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Parameter Estimation for a Model of Space-Time Rainfall
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In this paper, parameter estimation procedures, based on data from a network of rainfall gages, are
developed for a class of space-time rainfall models. The models, which are designed to represent the
spatial distribution of daily rainfall, have three components, one that governs the temporal occurrence of
storms, a second that distributes rain cells spatially for a given storm, and a third that determines the
rainfall pattern within a rain cell. Maximum likelihood and method of moments procedures are devel-
oped. We illustrate that limitations on modet structure are imposed by restricting data sources to rain
gage networks. The estimation procedures are applied to a 240-mi? (621 km?) catchment in the Potomac

River basin.

1. INTRODUCTION

Development of probabilistic models of space-time rainfall
has had a lengthy but sporadic history, beginning with LeCam
[1961]. Research has been motivated mainly by applications,
most notably management of water resource systems [LeCam,
1961], design of hydrologic monitoring networks [Rodriguez-
Iturbe and Mejia, 1974; Bras and Rodriguez-Iturbe, 1976],
design of flood control structures [Corotis, 1976], and devel-
opment of air quality standards [Rodhe and Grandell, 1981].
In recent years, increasing emphasis has been placed on the
physical basis of rainfall representations [Eagleson, 1984;
Gupta and Waymire, 1979; Smith and Karr, 1983; Waymire et
al., 1984]. In an assessment of precipitation research prepared
by the Precipitation Committee of the American Geophysical
Union [AGU, 1984] it is noted that

although physical/dynamical considerations are expected to play
an important role in advances in stochastic modeling of precipi-
tation, the problems of parameter estimation and statistical infer-
ence are not expected to be solved by appealing only to precipi-
tation physics. New statistical techniques remain to be devel-
oped, particularly for stochastic descriptions of space-time rain-
fall.

In this paper we examine the role of statistical parameter
estimation in modeling space-time rainfall. Specifically, we de-
velop and illustrate estimation procedures, based on data from
a network of rainfall gages, for a class of space-time rainfall
models.

The models we examine are designed to represent the spa-
tial distribution of daily summer season rainfall in a humid
region. The models have three basic components, one that
governs the temporal occurrence of storms, a second that dis-
tributes “rain cells” spatially for a given storm, and a third
that determines the rainfail pattern within each rain cell. Con-
struction of the model by successive randomization of model
components (using rain cells as basic building blocks) is analo-
gous to the approach taken by LeCam [1961] [see also Way-

Copyright 1985 by the American Geophysical Union.

Paper number 5SW0290.
0043-1397/85/005W-0290$05.00

mire et al., 1984]. Estimation procedures are developed for a
model with five parameters.

We restrict consideration to precipitation data from oper-
ational rain gage networks because of availability, quality, and
record length of the data. Additional sources of precipitation
data include dense experimental networks of rain gages, radar,
and satellite imagery. Applicability of models and estimation
procedures that rely on these data sources is limited not only
by data availability but also by lack of methods for dealing
simultaneously with qualitatively different kinds of data. We
illustrate in this paper, however, that serious limitations on
model structure are imposed by restricting data sources to
operational rain gage networks. These considerations suggest
that estimation procedures for space-time rainfall models
ideally should utilize a combination of “physically deter-
mined” parameters and parameters estimated from data (such
a procedure is illustrated in section 5).

It should be emphasized that the models under consider-
ation are intended for application to management and design
problems, not problems of short-term precipitation prediction.
The latter class of problems relies on operational meteorologi-
cal observations [see, for example, Georgakakos and Bras,
1984].

Contents of the sections are as follows. Section 2 contains a
description of the rainfall model, including distributional re-
sults required for estimation procedures. Maximum likelihood
estimators are derived in section 3; method of moments esti-
mation is the subject of section 4. Section 5 contains data
analysis results (using daily precipitation data from the Poto-
mac River basin) that illustrate suitability of model assump-
tions; implementation of the method of moments estimation
procedure is also illustrated. Results and conclusions are sum-
marized in section 6.

2. MODEL DEVELOPMENT

Prior to giving a detailed mathematical description of the
rainfall model, we give a simplified description of its basic
components. Temporal evolution of the model is governed by
a “stochastic climatological process” {X(n)}, where X(n) repre-
sents the climatological state on day n (days can be replaced
by shorter but homogeneous time steps). The process alter-
nates between two states, 0 and 1, the former representing
anticyclonic conditions in which precipitation cannot occur,
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Fig. 1. Schematic of rainfall model components: (a) sequence of
wet-dry days, (b) spatial distribution of rain cells for the first three
days, and (c) rainfall depths for the two cells on day 1.

and the latter representing conditions in which air-mass thun-
derstorms predominate.

For days on which rainfall can occur a random “spatial
intensity process” determines the spatial rate of occurrence of
rain cells. Rain cells are taken to be circular and of fixed
radius. Given the spatial rate v of rain cells, the locations of
rain cell centers constitute a spatial Poisson process with rate
v.

Given the locations of rain cells the final component deter-
mines the “rainfall distribution” within individual rain cells.
We examine two “canonical” rainfall distribution patterns,
cells with uniform rainfall intensity, and cells with rainfall
intensity decreasing linearly with distance from the center of
the cell. Maximum rainfall intensity occurs at the center of a
cell and varies randomly from cell to cell. Figure 1 illustrates
the three model components.

Independence assumptions are ubiquitous in the rainfall
model. Rather than state explicitly all of the independence
assumptions we ask the reader to assume independence unless
explicitly stated otherwise. Computations, which typically in-
volve repeated application of Bayes’ theorem, are generally
omitted; details are available from the authors.

The rainfall model we develop is restricted to a subset R of
the plane. The primary quantities of interest are the total
rainfall on day n in a subset 4 of R, Z,(A) (with units L), and
the rainfall intensity on day n at point x, Y,(x) (with units L),
which are related by

Z,(4)= J Y,(x) dx (1)
A

The “climatological process” {X(n), n >0} is a Markov
chain with state space {0, 1}. Two parameters are introduced
into the rainfall model, the probability of transition from a dry
state to a dry state
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q(0) = P{X(n) = 0| X(n — 1) = 0} @

and the probability of transition from a wet state to a wet
state,

q(1) = P{X(m) = 1| X(n — 1) = 1} €

These determine the limit probabilities

p(1) = lim P{X(n) = 1} )
p(0) = lim P{X(n) = 0} = 1 — p(1) )

in particular [see Cinlar, 1975],
1) = (1 - q(0)/2 — q(0) — (1)) (6

Note also that if one of the transition probabilities is known
and the limit probabilities are known then the remaining tran-
sition probability can be computed from (6). In the method of
moments procedure developed in section 4, p(1) and ¢(1) are
estimated directly; ¢(0) is obtained from (6).

For “rainy days,” i.e., days for which X(n) = 1, the spatial
distribution of rainfall is represented by the superposition of a
random number of rain cells of fixed radius r. The “spatial
rate” of occurrence of rain cells (the mean number of rain cells
per unit area) varies randomly over time (day to day) to reflect
the variation in intensity of convective activity; the spatial
rate is represented by a nonnegative stochastic process {V(n),
n = 0} satisfying

P{V(n)=0|X(n) =0} =1 0
P{V(n) < y| X(n) = 1} = F(y) ®)

where F is a distribution function on [0, o0). The first con-
dition states that on “dry” days the spatial rate is 0. Equation
(8) states that the distribution of the rate on “wet” days is
given by F. For the estimation procedures developed in the
following section we assume that spatial rates are exponen-
tially distributed:

F(y)=1—exp(—ay) ©

Given the spatial rate V(n) on a wet day, the cell center
locations form a Poisson process on R with intensity V(n), i.e.,

P{N,(4) = k| V(n)} = exp (— VANV (I AD/k!  (10)
where N, (A) is the number of cell centers located in a subset 4
of R, and |A] is the area of A. Moreover, numbers of cells in
disjoint spatial regions are conditionally independent given
V(n). For computational purposes, the crucial property of the
cell location process is that it is a Cox process (or doubly
stochastic Poisson process) on R. Spatial Cox processes are
described in the work by Matern [1960], while Smith and Karr
[1983] illustrate the utility of Cox processes for modeling tem-
poral rainfall occurrences. The cell location process introduces
two more parameters to the rainfall model, the cell radius r,
and the mean spatial rate a~ .

We make two basic assumptions on the rainfall distribution
pattern of a rain cell. First, we assume that isohyets of rainfall
intensity are circular with maximum intensity at the center of
the cell. The second assumption is that total rainfall from a
cell is the product of the rainfall intensity at the center of the
cell times the volume of the “canonical rainfall distribution,”
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which is specified by a descreasing function h on [0, c0) satis-
fying (recall that r is the cell radius)

O<hs)<1
h(s) =0 s>r
ho) =1

The function h evaluated at s specifies the rainfall intensity at
distance s from the center of the cell for a storm with unit
maximum intensity. The total rainfall from a rain cell with
unit maximum intensity is thus given by

m=2n J. sh(s) ds (11)
0
We illustrate with two special cases.
2.1. Example 1
Uniform rainfall intensity is represented by
his) =1 s<r (12)

Total rainfall from a cell with uniform rainfall intensity and
unit maximum intensity is nr2.

2.2. Example 2
Linearly decreasing rainfall isohyets are represented by

hs)y=1—s/r s<r (13)

Total rainfall from a cell with linearly decreasing isohyets and
unit maximum intensity is (1/3)rr2.

Hereafter we assume that the canonical rainfall distribution
is the uniform rainfall intensity of example 1.

The maximum intensity for cell k on day n, I(n, k), is a
random variable with distribution G, assumed below to be
exponential, i.e.,

P{I(n, k) < y} =1 —exp (—by) (14)

With this assumption the rainfall distribution pattern adds
one parameter to the rainfall model, the mean value b~! of
maximum rainfall intensity for a cell.
The total rainfall in a subset A of R contributed by a cell
(with unit maximum intensity) located at the origin is given by
m(4) = f sh(s) dO ds (15)
A
The total rainfall in 4 contributed by the kth cell on day n is
hence I(n, k)m(A — L(n, k)), where L(n, k) is the location of the
kth cell on day n, and A — L(n, k) is the translation of the set
A by L(n, k), ie,

A—Ln, k)= {xeR:x + L(n, k) € A}

The total rainfall in 4 on day n is the sum of contributions
from all cells on day n

Na(R)
Z,(A)= Y I(n, k)m(A — L(n, k)) (16)
k=1
The rainfall intensity at a point x in R is given by
Na(R)
Y(x)= 3 I(n k)h(x — L(n, k))) amn
k=1
where |x — L(n, k)| is the distance from x to the location of cell
k on day n.
The distributional resuit that forms the basis for the esti-
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mation procedures developed below is the following ex-
pression for the joint Laplace transform of total rainfall in k
disjoint sets. The proof is sketched in the appendix.
2.3.  Proposition

For disjoint sets 4, -

El:exP (* isizn(Ai)):]
i=1
= [p(1)] [1 +a7! f [1 - b{b + Ek: sim(A; — x)}—l] dx:I‘-l

+(-p1) (18

Of more direct use in obtaining estimators is the following
representation of rainfall intensity at k points that are suf-
ficiently far apart.

-, A, = R and nonnegative s, - - - s,

Corollary

For x,,---, x; € R such that the minimum distance be-
tween any two points is greater than 2r,

E{exp (— iésﬂ,,(&))]

= [p(l)][l + a’lanI:k - i b(b + Si)_lil]_l

i=1
+ (1 —p(1)

The following distributional results can be obtained from
(18) and (19):

(19)

E[Y(x)] =p(1)b"'a" 'nr? (20)
Var (,0) = p(1X2 — p(1)b™*a"*n?r*
+2p(Db"%a" ' (21)
_HUx—y)
Cor (v, Yy = — LB T )
L+ e
where |x-y} is the distance from x to y, and
H(x) = 4r? cos™! (x/2r) — x(r> — (x/2H)V*  x<2r
=0  otherwise (@3
P{Y,(x) =0 X(n) = 1} = 1/(1 + a”'nr?) 24)

P{Y,(x) < y| X(n) = 1} = (1 — B)4 exp {—Ay} + Bl(y = 0)

(25)
where
A=b/l+a 'nr?)
B=1/1+ a 'ar?)
and
ly=0=1 y=0
=0 otherwise

Equation (19) has important implications for parameter es-
timation (note that equation (19) applies when the rain gage
density is “sparse” in the sense that the minimum distance
between gages is larger than the cell diameter). Since the pa-
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rameters a and r appear only through the product a~'r?, it
will be impossible to estimate a and r individually. In statis-
tical terms the five-parameter model is not identifiable.

It follows from (25) that the distribution of rainfall intensity
at a gage on a wet day is zero with positive probability. On
“wet” days for which rainfall is recorded at the gage, the distri-
bution of rainfall intensity is exponential.

3. MaxiMuM LIKELIHOOD ESTIMATION

In this section we develop a maximum likelihood procedure
for estimating parameters of the model described in the pre-
vious section. The estimation procedures (for this section and
the following section on method of moments estimation) are
based on data from a network of k rain gages. We denote the
observed rainfall at gage j on day n by Y,(j). The vector (Y,(1),
-+, Y,(k)) of observations on day n will be denoted Y,.

Geometry of the rain gage network enters into the esti-
mation procedures only through the minimum distance be-
tween gages. In particular, we assume that the rain cell diam-
eter 2r is smaller than the minimum rain gage distance d; this
assumption implies that the network is not dense enough for
two gages to observe the same rain cell. Under this assump-
tion it is possible to estimate only four parameters: g(0), g(1),
b, and a 'r?, as was discussed in the previous section. To
obtain estimates of either a or r it is necessary that one of the
parameters be estimated by additional data sources. It is much
more likely for exogenous estimates of the cell radius r to be
available than estimates of the mean number of cells a™ .
Consequently, we assume hereafter that r is “known.”

The sample function density f(7,, - - -, y,) for observations
at k gages over n days is the joint probability density function
of the n daily observation vectors y;, - - -, y,:

P{Y,e A, -, Y, e A}

=J ,..jf(fl’-u,jn)d}?l---df,, (26)
Ay An

where 4; € R, * Maximum likelihood estimation is based on
the likelihood function

10170, ) =SB0 05 V) 27)

where 0 = (q(0), g(1), a, b) is the vector of unknown parame-
ters. The notation emphasizes that in estimation problems the
data are treated as fixed and the parameters as variable.

We show below that computation of the likelihood function
can be broken into two parts, one involving the temporal
evolution of the model, and the other involving the spatial
distribution of rainfall on a wet day. We first note that the
likelihood function can be written in “iterated form” as

10171 5 7 = [19Gl Feers - F09F)  (28)
k=2

where g(7,| ._1, " **» 71) is the conditional density of ¥, given

Yooy oo, Y
The computational split into spatial and temporal compo-
nents is used for computation of the conditional density g:

gl Fn 1575 V1) = HGIP{X () = 11§y, -+, 1}
+ 1F-P{X =(M) =0} Fp_1, ", ¥1}
where h is the conditional density of ¥, given X(n) = 1 and
15,=0=1ify (=0 i=1,-,k
=0

(29)

(30)

otherwise
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is the indicator function for the event that rainfall is not re-
corded at any gage on day n. The conditional density h thus
describes the distribution of rainfall at the k gages on wet
days, while P{X(n) =i|y,-, ", ,} (for i equal to 0 or 1)
summarizes information on temporal evolution of the climato-
logical process contained in the preceding rain gage observa-
tions. Below we show how the “spatial component” and “tem-
poral component” of (29) can be computed. We begin with
P{X(n) = llin—lr Y .)71}'
It follows from the Markov property of {X(n)} that
P{X(m)=1|Y, y, -, T} =P{X() =1|T(m} (31
where
T)y=n—max {i:¥,#0,i<n—1} (32)

is the number of days since rainfall has been recorded at any
gage. Consequently, it suffices to compute

s(j) = P{X(n) = 1| T(n) = j} 33
for which we obtain the following recursive
s(1) = q(1) (34
forj>1,
s(j) = [1 — q(0)] + [4(0) + q(1) — 1]
, si=1) 9)

1+ ka tar’[1 —s(j — 1)]

The conditional density h can be described by its Laplace
transform

Kn(sl, Tt Sk)

= Efexp {—s,Y(1) — - — s, Y, (k)} | X(n) = 1]

=J; J exp {—s1yy — = Suidh(y) dyy - dyy (36)
0

In particular, from (19) we obtain

-1
K5y, s) = [1 + a“nr2<k - Zk:b(b + S.')_1>]
i=1

(37

While direct evaluation of h by inversion of (37) appears diffi-
cult, (37) can be used either for numerical evaluation of h or as
the basis of approximations.

4. METHOD OF MOMENTS ESTIMATION

The framework for parameter estimation in this section is
the same as in the previous section. Specifically, we assume
that precipitation data (Y,, ---, Y,) are available for n days
from k gages. The method of moments procedure shares the
characteristic of the maximum likelihood procedure that esti-
mation separates into spatial and temporal components. In
this case separation is achieved through an iterative compu-
tation procedure with two steps to each iteration: (1) the spa-
tial parameters a and b are estimated from the sample mean
and variance with the temporal parameters set equal to their
values at the previous iteration, and (2) the temporal parame-
ters are estimated from the sequence of wet and dry days with
the spatial parameters set equal to the values obtained in step
1. The procedure is terminated when the relative change in
each parameter is less than a prescribed value.

Step 1 is based on (20) and (21), which present the mean and



SMITH AND KARR: RAINFALL MODEL PARAMETER ESTIMATION

variance of rainfall intensity at a site. The following estimators
are obtained for a and b:

b = 24/(6" ~ [(2 = HVY/AVIE)
d = p()nr*/(ab)
where 4 and ¢ are the sample mean and variance.
The estimator of p(1), the stationary probability of being in
a wet state on a given day, is the sum of two terms: (1) the
fraction of days for which rainfall was recorded at one or
more gages and (2) the fraction of days for which no rainfall
was recorded at any gage multiplied by the conditional prob-

ability of being in the wet state given that no rainfall was
recorded. This estimator can be represented as

(38)
(39)

A = (Un) Y16, #0)

+ P{X(i) = 1Y = 0}(1/n) Z 1(5:=0)

i=1

(40)

Dependence on spatial parameters is through the conditional
probability of being in the wet state given that no rainfall was
recorded, for which we have the expression

P{X() = 1| ¥, =0}
= (1 + {(1 — p(YP()XL + ka™'mr2)~?

Combining (40) and (41) yields a quadratic equation in p(1) for
which there are two roots: 1 and the estimator

(41)

P = [1 + 1ka™'mr?))(1/n) Y 1(7: # 0) (42)
i=1
The probability of a wet day followed by a wet day, q(1),
can be estimated analogously:

n—1

n—1
‘f(l) = Z 1(J7i #0, J7.'+1 #* O)/ Z 1()7:' # 0)
i=1 i=1

i

+ P{X(i))=0]Y, = 0}

[ Z 1(y; # 0, Visr =0)/

i=1

n—1
21 # 0)] @3)
i=1
The parameter ¢(0) can be obtained from (6).

The estimation procedure is initiated by specifying an initial
value of j(1). A reasonable initial estimator is the fraction of
days with recorded rainfall, i.e., the estimator of (40) with the
second term dropped.

5. NUMERICAL EXAMPLES

Daily precipitation data from the Potomac River basin are
used in this section to examine suitability of model assump-

TABLE 1. Correlation of Daily Rainfall Totals for Five Gages in
the Potomac River Basin

Gage 1 Gage 2 Gage 3 Gage 4 Gage 5
Gage 1 1 0.64 (44)  0.63(24) 041 (60) 0.39 (65)
Gage2 0.64 (44) 1 0.57 (45)  035(75 036 (75)
Gage3 0.63(24) 0.57 (45) 1 0.48 (48)  0.46 (50)
Gage 4 041(60) 0.35(75) 048 (48) 1 0.69 (10)
Gage 5 039(65) 036(75) 046 (50)  0.69 (10) 1

Distances between gages (in miles) are given in parentheses. One
mile equals 1.609 km.
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TABLE 2. Coefficient of Variation of Storm Depth Totals for All
Days With Recorded Rainfall and Days With Recorded Rainfail
Greater than 0.10 Inches

Coefficient of Coefficient of

Gage Variation* Variationt
1 1.30 097
2 1.45 1.04
3 149 1.14
4 1.39 0.97
5 1.37 0.97

One inch equals 2.54 cm.
*All days with recorded rainfall.
+Days with recorded rainfall greater than 0.10 inches.

tions and to illustrate implementation of the method of mo-
ments estimation procedure.

The spatial range of applicability of the precipitation model
is determined by the assumptions that (1) the entire region is
under the influence of the same climatological state and (2) the
region is climatologically homogeneous. Table 1 contains the
correlation matrix (and in parentheses, intergage distances) of
daily summer season (July to September) rainfall totals for five
gages in the Potomac River basin. The period of record is
1961-1970 and each of the gages has an 8 A.M. observation
time (these data sets are used for all of the analyses presented
in this section). Gages 4 and 5, located on the Allegheny Pla-
teau, are separated from gages 1, 2, and 3, which are located in
the Valley and Ridge province, by a major climatological
boundary, the Allegheny Front.

Note that while gages 3 and 4 and gages 3 and 2 are sepa-
rated by comparable distances, the correlation is noticeably
smaller for the first pair. In general, correlation between gages
depends less on distance separating gages than on location of
the gages relative to the Aliegheny Front. Consequently, in
developing a model for the Potomac River basin it would be
necessary to separate the Allegheny Plateau portion from the
Valley and Ridge portion.

One consequence of model assumptions (equation (23)) is
that the spatial correlation function is constant for separation
distances greater than the diameter of a rain cell. The results
of Table ! suggest that this assumption is not a gross over-
simplification of the physical setting. Note, for example, that
the correlation of the two Allegheny Front gages separated by
less than ten miles is comparable to correlations between the
Valley and Ridge gages separated by as much as 50 miles
(80.45 km).

It was concluded from (25) that storm depths for days on
which rainfall was recorded are exponentially distributed.
Table 2 contains the coefficient of variation in storm depth
totals for days with measurable precipitation at five gages in
the Potomac River basin. The exponential assumption, under
which the coefficient of variation is equal to 1, is not support-
ed by this data. Table 2 also contains coefficient of variation
of storm depth totals for days with greater than 0.1 inch (0.254
cm) of recorded rainfall. These results suggest it may be useful
to adopt threshold precipitation levels larger than the report-
ing minimum of 0.01 inch (0.0254 cm).

The form of the “stochastic climatologicl process” is based
on results presented in the work by Smith and Karr [1983].
There it is shown that summer season precipitation oc-
currences in the Potomac River basin can be represented by
alternating “dry periods” dominated by anticyclonic con-




1256

TABLE 3. Parameter Estimates Using Iterative Method of
Moments Procedure

Iteration a b q(1) p(1)
1 5.5820 7.4741 0.6222 0.4869
2 9.6127 5.3041 0.6693 0.5508
3 12.5234 4.6056 0.7033 0.5969
4 14.6252 4.2741 0.7278 0.6302
5 16.1429 40884 0.7455 0.6543
10 19.3121 3.7947 0.7825 0.7045
20 20.0564 3.7392 0.7912 0.7163
30 20.0852 3.7371 0.7915 0.7168
40 20.0863 3.7371 0.7915 0.7168
50 20.0863 37371 0.7915 0.7168

ditions and “wet periods” during which air mass thunder-
storms predominate.

The method of moments estimation procedure was applied
to a 240-mi? (621 km?) catchment (the North Branch of the
Potomac River) located on the Allegheny Plateau. The region
contains two rain gages separated by 10 miles (16.09 km).
Based on results reported from Ohio for the Thunderstorm
Project [ Byers and Braham, 1949], cell radius r for the model
was taken to be 2 miles (3.208 km).

Implementation of the iterative estimation procedure re-
quires precomputing the statistics:

k

f=kn~" Y YY)

i=1j=1

p=n"t ¥ 1G5i#0)
i=1

n—1

1y # 0
i=1

i

n—1
q= Z l(fi#o, Vit 9é0)/
i=1

where k is the number of gages, and n is the number of days.
Values of the sample statistics for the North Branch data are
A=0.12, 6% = 0.09, p = 0.40, and g = 0.56.

The iterative procedure commences with (38) using (1) = p.
Table 3 summarizes estimates for 50 iterations. The percent
change in parameter estimates is less than 0.001 after 50 iter-
ations. The estimated parameters are d = 20.1, b=137,p1)=
0.72, and 4(1) = 0.79. From (6) we obtain §(0) = 0.46.

The estimated parameters yield the following interpreta-
tions of model components. The percent of days during which
the climatological state is wet is 0.72; on a wet day the prob-
ability that tomorrow will also be a wet day is 0.79. The mean
number of rain cells (of radius 2 miles (3.208 km)) on a wet
day is 0.05 per square mile, or 12 for the 240-mi® (621 km?)
basin. The mean rainfall intensity for a rain cell is 0.27 inches
(0.69 cm).

6. SUMMARY AND CONCLUSIONS

In this paper we have presented a simple, physically based
model of space-time rainfall and developed maximum likeli-
hood and method of moments estimation procedures for data
from a network of rain gages. It was noted in the Introduction
that a primary goal of the paper is to examine the role of
statistical parameter estimation in development of physically
based precipitation models. We summarize below the main
conclusions.

1. Estimation of a “cell radius” parameter from an oper-
ational network of rain gages will be difficult or impossible.
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The problems described in this paper for circular rain cells of
fixed radius will be more acute for models which accomodate
additional structure such as elliptical rain cells or cells with
varying radii.

2. While both estimation procedures can be implemented,
the method of moments procedure requires substantially less
computational effort than the maximum likelihood procedure.
The contrast in computational requirements increases with
added model complexity; the maximum likelihood procedure
becomes intractable under formulations only slightly more
general than presented in this paper.

3. An important feature of both estimation procedures is
the interaction between spatial and temporal parameters. In
each there is a natural separation of spatial and temporal
estimation components and a “link” between the spatial and
temporal components.

4. Numerical results emphasize the role of spatial scale in
model development. Waymire et al. [1984] have examined the
role of spatial scale of meteorological systems for space-time
rainfall modeling. Topographically induced inhomogeneities
should also play a major role in determining the appropriate
scale or formulation of space-time rainfall models.

5. A major issue that has not been addressed in this paper
is properties of estimators. Further research should be under-
taken to determine whether properties such as consistency,
asymptotic normality, and efficiency can be established.

APPENDIX

The proof of (18) is sketched below. Two additional defini-
tions are required. Let M be a point process on a Euclidean
space E.

Definition

M is a Cox process directed by the random measure A if the
following are true.

. For every finite collection of disjoint sets A;, -, A,
the random variables, M(4,), - - -, M(A4,) are conditionally in-

dependent given A.
2. For all nonnegative integers k and all sets A4,

P{M(A) = k|A} = exp (— A(A)A(A)/k!
that is, the conditional distribution of M(A) given A is Poisson
with parameter A(A).
Definition
The Laplace functional Ly, of M is defined by

Ly(f) = E[exp (— ff x) dM(X))]

where f'is a nonnegative function on E.
The following lemma [Kallenberg, 1976] is needed for the
proof.

Lemma
If M is a Cox process directed by A, then the Laplace
functional of M is given by
Ly(f) = L1 — ™)

where L, is the Laplace functional of A.
Equation (16), which represents total rainfall on day n, can
be rewritten as follows:

Z(A) = J um(A — x)M (dx, du)
R
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where M, is a Cox process on Rx[0, o). M, (A, B) can be
interpreted as the number of rain cells located in the region A
with maximum intensity falling in the set B. The directing
measure of M, is

AJS(A, B)=V, f(w) dx du

AxB
where f is the exponential density with parameter b. Thus we
have

E[exp (—sZ,(4))]
= E[exp (—sZ (A)I(X(n) = NIP{X(n) = 1} + P{X(n) = 0}

= p(l)El:exp (—sf um(A — x)M (dx, du))] + (1 — p(1))
R

= p(1)Lyg (usm(A — x)) + (1 — p(1))

The result follows from application of the lemma.
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