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ABSTRACT

A method of generating synthetic radar-rainfall data is described. The
data are generated by imposing random noise on a given, high quality radar-
rainfall field. Certain conditions are imposed on the resultant rainfall
field so that the noise parameters are pre-specified. The conditions pertain
to the second order statistics of the generated rainfall fields: the mean,
the variance, the correlation, and the variance of the logarithmic ratio of
the resultant field to the original field. Accuracy of the generation method
is evaluated from implementing a test case using GARP (Global Atmospheric
Research Program) Atlantic Tropical Experiment (GATE) radar data. The method
can be used in a number of different, mainly hydrologic, applications. These
include validation of radar and rain-gage data merging procedures, testing of
various methods for computation of mean areal precipitation, and sensitivity
analysis of rainfall-runoff models,

INTRODUCTION

In recent years, radar sensors have found wide applicability in the
measurement of rainfall fields. This is mainly because of their ability to
map the spatial characteristics of rainfall, It is a fact, however, that in
some cases, large observation errors occur [Harrold et al., 1973; Wilson and
Brandes, 1979; Collier et al., 1983]. Since standard raingages offer a much
more accurate way to measure point values of rainfall, procedures are being
developed to merge radar and raingage observations [Brandes, 1975; Crawford,
1979; Eddy, 1979]. The purpose is to obtain the best estimate of the rainfall
field, taking advantage of the spatial detail that the radar gives and of the
high point accuracy of the gages.

One of the generic problems occurring during the development of merging
procedures is validation. Reliable synthesis of rainfall fields can be very
helpful as an alternative to costly field experiments. Using rainfall
synthesis, one can control the ensemble statistics of the generated fields 3¢
that the instrument-observation errors are simulated in the validation
process. Thus, it becomes possible to evaluate various merging procedures for
statistically different error fields.

Because the observed rainfall fields do not exhibit ergodicity (that is,
the realization statistics are not equal to the ensemble statistics), existing
methods for direct generation of synthetic fields (such as those of Mejia and
Rodriguez-Iturbe [1974] or Mantoglou and Wilson [1981]) are not particularly
useful. These methods require the specification of the process statistics,
which is infeasible for a non-ergodic process.

It is the purpose of this paper to propose a methodology that avoids the
explicit specification of the rainfall field statistics by acting on the point
values of the observed fields. Thus, the original field which could be, for
example, a high quality radar-rainfall field, is taken as known. A random
noise, which is Gaussian, isotropic, and has predefined second-order
statistics, is imposed at each point of the original field. The noise level
varies from point to point, based on the local original field characteristics
such as magnitude and gradient.



In addition to its use in the validation of merging procedures, the
proposed methodology can be used in the design of rainfall observation systems
and in the testing of mean areal precipitation estimators or rainfall-runoff
models, to mention only a few applications.

Other attempts to use existing high-quality radar fields for the genera-
tion of synthetic spatial rainfall were those by Greene et al. [1980]. The
method presented below provides improvements over those of Greene et al.
[19801, which resorted to trial and error for the specification of the
statistical parameters of the noise field in order to obtain an ensemble of
fields with specified spatial properties.

In the next sections, the proposed methodology is described, followed by
a discussion of an example implementation.

METHOD OF GENERATICN

The basic idea of the procedure is to generate fields from an existing
nigh quality radar field by imposing a noise field of known statistics such
that the ensemble of the resultant realizations meets certain conditions. The
conditions pertain to the spatially-averaged second order statistics of the
generated fields.

It is due to the imposed conditions that the second order statistics of
the noise field are obtained. Such a procedure was made necessary by the lack
of knowledge of the radar—-noise field statistiecs.

If G(x,y) is the generated field and O(x,y) is the original, high-quality
radar field, then the error field A(x,y) is commonly [Hudlow et al., 1979]
expressed as: ‘

A(x,y) = lOSxo(g'E'i—zly(%') (x,y) € A 1)

where x,y are the field-point coordinates, and A is the field domain.

For the purposes of this study we take A(x,y) to be the product of a
random field and a deterministic component according to:

A(x,y) = e(x,y) * S(x,y) (23

In Eq. (2), e(x,y) is a stationary and, in general, anisotropic, Gaussian
random field of mean u, variance ¢?, and correlation function p(t,,t,) with
1,,T, denoting spatial lags in the two directions x and y. S(x,y) is a
deterministic function which makes A(x,y) a nonstationary random field. We
adopt the form of S(x,y) given by Greene et al. r£1980]:

|[VOo(x,y)| * O _ (x,y) + 0(x,y) + |VO(x,y)
S(x,y) = max ‘ |max (3)

2 |Vo(x,y)| © 0 (K0 Y)

max




where:

|V0(x,y5[ is the average absolute value of the gradient computed in
four directions around the point (x,y) in the original field,
|V0(x,y)|max is the maximum absolute value of the gradient in the
original field,
0(x,y) is the original field value at the point (x,y), and
Opax(Xs¥) is the maximum value in the original field.

The form of function S(x,y) in Egs. {3) and (2) implies high errors where
high gradients and high magnitudes occur.

We note at this point that the development of the methodology is
independent of the particular form of S(x,y) in Eq. (3), so that any
deterministie, real function of (x,y) can be used.

Eliminating A(x,y) from Eqs. (1) and (2) yields

G{x,y) = 0(x,y) - 105(X’Y) « S(x,y) (%)

If one has a mechanism for generating the random component field e(x,y),
then, using Eq. (4) and tne original high-quality radar field 0(x,y), one can
produce a realization of G(x,y).

It should be noted here, that the use of Eq. (4) for the generation of
G(x,y) leaves the zero-rainfall areas of O(x,y) unaltered. The changes in the
non-zero areas of O0(x,y) are the ones that produce fields with the desirable
statisties.

There are several methods for the generation of e(x,y), given its
statistical parameters u, ¢?, and p(t,,t,). The Turning Bands Method (TBM)
presented by Mantoglou and Wilson [1982] is an efficient one in terms of
accuracy and cost. A short description of the TBM is given in the Appendix.

The TBM gives us a way to generate the field e(x,y) in Eq. (U4) if its
second order statistics are known. We obtain these statistics by imposing
certain conditions on the generated fields.

, Because G(x,y) is a nonstationary random field, we need to specify
operational measures of its statistical properties. Thus, we define:

1) The spatial mean R of the field as:
1
R = [ E{ax,y)} axay (5)
TaT 4

where A is the generation domain with area |A|, and E{:} denotes the
expectation of the value of G at the point (x,y).



2) The spatially-averaged variance P of the field G(x,y) as:

P=TaT { e{[6(x,y) - B(G(x,y)}] ] dxdy (6)

3) The spatially-averaged correlation px(Tl) of the field G(x,y) in
direction x as: o

E{[c(x,y)-E{G(x,y)}] -+ [G(x+1,,y)-E{G(x+1,,y)}]}

(1y) = ! f X
LR W Ty 7

G(x,y)-E{G(x,»}] |  E{{c(x+1,,y)-E{G(x+,,}] }

with t, denoting the spatial lag in the x-direction.

Similarly, the correlation py(rz) in direction y is defined as:

E{[G(x,y)-E{G(x,y)}] - [G(x,y*+1,)-E{G(x,y*+1,)}]}

1
py(Tz) = m f . dxdy

*y elleay-elex il ]y Elletyer-slatxyee 1)

with 1, denoting the spatial lag in the y-direction.

Equations (5), (6), (7), and (8) describe the spatially averaged field-
expected value, field-variance and field-correlation of G(x,y).

Another measure of variance used often in the radar literature [Hudlow,
1979] in place of Eq. (6) is the variance V of the logarithmic ratio of
Eq. (1), defined as:

- G(x,y) _ G(x,¥)
V= m{ E{lcgfo(o(x’y))} dxdy m ‘{ Ez{loglo(o(x,y))} dxdy (9)

By setting the expressions in Egs. (5), (6) or (9), (7), and (8) to
prespecified values, one can, in principle, obtain expressions for
u, o2, and p(t,,t.). Then, one can generate the e(x,y) field using the TBM
and subsequently generate the G(x,y) field from (4).

The first step would be to obtain expressions for the expectations:

E, = E{c(x,}

2

E. = E{[G(x,y) - E,]}

(7)

(8)



E{[c(x,y) - E,] » [G(x+1y,y) - E{G(x+t,, 1) ]}

E;s

2

Velloty - 6171y slloten.y - eleternil]

e{[a(x,y) - E,] + [G(x,y+12) - ElG(x,y+72) ]}

E, =

2

velley - 611y sllotxyees) - elotuyrea ]

- G(x,y)
Es E[IOQXO[O(X,Y))}

and

G(x,y))}

- 2
Eg = E{logxo(o(x’y)

Because of (4), we start from the relationships [Vanmarcke, 1983]:

Y = &% (10)
E{y} = exp{% <ol o+ ul (1)

2
E{[Y—E{Y}] b= exp{20§ + ZuZ} - exp{o% + 2uz} (12)

and

exp{o; . 02(11.12)} -1
py(T1yTz) = (13)

exp{c%} -1

where exp{-} denotes exponentiation and Z is a Gaussian, stationary,
anisotropic, random field with mean u,, standard deviation Iz and correlation
coefficient pz(t,,tz) for lags 1, and T1,.

Eqs. (10) through (13) also hold true for the random variables Z and Y
[Vanmarcke, 1983]. Therefore, one can use them in the case of nonstationary
and anisotropic random fields by applying them at each point (x,y) in the
field for the random variables Z(x,y) and Y(x,y) connected by Eq. (10). Thus,
Eqs. (4) and (10) through (13) can be used to derive expressions for the
expectations E, and E;:

E, = 0(x,y) - exp{% (¢n10)? « 8%(x,y) + o% + (4n10) - S(x,y) - ul (14)




E, = 02(x,y) * [exp{2(2n10)2 « S*(x,y) + ¢® + 2(&n10) - S(x,y) - u}

- expl (2n10)2+ S2(x,y) * o% + 2(2n10) + S(x,y) - u}] (15)

For S(x,y) reasonably smooth in the generation domain A and for small
values of t, and T,, one can use Eq. (13), which is strictly true for
stationary fields, to derive approximate expressions for E, and E,:

exp]{ (2n10)2 « S2(x,y) + o* - o(1,,0)} -1
E, = , (16)
exp{ (2n10)? » $%*(x,y) - o3} - 1

exp{ (2n10)2 + S2(x,y) « 0% - p(0,7,)} =1
E, = (17
exp{ (2n10)2 « S2(x,y) + o2} -1

The expectations Es and E, are (see Eq. (2)):

Es = S(x,y) * v (18)

Ee¢ = S2(x,y) « (% + u?) (19)

If one specifies design values for R, V or P, px(r,), and py(Tz), in

Eqs. (5), (9) or (6), (7), and (8), respectively, and uses the expressions in
Eqs. (14) through (19), one obtains the set of equations:

N { 0(x,y) - expl % (Ln10)? » S2(x,y) + o2 + (4n10) « S(x,y) * n} dxdy = R, (20) 3
o f S2(x,y) dxdy = V (21) ;
s [+] |
TKT A j
; f 02(x,y) « [exp{2(en10)? « S2(x,y) + o2 + 2(n10) + S(x,y) - ul
A

- exp{(en10)? « S2(x,y) * ¢% + 2(2n10) -+ S(x,y) * ul] dxdy = P, (22)

exp{(2n10)2 « S2(x,y) + 0® « p(1,,00} -1

dxdy = o (1,) (23)
1a] A exp{(&n10)2 + 32(x,y) - o2} -1 %o !



and

1 exp{(2n10)2 « S2(x,y) + 0% « p(0,7,)} - 1

TaT A exp{(2n10)2 « S2(x,y) * o?} =1

dxdy = o (1,) {(24)
Yo

where Ry, Vo, Py, pxo(T’)’ pyo(rz) are design Yalues. Solving simultaneously

the equations (20), (21) or (22), (23), and (24), one can obtain values
for u, o?, p(1,,0), and p(0,1,).

Assuming an exponential correlation function for e(x,y), of the type
1/
plrii1a) = exp{~(ni-ct + n3-u3)' /3, (25)
knowledge of p(t,,0) and p(0,1,) gives estimates of h,, h,. Therefore,

p(t,,T,) can be defined.

With u, ¢%, and p(t,,t,) known, one can use the TBM to generate
realizations of e(x,y).

In the particular case of an isotropic e(x,y) field with correlation
function

p(1) = expl-h-t}, (26)
the design equations (23) and (24) consolidate to the following:

1 f exp{(1n10)2 + S2(x,y) * o2 « p(D)} - 1
A exp{(1n10)2 « S2(x,y) - o2} - 1

dxdy = (v) (2m)

PG°
where e (1) is the design value of the correlation for the G(x,y) field.
]

Figure 1 shows a schematic flowchart of the generation process: The next
section presents an example of application of the proposed methodology.
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Schematic flowchart for the generation process.




NUMERICAL IMPLEMENTATION

This section presents an example of the generation of rainfall fields
from an original, high-quality radar field. Accuracy of preservation of the
design-statistics in the generated ensemble of rainfall fields is studied in
connection with the number of generated fields and the magnitude of the
statistics themselves. .

The original field consisted of daily radar data from the international
GARP Atlantic Tropical Experiment (GATE) conducted in 1974. A detailed
description of the GATE data is given by Hudlow and Patterson [1979]. The
original radar field (Figure 2) corresponds to spatially averaged daily
accumulations for July 28, 1974. Spatial averages were computed in 4 km by
4 km domains.

For the purposes of this example, the design equations (20), (21), (22),
and (27) were studied.

The number of lines L and the number of harmonics M of the TBM generator
took the values 16 and 100 respectively. Other parameters were specified as a
function of the inverse correlation distance h (Eq. 26). Based on the
suggestions by Mantoglou and Wilscn [1981], the maximum frequency Q was set {
equal to 40+h. The chosen set of parameters ensures accurate performance of |
the TBM. |

During the example runs, we generated rainfall “ields from the original
radar field with mean equal to the spatial average of the original field
{(1.16 mm/hr), and with prespecified values for the logarithmic-ratio variance
Vo (0.005, 0.01, 0.03). The correlation condition consisted of specifying
values for the correlation distance 1/h of the e(x,y) field (4 km, 12 km,

20 km).

For illustration purposes Figures 3, 4, 5, and 6 present examples of
generated fields with various second-order statistics based on the high-
quality radar field of Figure 2. In Figures 3, 4, and 5, V was set equal to
0.01 and 1/h took the values 20 km, 12 km, and 4 km respectively. Figure 6
had V=0,.005 and 1/h = 12 km. In all figures dashed lines correspond to
contours at the 1.5mm/hr level, solid lines correspond to contours at the
4 mm/hr level, and thick solid lines correspond to contours at the 11.5 mm/hr
level.

In a true generation process, one specifies the value of the correlation
of the G(x,y) field and then, using Eq. (27), one obtains the value of the
correlation of the e(x,y) field. Since our purpose was to study the
capabilities of the method for a range of correlation values, we specified
several values of the correlation of c(x,y) by specifying the correlation
distance 1/h and then we used Eq. (27) to compute the correlation p
of the G(x,y) field. Given that Egs. (23), (24), and, conseqguently, Eq. (27)
are strictly true for stationary fields S(x,y) « e(x,y), we computed p . for
the smallest possible lag t = 4 km so that S(x,y) = S(x+1,y) = S(x,y+1?.



Figure 2.

Original daily rainfall field.
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GATE data for July 28, 1974,
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Figure 3.

Generated daily radar-rainfall field.
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V = 0.01 and 1/h = 4 km.
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Figure 4.

Generated daily radar-rainfall field.
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vV = 0.01

and 1/h = 12 km.



KM

Figure 5. Generated daily radar-rainfall fileld. V = 0.01 and 1/h = 20 km.
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Figure 6.

Generated daily radar-rainfall field.
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V = 0.005 and 1/h = 12 km.



For all the combinations of Ro, Vo, and 1/h, we generated three ensembles
of rainfall fields, with the number of fields per ensemble, NS, equal to 10,
25, and 50. We then computed the statisties R, V, P, p.(t=4 km) for each
ensemble and we compared them with their theoretical va?ues obtained from Egs.
(20), (21), (22), and (27), respectively. We also computed u and ¢ from each
ensemble and compared them to the values obtained by solving Eqs. (20) and
(21). Thus, we were able to evaluate the accuracy of the TBM generator.

Because the specification of high V and P atatistics will sometimes yield
physically unacceptable values of the precipitation rates, we monitored the
number of values exceeding an arbitrarily chosen rate, set to 50 mm/hr, which
is close to the observed world record value of 55 mm/hr for daily data [Chow,
1964]. Consequently, we give guidelines on the specification of V, which is a
normalized measure, so that generation of realistic rainfall fields results.

Table 1 contains the results obtained for all cases. The results form
nine sets that cover the nine combinations of V and 1/h values specified. In
Table 1, the sets are arranged in three rows and three columns. Each row has
the value of V fixed, while each column has the value of 1/h fixed as shown
below to:

Row 1: V = 0.005 Column 1: % = 4 km
Row 2: V = 0.01 Column 2: % = 12 km
Row 3: V = 0.03 Column 3: % = 20 km

For all cases, the value of R remained equal to 1.16 mm/hr.

The table displays the prespecified values of u, g%, v, P, s (t=4 km), as well

(Prespecified Value) - (Computed Value)
(Prespecified Value)

as the percent errors « 100, that were
realized during the generation process. The field mean R, not included in the
table, had an error of less than one percent for all of the cases.

Inspection of the prespecified P values of Table 1 reveals that a wide
range of G-field variances was included, ranging from 0.73 mm®/hr? up to
4.51 mm3/hr2. Similarly, the prespecified p. values suggest that a wide range |
of G-field correlations was studied: from 0.32 up to 0.72. |

The values of the percent errors in Table 1, excluding the ones
corresponding to P for sets 7, 8, and 9, are all less than 16% and, in most
cases, less than 10%. In general, better accuracy is obtained as NS
increases, but accuracy is very good even with NS=10.

The results corresponding to statistic P, for V specified equal to 0.03
(last row of sets), show abnormal behavior compared to the rest of the results
in the same row of sets and for all the rest of the variables. The cause of
this phenomenon is the nonlinear relationship between V and P (see Egs. (%)
and (9)). Because there is an exponential relationship between V and P (one
cannot prespecify both V and P), small errors in approximating the specified
value of V can (depending on the form of S(x,y)) lead to pronounced errors in
the preservation of P, when V and P have high specified values. At any rate,
the number of unrealistic precipitation values which resulted from the
generation process, for V specified at 0.03, was unacceptable (see Table 2).
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Table 2. Number of generated rainfall values that exceed 50 mm/hr.

NS=10 NS=25 NS=50
1/h (km) y 12 20 4 12 20 4 12 20

Vo
0.005 1 1 0 3 2 0 5 y 1
0.010 1 1 0 11 7 3 21 21 15
0.030 32 i 36 92 113 99 193 232 219

—1 7_



Therefore, the third row of sets will not normally be used in a true
generation of realistic precipitation fields.

The virtual CPU time required for generation depends mainly on the
correlation distance 1/h specified for the e(x,y) field. The time-consuming
TBM generator used more time to generate a weakly correlated field than to
generate a strongly correlated one. The CPU time required to generate one
field on a PR1ME/750 computer PRIMOS operating system is given in minutes in
Figure 7, as a function of the correlation distance 1/h. Note that a total of
over 8000 values were generated in each rainfall field.

SUMMARY AND CONCLUSIONS

A method for generation of radar precipitation fields was described. The
method works by imposing a noise field on high quality radar rainfall
fields. The noise parameters are determined based on a set of conditions
pertaining to the resultant field. In that way, non-stationary, non-ergodic
fields can be simulated.

Since the original and the 'observation' (original + noise) fields are
known, the method can be used in the validation procedures of various
hydrologic models (radar and rain-gage data merging, mean areal precipitation
estimation, rainfall-runoff). The example given shows that the accuracy of
the preservation of the required statistics is very good, especially for
realistic values of the variance measure (V < 0.01), even for a relatively
small number of realizations (NS £ 25). The method proposed is flexible in
that one can generate fields with a wide range of second-order statistics from
one high-quality radar field.

when the technique is used to investigate radar and rain-gage data
merging, a procedure is required to synthesize the gage data. The authors are
investigating techniques to generate gage values in work under preparation.
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APPENDIX A

Turning Bands Method

Take a number L of lines of random direction intersecting at a certain
point. For each line of direction 0, generate-a unidimensional process with
zero mean and covariance C1 e(r) at spatial lag 1. Project each point, of

?

coordinates (x,y), for which one wants to generate a value of the two-
dimensional random field, onto line i=1,2,...,L. Record the value Zi(x,y) of
the unidimensional process at the projection and repeat projection for all the
other lines. The value Z(x,y) assigned to the point (x,y) is then:

L

2uy) = 11 2,(x) (a-1)

/L.
i=1

Mantoglou and Wilson [1981] give the relationship of the unidimensional
covariance C1 e(r) to the two-dimensional one (in our case, characterized by

¢? and p(1,,12)). The generation of the unidimensional process on each line
can be done using the spectral method of Shinozuka [19711:

]1/2

R

z,(8) =2

[S (w, ) * Aw
K 1,0 'k

1 « cos (w& . 8§+ ¢k) (A-2)

where S1 e(-) is the spectral density function obtained as a Fourier transform
?

of C1 e(r). Equation (A-2) assumes a discretization of the total spectrum
H

<-Q,@> in M components of central frequencies w3 k=1,..,M, such that the

difference W T W, is independent of k and equal to Aw. ¢k is a sequence of
randomly distributed angles in <0,2w>. The angle w& is the sum of the

-Aw& Aw&
angle 0 and a small random angle distributed uniformly between > and —

with Aw; S Aw.

For the commonly used exponential anisotropic correlation function
(Eq. (25)), Mantoglou and Wilson [1981] give:

w

r\)lq
N

S1,0 (@) = 372 (A-3)

cos?0 R sinze)]

hyhg [1+u? (2 n2

where @ is the angle of the turning bands line with the x—-axis, and ¢% is the
variance of the two-dimensional process.




In the special case of the isotropic correlation function (Eq. (26)),
Mantoglou and Wilson [1981] give:

2
S, (w) = -—; . C (A-4)
2
b? [1 * ::;]3/2

where S,(w) is the spectral density function along each line and o¢? is the
variance of the two-dimensional process.




