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Abstract.
model is extensively studied.
based on a series of nonlinear reservoirs.

Recursive parameter estimation of a real-time, stochastic, flood-routing
Following common hydrologic practice, flood routing is
In order to utilize linear Kalman filtering

and optimal estimation techniques for parameter estimation, statistical linearization

of the nonlinear functions of the parameters is performed.
for nonlinear multidimensional functions of random nonstationary processes.

The methodology is suitable
The line-

arization coefficients depend not only on the parameter means but on the whole proba=

bility density of the parameters.

Implementation of the parameter estimation procedure

requires the determination of the expected values of nonlinear multi-dimensional func-

tions.

A simple analytical method, called the Taylor-Gauss approximation, developed

for the determination of the expected values, is compared to exact numerical integra-

tion procedures.

The recursive estimation methodology based on statistical lineariza-

tion is compared to an extended Kalman filter procedure based on ordinary lineariza-

tion.
through a numerical simulation experiment.

‘Comparison of the different recursive parameter estimation techniques is done
Sensitivity analysis with respect to meas-
urement errors and sampling frequency is performed.

Evaluation of the recursive

parameter estimation techniques is based both on measures of accuracy and on measures

of the CPU cost of each methodology.

Keywords.

INTRODUCTION

Uncertainty in hydrologic systems is great because
of the wide range of spatial and temporal scales
of the hydrologic processes. Consequently, the
development of conceptual models with parameters
estimated from input=output data has flourished in
recent years.

One of such models, the nonlinear reservoir, has
been extensively used in hydrologic studies as a
basic component for the generation of runoff
(e.g., Mein et al., 1974; Peck, 1976; Kitanidis
and Bras, 1980). 1In particular, flood routing
hydrologic models rely heavily on it to simulate
the storage effects of the various channel reaches
(e.g., Mein et al., 1974; Georgakakos and Bras,
1982).

Denoting by I(t) the inflow to a channel reach and
by 0(t) the outflow at time t, the continuity
equation yields:

dx(t) _ -
T I(t) - 0(t) [&D)

where X(t) is the volume of water in store in the
reach. To complete the formulation a relationship
between the storage X(t) and the rates I(t) and
0(t) is required. A power function of the type:

o(t) = a-x(t)", (2)

where a and m are model parameters, has been found
useful in runoff and streamflow routing studies
(e.g., Peck, 1976; Unny and Karmeshu, 1984;
Georgakakos and Bras, 1982). Therefore, the
dynamic equation that governs the evolution of the
state X(t) in time is:

dX(t)

= - . m
el I(t) - a-X(t) (3)
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In most of the real-world situations, the data
available for model calibration (i.e., determina-
tion of the parameters a and m) are observations
of the inflow I(t) and of the outflow O(t).
Therefore, parameter estimation techniques based
on input-output data are necessary.

In this paper we examine the utility of recursive
parameter estimators in the parameter estimation
problem associated with the nonlinear reservoir
Eq. (2) and (3). The advantage of the recursive
parameter estimators over the non-recursive
("batch") ones is that they can be used in real-
time estimation problems, while the batch estima=
tors, which rely on some gradient optimization
procedure, process the whole time series a
posteriori and thus have to be used "off-line".
In addition, the recursive estimators process the
time-series of data only once, while the batch
estimators process the time series several times
in order to find the optimum of the optimization
criterion.

In general, non-recursive estimators at the
expense of considerable computation time will
produce more accurate estimates. However, the
success of the recursive estimators highly depends
on the type of nonlinearity involved and the
sampling frequency of the data.

This work investigates the performance of the
Extended Kalman Filter and of two linear filters,
which are based on statistical linearization, in
the estimation of the nonlinear reservoir parame=
ters. The effects of the sampling frequency and
of the expected measurement errors on the conver-
gence properties of the estimators are examined in
detail.
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MODEL STATE-SPACE FORM

The state-space form of the model in Eq. (2) and
(3) is

) L 1(6) - ax(e)” + w(t) )
m
Z(tk) = a-x(tk) + v(tk) 5 k=1,2,... (5)

where: w(t) is a white noise process that models
errors that are due to erroneous parame-
ters, erroneous model structure and erro-
neous observations of the inflow I(t). It
is assumed Gaussian with mean zero and
variance parameter Q.
Z(t)) is the observation of the outflow at

time tk, k=1,2,...
V(tk) is a white noise sequence that

models errors that are due to erroneous
measurement of the outflow O(t). It is
assumed Gaussian with mean zero and
variance R.

The system of the Eq. (4) and (5) is nonlinear in
the state X(t) and in the parameters a and m. 1In
order to use a filtering algorithm to sequentially
process the observations Z(tk) one has to line-
arize the system. In practice, two linearization
procedures are employed. An ordinary lineariza-
tion based on the first order terms of a Taylor
series expansion about the current estimate of
X(t), which leads to the Extended Kalman Filter
(EKF) formulation, and a statistical linearization
procedure which leads to statistically linearized
filtering algorithms. Both procedures are
described in Bras and Rodriguez-Iturbe (1984) and
are studied in the following.

THE LINEARIZATION TECHNIQUES
Given the nonlinear function f,(a,m,X) = a-Xm,
linear approximations of it are sought of the
type:
fa(a,X,m) = No + Na-a Nm-m + Nx-x (6)

In the following, we denote the current estimates

of a, X and m by a, X and m, respectively.

Ordinary Linearization

The ordinary linearization by Taylor series expan-

sion about the point (a,m,X) gives the following

expressions for the coefficients Na' Nppo Nx' No

3f1(a,m,X)

Na = (7
af1(a,m,X)

Yot T em ®
3f1(a,m,x)

Ny = ——g— (9)

No = f1(a,m,X) - Na-a - Nmom - NX-X (10)

Statistical Linearization

When the linearization coefficients in Eq. (6) are
obtained from a minimization of the expected value
of the approximation error squared

2 )2

e” = (f1(a,m,x) - fa(a,m,x) with respect to N,

N No' the linearization is called statisti-

m Ny»
cal linearization (Gelb, 1974, Georgakakos and
Bras, 1982). In such a case, the coefficients of
linearization are the solution vector N of the
algebraic vector equation:

PeN=p an
where
T
N = [Na Ny Ny No] (12)

E{a?} E{am} E{aXx} E{a}

E{ma} E{m*} E{mX} E{m}

[he”}
[

(13)
E{Xxa} E{Xm} E{X?} E{X}

E{a} Ef{m} E{X} 1

1

8 = [ E{a®X™ E{amx™ E(ax™'} Eax™ 1T (1w

with E{«} denoting expectation and upperscript "T"
denoting transpose of a vector quantity.

Assuming that the inverse §’1 of matrix P exists,
the elements of vector N are obtained from

N-p g (15)

The basic difficulty associated with the use of
statistical linearization stems from the fact that
one needs to compute the expected values of the
nonlinear functions:

£, = aX"

f2 = az-Xm
f3 = a-m-Xm
.fu = ax™!

Under the usual assumption of normality for a,m
and X, one needs to compute the integrals

+o
I - fjf ax™ + p(a,m,X) da dm aX
-c0
400
1, = [[] a®™ « p(a,m,X) da dm ax
4o
I; - {[] amx™ « p(a,m,X) da dm ax
—00

+o0
Iy = [[f ax™' « p(a,m,X) da dm ax
—

where p(a,m,X) is the joint probability density of
a,m and X assumed Gaussian.

The most accurate determination of I, I,, I3 and
Iu is accomplished by direct numerical integra-
tion. However, this is a costly procedure, espe-
cially when the integration computations are per-
formed repeatedly as is the case in recursive
parameter estimation procedures.

Georgakakos and Bras (1982) proposed the Taylor-
Gauss methodology to avoid numerical integration.
According to that methodology, the nonlinear
functions f1, f2, f3 and fh are expanded in a
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Taylor series expansion about the means a, m,

and X. Then, given the Gaussian joint density
p(a,m,X), the expected value of each term in the
series is determined. The higher order moments of
a Gaussian density are given as functions of the
first and second moments. Therefore, the net
result contains only terms with the first two
moments of a, m and X. The details of the formu-
lation are given in Georgakakos and Bras (1982).

As an example, in the following we use the Taylor-
Gauss methodology to approximate the expected
value of the nonlinear function fy.

Expansion of f, in a Taylor series about the

point (a,m,X) with second order terms retained
gives:

a-x" = a.x" + x"(a-a) + a-m~X(m—1)(X-X) +

>

+ a-Xm-ln(X)-(m—m) + 1 asme(m-1)+X

(m-2) ,._
3 (x

~ 2

X) +
~ A 2 ~ A 2 -~ A . ~ -~ AA

+ % a-X"1n (X)(m-m) + m-)((m 1)(a~a)()(—)() + X"

1n(X)(a—a)(m—m)+a-X(m—1)[
Taking expectations of both sides in Eq. (16)
results in:

m ~%'m 17" CS(m2) 2 1 7im 2 C 02
B{ax"} = ax® + 3 am(m-1)X oy + 3 aX'ln (X)om +

= (m=1)

“C(m-1) 2 cm. T 2
mX Oax * X ln(X)oam + aX

2 2 2
where: GX’ ua, om are the current variances of X,
a, and m,
2 2

2
x* %am’ xm

and X, a and m, X and m, respectively.

and Oa are the covariances of a

In the case when higher order terms were retained
in the expansion, Eq. (16), the higher order,
even, joint moments of a, X, m, can be replaced by
functions of the second order moments of the same
variables based on the assumption of joint nor-
mality (Georgakakos and Bras, 1982). All the odd
Jjoint moments of the Gaussian a, X, m, are equal
to zero.

Thus, the integral I1 has been replaced with the
approximate expression in Eq. (17).

The Taylor—Gauss methodology has given encouraging
results in previous applications (Georgakakos and

Bras, 1980; Georgakakos and Bras, 1982). Analysis
of nonlinear power functions suggested that a few

terms in the Taylor series expansion are necessary
to obtain satisfactory results.

Note that the EKF uses only the first term on the
right-hand side of Eq. (17) and, as a result, the
expected value of the nonlinear function in the
EKF formulation does not depend on the covariance
properties of a, X and m.

RECURSIVE PARAMETER ESTIMATION
In the use of filtering theory for recursive

parameter estimation, the system dynamics equation
is augmented by first-order differential equations

SA-Bt

e 1n(X) ) (OX) (mom)  (16)

(1+&ln(§)]0;m 7

that describe the evolution of parameters in
time. When the parameters of the system remain
constant in time, the parameter differential
equations become

da
dat

9

where o 1s the vector of system parameters and 0
is a vector whose elements are zeros.

The system dynamics equation augmented by the pa-
rameter equations constitute a system of nonlinear
(in general) differential equations. In order to
apply the powerful techniques of linear filtering
theory, some kind of linearization is required.
The EKF uses ordinary linearization of the non-
linear functions based on a Taylor series expan-—
sion about nominal values of states and parameters
with only the linear terms in the expansion re-
tained. Within the EKF framework, the states and
parameters are viewed as random processes with
moments estimated recursively by the EKF. Fur-
thermore, the nominal values of states and pa-
rameters in the Taylor series expansion are taken
equal to the current estimates of those variables.

Several applications of the EKF as a parameter
estimator have been reported in the literature
(e.g., Nelson and Stear, 1976; Aidala, 1977;
Chang, Whiting and Athans, 1977; Bowles and
Grenney, 1978; Bras and Posada, 1980).

The main conclusions are that success depends on
the type of nonlinearity and on the choice of the
system model error statistics (i.e., the Q
matrix). In many cases the estimates were biased
even for a large number of observation points.

Georgakakos and Bras (1982) developed a recursive
estimator that uses higher order terms in the
Taylor series during the linearization process,
thus reducing the linearization bias. It is based
on the statistical linearization concepts pre-—
sented in the previous section. The few applica-
tions of the estimator appeared encouraging.

In this work we studied the properties of the
recursive estimators: EKF and statistical line-
arization filters (numerical integration and
Taylor-Gauss method) for various conditions
imposed on the system model error statistics, the
sampling interval of the observations and the
observations error. The analysis is based on
simulation studies where: 1) time series of
observations are generated by the model using the
true parameters, prespecified sampling interval
and noise statistics, and 2) the estimators are
used to obtain the true parameters from the time
series of observations.

DESIGN OF SIMULATION EXPERIMENT

The technique used to test the ideas of this paper
is numerical simulation. As opposed to testing
with real world data, simulation offers the oppor-
tunity to study the robustness of the various
parameter estimators when various system statis-
tics and the system input characteristics take a
wide range of values. In fact, numerical simula-
tion experiments can lead to conditions that the
data should obey for maximum identifiability, thus
setting the guidelines for data collection
strategies and data quality control.

In this work we will concentrate on the generic
element of many hydrologic models, that is the
nonlinear reservoir. Work is underway to extend
the present results to a series of nonlinear
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reservoirs where identification of the number of
them (order of model) from input-output data is of
central importance.

Estimation of both a and m is performed using the
EKF, a statistically linearized filter based on
numerical integration (NSLF), and a statistically
linearized filter based on the Taylor-Gauss
methodology (TGSLF).

The parameters are estimated based on a train of
input hydrographs and on generated noisy output
hydrographs. Observations of input and output are
sampled at various time intervals ranging from

15 minutes to 6 hours duration.

Sensitivity of the parameter estimation techniques
with respect to the level of the model error vari-
ance parameter, Q, and to the observation error
variance, R, is studied.

The primary performance criterion is convergence
to the true parameter values. In addition, the
mean squared error, the normalized residual stan-
dard error, and the CPU time on a PRIME 750 com-—
puter with a PRIMOS operating system were studied.

The steps followed during the simulation experi-
ments are given next.

STEP 1. Select the sampling interval At, and the
input hydrograph characteristics (such as
time to peak and ratio of peak flow to
base flow). Note that the inverse
Gaussian function (Johnson and Kotz,
1970) was used to generate the input
hydrographs.

STEP 2. Integrate the dynamies, Eq. (3), from O
to At using baseflow initial conditions
and a train of identical input
hydrographs.

STEP 3. Specify the variance of the model error
in the interval (0,At) as (Gelb, 1974):

At

2
Qp = é #°(At,T)-Q-dr

where ¢(At,t) is the transition matrix
of the linearized system. For the pur-
poses of this work the interval (0,At)
was subdivided to 5-minute intervals and
%(t,t) was computed in each one of them
from

i

ot,7) = e TTD

~ A Alm=1)

with F = a-meX and """ denoting cur-
rent estimate at each 5-minute interval.

STEP 4. Generate a Gaussian random number with
mean zero and variance QAt’ and add this

number toc the state variable X resulted
from the integration in STEP 2.

STEP 5. Based on the modified X computed at
STEP 4, compute the system output 0(t)
based on Eq. (2).

STEP 6. Generate a Gaussian random number with
mean zero and variance R, and add this
number to the system output computed at
STEP 5. The result is the noisy
observation at At.

STEP 7. Repeat the sequence STEP 1 to STEP 6 for
as many observation points as desired.

STEP 8. Using: 1) the input-hydrographs values at
the end points of the intervals At,
and 2) the generated observations at the
same points, perform parameter estimation
with each one of EKF, NSLF and TGSLF.
The initial parameter values used in
parameter estimation STEP 8 were selected
from the boundaries of the set of
physically realistic true values.

STEP 9. Repeat sequence STEP 1 to STEP 8 for
different At, Q, R and input
characteristics.

RESULTS OF SIMULATION EXPERIMENT

This section presents initial results of the simu-
lation experiment. For all of the cases to be
presented in the following, we used a single non-
linear reservoir with a generic input hydrograph
(generated by the inverse Gaussian function) that
was characterized by a base flow of 1 mm/hour, a
peak flow of 10 mm/hour, and a time to peak equal
to 11 hours. Both the parameters a and m were
estimated by the recursive algorithms. The "true"
parameter values were chosen as:
-1 -0.6

-mm ]

agpye = 0-5 [br

Mepge = 1.6

Note that the value of m chosen corresponds to a
physical upper bound on m in cases of flood
routing (see Mein et al., 1974).

For all the runs the initial parameter estimates
were set equal to 1 for m and 0.01 for a. The
choice of the m~value was based on normal practice
to initially assume a linear system, and the
choice for the a-value was made based on our
intent to have the initial estimate be as far as
physically constraints would allow from the "true"
a-value.

The initial value of the state was set equal to
the known initial true value of the state that
corresponds to baseflow conditions.

The variances for the initial a and m estimates
were set equal to 1 for the EKF. The integration
scheme used for the statistical linearization
filters was sensitive to high values of the
initial variances for a and m due to the
proximity of the initial a and m values to the
infeasible negative region of the real axis.

Thus, the initial variance was reduced to 0.05 for
those filters.

Four values of the sampling interval were
examined. These were 15 minutes, and 1, 3, and
6 hours.

Sensitivity to the intensity of the model error
and observation error noises was studied by the
examination of four cases of noise intensity as
follows:

Case 1: Q = 0.00285 (mm2/hr)
R(t,) = 0.01 (mm/hr)

Case 2: Q = 0.00285 (mm2/hr)
R(t,) = (0.1 + 0.1 x Z(t,))?  (mm/hr)?

Case 3: Q = 0.285 (mm2/hr)
R(t,) = 0.01 (mm/hr)
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Case 4: Q = 0.285 (mmz/hr)

R(t) = (0.1 + 0.1 x z(£,))? (mm/nr)?
The value of the model error variance parameter Q
in Cases 1 and 2, is such that at each hour the
state standard deviation is augmented by an amount
equal to approximately 2 percent of the average
state magnitude. In Cases 3 and 4, the state
standard deviation is augmented at each hour by an
amount equal to approximately 20 percent of the
average state magnitude. Thus, Cases 1 and 2
represent the low model error noise, and Cases 3
and 4 represent the high model error noise.

In terms of the observation error variance R(t,)
at time tk, Cases 1 and 3 are the low noise cases
with the standard deviation of the observation
error set equal to 10 percent of the baseflow
level. 1In the high observation noise Cases 2 and
4, the standard deviation of the observation error
is proportional to the concurrent magnitude of the
flows with coefficient of proportionality equal to
0.1, That corresponds to streamflow data of good
quality (see Georgakakos and Bras, 1982) which is
expected in hydrologic calibration studies.

Accuracy of the final parameter estimates was
measured by 1) the percent proportional error
denoted by Ea for parameter a and by En for
parameter m, and 2) the difference Sa and Sm
between final estimates and true values for a and
m expressed in number of standard deviations.

Thus, if a, o, denote the final estimate for a and

its standard deviation, and m and ¢_ the corres-
ponding quantities for m, then the accuracy

measures Ea' Em, Sa, and Sm are given by

>

S =
m 4

where ag and mg are the true parameter values. Sa

and Sm provide a measure of the reliability of the
recursive estimators in predicting the variance

(0; and 0;) of the final estimates a and m.

We start by comparing the EKF with the TGSLF for
all cases. Table 1 presents the values of the
accuracy measures defined previously together with
the CPU time used by the recursive estimators on a
PR1ME 750 computer with the PRIMOS operating
system, to process 1800 data points. The sampling
interval and the noise intensity cases presented
previously enter as parameters in Table 1. The
results are displayed both for the EKF and the
TGSLF. The statistical linearization procedure in
the TGSLF had up to and including second order
terms in the Taylor series expansion of the non-
linear functions f1, f2, f3, and f) (see previous
section).

Examination of the values in Table 1 leads to the
conclusion that both the EKF and the TGSLF give
better estimates for short sampling intervals and
small noises. The bias of the EKF estimates
appears to be higher than the TGSLF bias, espe-
cially for the high noise and long sampling inter-—
val cases. Both estimations are reliable at the
95 percent probability level for the 15-minute
interval and low observation noise levels (Cases 1

; - a and 3). For most cases, a much higher probability
E = [ t).100 level is required for reliability.
a a
~ t Perhaps the most important conclusion from a
m - mt practical point of view is that the observation
Em = [ )-100 noise intensity affects the final estimates much
t
TABLE 1 Values of the Accuracy Measures Ea, Sa, Em, Sm, and CPU Time
METHOD: EKF TGSLF
MEASURE Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4
At = 0.25 hr 1 =72 18 3 -1 ~58 19 1
B At = 1,00 hr =22 =57 25 66 1 =37 1 66
a (® 4t = 3.00 hr -60 -66 -34 -u3 -17 13 -y -2
At = 6,00 hr =74 ~66 ~-80 -68 -54 -6 ~-63 -42
At = 0.25 hr 0.1 ~-15.0 1.9 0.2 -0.1 -9.1 2.1 0.1
At = 1,00 hr -3.6 -8.6 3.4 3.4 0.2 -4.1 5.5 3.8
Sa At = 3.00 hr ~15.0 -8.7 ~7.7 4.3 4.9 -6.5 -1.2 -0.2
At = 6,00 hr -36.9 -13.8 -140.0 -13.7 -90.0 ~13.4 -100.0 -9.9
At = 0.25 hr -2 26 -1 =4 0 17 -8 -7
At = 1.00 hr 4 2 -1 -25 -3 -7 ~14 -27
En (B 4t = 3.00 br 31 49 -1 25 -13 18 13 17
At = 6.00 hr 3 10 24 15 =13 -10 16 10
At = 0.25 hr -0.9 5.5 -0.1 -0.6 0.2 3.9 ~-2.8 -1.6
s At = 1.00 hr 2.1 0.6 ~4.9 -6.5 ~-1.9 -2.0 -6.9 -8.2
m At = 3.00 hr 8.4 4.9 -1.6 2.5 ~-10.7 3.8 3.3 3.0
At = 6.00 hr 1.5 1.8 5.5 2.4 -60.0 -4.3 4.6 1.9
At = 0.25 hr 4 3 5 5 1 11 15 12
. At = 1.00 hr 6 5 8 7 16 15 23 18
CPU(mIn)  a¢ - 3,00 hr 1 12 11 12 24 2) 31 30
At = 6.00 hr 10 13 15 14 32 31 33 32
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more than the model error noise intensity does.
Therefore, good quality data are essential for
accurate parameter estimates. Furthermore, the
table shows that, for the steep input hydrograph
used in the runs, short sampling interval will
yield more accurate parameter estimates. In terms
of the relative accuracy of parameters a and m,
Table 1 shows that m was easier to identify,
especially for the long sampling intervals.

Finally, the values of CPU time in Table 1 show
that the TGSLF, with up to and including second
order terms in the Taylor series expansion, is
approximately three times slower than the EKF.
However, even for the longest sampling (and
forecast) intervals, the requirements of both
methods in CPU time are quite minor (up to

33 minutes per 1800 data points) so that they can
be easily used on mini- or micro-computers.

Next, we examined whether model predictions were
sensitive to inaccurate parameter estimates. The
variance R, of the normalized residuals and the

variance R2 of the step-one prediction residuals
was computed for all the EKF and TGSLF final
parameter sets that correspond to each of the
sampling intervals and each of the cases

(Table 1). For all runs, the EKF was used to
produce the model predictions, with the parameters
a and m remaining constant throughout the run. A
total of 600 data points were used for each run.
The base values of Rn and R° were established by
runs with parameters constant and equal to the
"true" parameter values. Table 2 presents the
results for all the cases and sampling intervals
of interest. The values in Table 2 indicate that:

1. Both parameter estimators gave parameter

estimates that produced the minimum possible
R® value.

TABLE 2 Variance Rn of Normalized Residuals and

Variance R2 of Prediction Residuals

R, 82 (mm/hr)?
TRUE EKF TGSLF TRUE EKF TGSLF

At = 15 min

Case 1 1.03 1.03 1.03 0.01 0.01 0.01

Case 2 1.02 1.06 1.04 0.24 0.25 0.25

Case 3 1.15 1.07 1.19 0.18 0.18 0.18

Case 4 1.05 1.06 1.09 0.45 0.4 0.45
At = 1 hr

Case 1 117 1.17 1.7 0.02 0.02 0.02

Case 2 1.04 1.08 1.08 0.30 0.31 0.31

Case 3 1.72 1.81 1.79 0.68 0.68 0.68

Case 4 1.41 1.47 1.48 0.98 0.98 0.98
At = 3 hr

Case 1 1.56 1.54 1.65 0.03 0.03 0.03

Case 2 1.08 1.08 1.08 0.27 0.27 0.27

Case 3 2.94 3.51 2.63 2.21 2.22 2.22

Case 4 2.04 1.97 1.88 2.49 2.49 2.49
At = 6 hr

Case 1 1.98 2.08 2.10 0.05 0.05 0.05

Case 2 1.16 1.16 1.16 0.31 0.31 0.31

Case 3 4,09 4.90 4.57 4,07 u4.07 4.07

Case 4 2.67 2.94 2.75 4,28 4.28 4.28

2. For long sampling interval and high
intensity of the noises, the variance of the
normalized residuals was considerably
different from its optimal value of 1,
indicating non-optimal filter parameter Q.

Thus, even though the parameter estimates were not
accurate for all cases (see Table 1), they can be
used for prediction with the same predictive
capability as the true parameters. Furthermore,
the nonlinear reservoir model is robust with
respect to parameter changes of the magnitude in
Table 1.

The Q approximation in STEP 3 of the generation
algorithm (see previous sectigns) resulted in the
deterioration of the R, and R° values for the true
parameters for Cases 3 and 4 and At > 1 hour shown
in Table 2. This points to the importance of
accurate Q values in parameter estimation studies
with recursive parameter estimators based on
filtering algorithms. Work in progress will study
the utility of real-time recursive estimators of Q
of the type in Georgakakos, 1984, in the recursive
estimation of the parameter a and m of the
nonlinear reservoir.

Since the EKF and the TGSLF gave final estimates
that lead to as good predictions (Table 2) as
those obtained from the true parameter values, it
was not considered necessary to run the costly
NSLF for all the cases of sampling intervals and
noise intensities. For illustration purposes and
to show the relative cost of the procedure, we run
the NSLF parameter estimator for a sampling inter-
val of 6 hours for all noise cases for a total of
100 data points. The results follow:

E (%) En(%)  CPU (min)

Case 1 -35 -31 187
Case 2 -35 -31 193
Case 3 19 -1 200
Case U 23 ~-30 238

The estimate accuracy is comparable to the
accuracy of the EKF and TGSLF estimates with CPU
tiome increased dramatically.

CONCLUSIONS

An examination of the performance of recursive
parameter estimators based on filtering theory in
the estimation of the parameter of a nonlinear
reservoir was undertaken. The extended Kalman
filter, and two filters based on statistical
linearization procedures were utilized. The
performance of the estimators was measured by the
proximity of the final parameter estimates to the
true values and by least squares criteria
concerning the step-one prediction residuals.

Initial results based on a simulation experiment
indicate that the value of the model error
variance parameter Q is very important for
effective parameter estimation by all the
estimators. The estimation procedure is more
sensitive to Q than it is to changes in the
parameter estimators. Even though, for the cases
examined, the estimators gave different parameter
estimates, the predictive capability of the
resultant nonlinear reservoir model was equally
good suggesting robust model behavior.

For the steep nonlinear hydrograph input used in
the present study, sampling intervals less than an
hour and very good quality data are necessary for
accurate parameter estimation.
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