b, is concerned, three approaches are
possible: the use of historical data, real time estimation, and a conceptual model. Of
these three, the historical approach and the conceptual model approach offer the most promise
for operational estimates of decay parameters:

Historical Data. Historical data on soil moisture or snow water equivalent can be analyzed
to estimate decay parameters. Then its value can be assumed to apply to current conditions.
The difficulties with this approach are procuring a historical data base and developing a
procedure to "stratify" the data for different values related to some ecasy-to-identify
properties of current conditions.

Real Time Data. If enough pointwise data are available in real time, a value of the decay
parameter can be estimated for the current condition. Using remotely sensed data for this
approach is rather difficult because of the sample-averaging properties of tnis type of data.

Conceptual Model. The conceptual model approach can be illustrated by considering soil
moisture as the product of two random fields, the field capacity, and the fraction of field
capacity that is filled. The variability of the field capacity can be related to a soil
map. If a conceptual model is developed to relate the statistics of the "fraction of field
capacity" to some easy-to-estimate parameters (e.g., the antecedent precipitation index), it
may be possible to estimate a correlation decay for the soil moisture without actual
measurements of soil moisture.

The correlation area method has been implemented in a computer code, but has not been
subjected to extensive testing. The lack of adequate "ground truth" information precludes a
direct approach to this testing. As the final phase of the long-term research study, an
indirect evaluation was planned, but has not yet been conducted due to funding limitations.
This evaluation would determine the degree of improvement in streamflow predictions obtained
by incorporating remotely sensed measurements (using the correlation area method) in
hydrological models as compared with predictions using only standard measurements.

Another way the method could be tested is via a numerical simulation experiment, similar
to the one described by Krajewski and Hudlow (1983) for testing radar and rain gage rainfall
data merging procedures.






According to the diagram in Figure 1, once the remotely sensed data are combined with
other types of data to produce the best estimate of hydrologic variables of interest, the
next step is to find the relationship between that variable and the elements of the
hydrologic model.

6. STRUCTURE OF THE MODELS

The real-world state of a basin is extraordinarily complex. It is a function of the
actual distribution in time and space of interaction of weather with geology and biota of the
basin. Compared with the complex processes of the real world, the hydrologic processes in
the models are simple and provide inexact estimation of the states in the real world. Thus,
there is uncertainty in the models. Remotely sensed observations, as well as standard
measurements, are also imperfect measures of the states of the real world due to measurement
errors. To make things worse, they have a less than perfect relationship with modeled states.

For example, a remotely sensed measurement of soil moisture may be considered to
represent only the total water in the top 10 cm of the soil. Thus, such a measurement for
10 cm does not directly relate to the total soil moisture represented by the combined soil
moisture states of the upper zone of the hydrologic model which often covers more than the
top 10 em. The relative depth of the model state can be an order of magnitude greater than
the 10 cm soil moisture measurement in the real world.

For the models where there is not a single state that relates to a particular field
measurement, either the model must be restructured or a complex measurement model must be
developed to relate the measurement to the modeled state. A detailed analysis of the
structure of operational hydrologic models and proposed modifications is described by Peck
et al. (1983).

When an observation is made, there are two sources of information on the states of the
nature: one from the real-world observations and one from the model. The basic idea behind
updating a model is to obtain an updated state that better reflects the real world. This is
done by using knowledge from both sources of information to compute the so-called gain. The
gain procedure weights the relative accuracy of the observation and the model estimates--more
vigorously modifying the model's estimates when the observations are relatively more accu-
rate, and vice versa., The updated state (i.e., soil moisture storage or water equivalent of
the snow cover) must be chosen somewhere between the values indicated by the model alone and
the observations alone. The conceptual framework for updating is presented in Figure 3.

OBSERVED OBSERVATION OBSERVED
VALUE RELATIONSHIP STATE
MODELED GAIN _ | UPDATED
STATE PROCEDURE o STATE

Figure 3. Conceptual framework for updating the states.

There are two possible approaches to computing the gain for updating the states of a
hydrologic model based on remotely sensed and other observations: either a full probabi-
listic approach implemented in the form of a Kalman filter, or a heuristic approach which
contains some probabilistic elements.

The full probabilistic approach accomplishes the gain and model adjustment process
simultaneously. In the heuristic procedure, the gain and adjustment are done sequentially.

The adjustment process modifies all of the model states to be consistent with the
updated value produced by the gain procedure.






Heuristic Approach to Updating. It is possible to develop a variety of heuristic techniques
for updating hydrologic models. For example, the model could be updated with a constant gain
parameter, e.g., the updated state is always halfway between the modeled state and the
observed state. The gain computation could be outside of the model entirely, e.g., the
updated state is computed by a hydrologist based on his or her belief in the modeled and
measured states. Peck et al. (1983) describe the heuristic algorithm that is especially
designed to mesh with the correlation area method in which the measure of estimate accuracy

is given in terms of w(ZQ) of Eq. (7). 1In this heuristic approach, the relative accuracy of

the modeled state is assumed constant while the relative accuracy of the observed state
varies with the mix of observations available at any time.

Full Probabilistic Approach. There are various methods for applying a full probabilistic
approach to updating mathematical models. One that has been used in hydrology is the Kalman
filter approach (see Gelbd, 1974). A number of investigations have applied modern stochastic
process theory to the NWSRFS. These studies originally focused on updating the soil moisture
model using observed discharge (see Kitanidis and Bras, 1980a and 1980b; TASC, 1980; TASC,
1981). Later studies focused on investigating maximum likelihood parameter identification
(Restrepo-Posada and Bras, 1982), more sophisticated channel inflow routing procedures
(Georgakakos and Bras, 1980), and inclusion of a precipitation model (Georgakakos and Bras,
1982).

In order to apply a Kalman filter approach, it is first necessary to represent the
hydrologic model in the form of a stochastic state-space model, i.e., a set of simultaneous
differential (or integral) equations with error terms. Two sets of equations are required:
one representing the relationship of any observations to the modeled states, and the second
representing the dynamics of the model states themselves. If the model is nonlinear, it is
necessary to linearize it.

Since the Kalman filter procedure continuously accounts for variability in the accuracy
of the modeled states, an updating procedure based on this approach is sensitive to both
variation in model accuracy and variations in the observation mix. It is necessary to relate

the correlation value w(ZQ) to the observation error variance. A derivation of this approach

is described by Peck et al. (1983) for the Sacramento Soil Moisture Accounting procedure
augmented by addition of two state variables and changes in the model dynamics so that a
single state variable in the augmented model has a one-to-one relationship to fairly shallow
(5-10 cm) observations of soil moisture.

7. CONCLUSIONS

The basic conclusions from the study reported by Peck et al. {1981a, 1981b) and Johnson
et al. (1982) are:

o Hydrologic models in their present configuration do not have a significant potential
for using remotely sensed information (excepting precipitation estimates).

o The use of remotely sensed data could be significant with minor modification of
existing models, although it takes substantial work to do that.

o Hydrologic modeling can be improved through the development of new generation of
models or subroutines for existing models which recognize the characteristics of new
remote sensing capabilities.

o Remotely sensed data should be combined with in situ data and with the hydrologic
models in order to be of maximum benefit.
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